
Open Journal of
Mathematical
Optimization

Giacomo Nannicini
On the implementation of a global optimization method for mixed-variable problems
Volume 2 (2021), article no. 1 (25 pages)

<http://ojmo.centre-mersenne.org/item/OJMO_2021__2__A1_0>

Article submitted on June 29, 2020, revised on January 28, 2021,
accepted on January 29, 2021.
© The journal and the authors, 2021.

Some rights reserved.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

Open Journal of Mathematical Optimization is member of the
Centre Mersenne for Open Scientific Publishing

www.centre-mersenne.org

http://ojmo.centre-mersenne.org/item/OJMO_2021__2__A1_0
http://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
www.centre-mersenne.org

On the implementation of a global optimization method for mixed-variable
problems

Giacomo Nannicini
IBM Quantum, IBM T.J. Watson research center
Yorktown Heights, NY, USA
nannicini@us.ibm.com

Abstract
We describe the optimization algorithm implemented in the open-source derivative-free solver RBFOpt. The algorithm is
based on the radial basis function method of Gutmann and the metric stochastic response surface method of Regis and
Shoemaker. We propose several modifications aimed at generalizing and improving these two algorithms: (i) the use of an
extended space to represent categorical variables in unary encoding; (ii) a refinement phase to locally improve a candidate
solution; (iii) interpolation models without the unisolvence condition, to both help deal with categorical variables, and
initiate the optimization before a uniquely determined model is possible; (iv) a master-worker framework to allow
asynchronous objective function evaluations in parallel. Numerical experiments show the effectiveness of these ideas.

Digital Object Identifier 10.5802/ojmo.3

Keywords Derivative-free optimization, black-box optimization, mixed-variable problems.

1 Introduction

An optimization problem without any structural information on the objective function or the constraints, but
for which we have the ability to evaluate them at given points, is called a black-box problem. The area of
derivative-free optimization is dedicated to the study of optimization algorithms that do not rely on computing the
partial derivatives of the objective function, and it is naturally applied to black-box problems. Many optimization
problems in engineering are solved by treating them as a black box, for two main reasons: first, the objective
function may not be known in an explicit form, e.g., when it is the output of a complex computer simulation;
second, even if derivatives may exist and be computable, the effort required may make it impractical, or the low
accuracy of their computation may make them unreliable.

This paper discusses the implementation of a global derivative-free optimization algorithm that is specifically
aimed at black-box problems with expensive objective function evaluations. The algorithm accepts as input
problems of this form:

min f(x,w)
x ∈ [xL, xU]
x ∈ Rnr × Znd

w ∈
nc×
h=1

Sh,

 (1)

where for h = 1, . . . , nc, Sh is an (unordered) finite set, and xL, xU ∈ Rnr+nd are vectors of finite lower and
upper bounds. Problem (1) is a mixed-variable problem, because it involves continuous variables, discrete integer
variables, and discrete categorical variables (i.e., variables that belong to a finite, not necessarily ordered set).
Mixed-variable problems are notoriously difficult to solve, but they have wide-ranging applications, see e.g.,
[2]. Note that (1) is unconstrained: while constraints greatly increase modeling capabilities, the majority of the
derivative-free optimization literature deals with unconstrained problems. This is mainly due to two reasons:
first, simple constraints can be incorporated by penalizing their violation in the objective function; second,
problem (1) is already difficult to solve, so unless the constraints are relatively easy to handle, complicated
(possibly black-box) constraints may make its solution too difficult in practice1.

© Giacomo Nannicini;
licensed under Creative Commons License Attribution 4.0 International

Volume 2 (2021), article no. 1
1 For an example of a difficult constrained black-box optimization problem, we refer the interested reader to the MOPTA 08

problem discussed at https://www.miguelanjos.com/jones-benchmark; see also [32].

mailto:nannicini@us.ibm.com
https://doi.org/10.5802/ojmo.3
https://creativecommons.org/licenses/by/4.0/
https://ojmo.centre-mersenne.org
https://www.miguelanjos.com/jones-benchmark

2On the implementation of a global optimization method for mixed-variable problems

Among the numerous methodologies proposed for derivative-free optimization, there is an emerging consensus
that algorithms based on surrogate models typically have better global performance on nonconvex problems
with continuous variables. A surrogate model is a model of the unknown objective function, that can be used
by the optimization algorithm as a proxy to obtain estimates of the objective function value at unseen points
in the domain. The algorithm discussed in this paper employs a surrogate model constructed as a weighted
combination of radial basis functions (RBFs), plus a polynomial tail. At each iteration, the algorithm uses the
surrogate model to determine the next point at which the objective function should be evaluated; this decision is
based on criteria first introduced in [16, 33], together with the modifications discussed in [10]. We generalize
these approaches in multiple ways, the most notable of which are:
(i) We introduce a surrogate model defined in an extended space, mapping categorical variables to their unary

encoding, and showing that all steps of the optimization algorithm can be performed in a natural way in
either the original or the extended space.

(ii) We employ a periodic refinement phase, aimed at improving the best known solution with a local search.
The local search consists of a small number of steps of an iterative gradient descent method, based on a
linear local model of the objective function.

(iii) We do not enforce the unisolvence condition of the surrogate models, to both help with categorical variables
(for reasons that will be discussed later), and to be able to start optimizing before a unique surrogate model
is available.

(iv) We describe a parallel implementation of the algorithm that allows asynchronous, simultaneous objective
function evaluations.

The resulting optimization algorithm is implemented in an open-source library called RBFOpt, first introduced
in [10]. The paper [10] is based on RBFOpt version 1.0, while this paper discusses innovations introduced between
version 1.0 and the current 4.2 version2. We give a full description of several important implementation details
that were not previously discussed. Numerical experiments show the effectiveness of these modifications on
a set of nonconvex problems, as compared to the algorithm of [10], and as compared to several open-source
derivative-free optimization solvers: NOMAD [20], Nevergrad [30], Optuna[1], Scikit-Optimize [17], SMAC [18].
We provide an example of a typical application by evaluating the performance of RBFOpt for the optimization
of the hyperparameters of a random forest classifier on a given dataset. We remark that RBFOpt is designed for
deterministic black-box optimization problems, rather than hyperparameter optimization problems where the
result of each objective evaluation is typically a sample from a random variable; however, we can use RBFOpt by
simply fixing the dataset and the random seed used to train the classifier, thereby making the objective function
deterministic. This runs the risk of overfitting, as RBFOpt only observes one realization of a generalization error
estimator, but in practice it can be an acceptable tradeoff. Results show that the main innovations discussed
above have a significant impact on performance not only on artificial test functions, but also in this specific
hyperparameter optimization application3.

The rest of this paper is organized as follows. In Section 2 we review RBF interpolation. In Section 3 we
discuss two natural approaches to incorporate categorical variables into the surrogate model, setting the stage
for an optimization algorithm. Section 4 describes the optimization algorithm, including several of the main
contributions of this paper. Finally, Section 5 provides an extensive numerical evaluation of the optimization
algorithm, and Section 6 concludes the paper.

2 Surrogate models with radial basis functions

Given k distinct points x1, . . . , xk ∈ Rn, a RBF interpolant sk to the points x1, . . . , xk ∈ Rn is defined as:

sk(x) :=
k∑
i=1

λiφ(‖x− xi‖) + p (x), (2)

where φ : R+ → R, λ1, . . . , λk ∈ R and p is a polynomial of degree d. We use subscripts to refer to elements
of a vector, and superscripts to denote distinct vectors, e.g., xij is the j-the element of the i-th vector of the
collection x1, . . . , xk; the superscripts should not be confused with exponents based on context, as they refer to

2 [10] is based on Gutmann’s RBF method [16], which was the default global search method in RBFOpt before being replaced
in version 1.2.

3 RBFOpt is used in a commercial product to optimize hyperparameters of machine learning models; while our benchmark set
contains artificially generated functions, development is largely driven by hyperparameter optimization applications.

Giacomo Nannicini 3

Table 1 RBF functions available in RBFOpt.

� (r) d

r (linear) 0
r 3 (cubic) 1p

r 2 + 2 (multiquadric) 0
r 2 log r (thin plate spline) 1

e� r 2
(Gaussian) -1

variables that are multidimensional vectors, in general � in the few instances where we use polynomials, they
are clearly applied to scalar quantities. Notice that here and in the rest of this paper, for notational convenience
we usen as a general shorthand for the dimension of the space in which the interpolation points live; the value
for n is speci�ed in the next section. Furthermore, we remark that herex is a generic variable name, and should
not be intended to refer only to continuous and integer variables as in(1). The degreed of the polynomial is
chosen according to Table 1, depending on the type of radial basis functions� (r).

If � (r) is cubic or thin plate spline, we obtain an interpolant of the form:

sk (x) :=
kX

i =1

� i � (kx � x i k) + � >
�

x
1

�
; (3)

where � 2 Rn +1 . The values of � i ; � can be determined by solving the following linear system:
�

� P
P> 0(n +1) � (n +1)

� �
�
�

�
=

�
F

0n +1

�
; (4)

with:

� =
�
� (kx i � x j k)

�
i;j =1 ;:::;k ; P =

0

B
@

(x1)> 1
...

...
(xk)> 1

1

C
A ; � =

0

B
@

� 1
...

� k

1

C
A ; F =

0

B
@

f (x1)
...

f (xk)

1

C
A :

If k � n + 1 , rank(P) = n + 1 , and the points x1; : : : ; xk are pairwise distinct, then (4) is nonsingular; this is a
su�cient but not necessary condition, used by Gutmann's RBF algorithm [16] to guarantee uniqueness of the
interpolant on problems with continuous variables.

If � (r) is linear or multiquadric, d = 0 and the system(4) has a simpler expression:P is the all-one column
vector of dimensionk. In the Gaussian case,d = � 1 and P is removed from system(4). The dimensions of the
zero matrix and vector in (4) are adjusted accordingly.

In the setting of this paper, the matrix of (4) may be singular in some situations (see Section 4.1), hence
this assumption no longer holds; however, we generally strive to obtain a nonsingular linear system so that the
coe�cients of sk can be uniquely determined.

3 Optimization with categorical variables in extended space

In the rest of this paper, we assume thatxL
j ; xU

j 2 Z for all j = nr + 1 ; : : : ; nr + nd. For i = 1 ; : : : ; nc, we de�ne

mh = jSh j and bmh =
P h

k=1 mk , with bm0 = 0 for convenience. We useh�; �i to denote inner products. Since(1)
has categorical variables, which are di�cult to handle in any mathematical optimization framework due to
their unstructured nature, we work with two inexact formulations for (1). The �rst formulation, which we call
original space formulation, simply replaces the categorical variables with integer variables. De�ne the vectors
xo;L ; xo;U 2 Rn r + n d + n c as:

xo;L
i =

(
xL

i if i � nr + nd

1 otherwise
xo;U

i =

(
xU

i if i � nr + nd

mi � n r � n d otherwise:

Then the original space formulation is de�ned as:

min f (x1; : : : ; xn r + n d ; C(xn r + n d +1 ; : : : ; xn r + n d + n c))
x 2 [xo;L ; xo;U]
x 2 Rn r � Zn d + n c

9
=

;
(5)

4On the implementation of a global optimization method for mixed-variable problems

where C : � n c
h=1 [1; : : : ; mh] ! � n c

h=1 Sh is a one-to-one map of the integers[1; : : : ; mh] to elements of themh -
dimensional setSh . Notice that to construct the function C, we must arbitrarily de�ne an order of each set
Sh . This allows us to apply any algorithm for mixed-integer black-box problems directly to (1). However, it is
an inherently �awed approach, because the setsSh are originally unordered. Since virtually all derivative-free
optimization algorithms use metric information, we are imposing on the problem arti�cial structure that is not
re�ected in its original formulation.

The second formulation, which we callextended spaceformulation, uses a unary encoding for the categorical
variables. De�ne the vectors xe;L ; xe;U 2 Rn r + n d + m̂ n c as:

xe;L
i =

(
xL

i if i � nr + nd

0 otherwise
xe;U

i =

(
xU

i if i � nr + nd

1 otherwise:

Then the extended space formulation is de�ned as:

min f (x1; : : : ; xn r + n d ; bC(xn r + n d +1 ; : : : ; xn r + n d + m̂ n c
))
x 2 [xe;L ; xe;U]
x 2 Rn r � Zn d � f 0; 1gm̂ n c

8 h = 1 ; : : : ; nc
P m̂ h

j = m̂ h � 1 +1 xn r + n d + j = 1 :

9
>>>=

>>>;

(6)

where bC : f 0; 1gm̂ n c ! � n c
h=1 Sh maps the binary vector (xn r + n d +1 ; : : : ; xn r + n d + m̂ n c

) 2 f 0; 1gm̂ n c to a choice of
elements from the setsSh , by viewing it as the juxtaposition of the characteristic vectors of the setsSh . This
mapping assigns one value to each categorical variable, because of the constraints

P m̂ h
j = m̂ h � 1 +1 xn r + n d + j = 1 for

all h = 1 ; : : : ; nc. In the following we denote the feasible region of(6) as
 e. Notice that similar to the previous
formulation, (6) also su�ers from the �aw of imposing an order on the setsSh ; however, we show next that a
surrogate model of (6) with radial basis functions ignores the order, thereby avoiding ranking points based on
arti�cial metric information (i.e., that does not exist in the original problem).

I Proposition 1 (Invariance with respect to permutation). Let x1; : : : ; xk 2
 e � Rn r + n d � f 0; 1gm̂ n c with
corresponding function valuesy1; : : : ; yk . Let � = � n c

h=1 � h be a permutation off 0; 1gm̂ n c , where for h = 1 ; : : : ; nc,
� h is a permutation of f 0; 1gm h . Let � e := I n r + n d � � be the extension of� to an operator on (nr + nd + bmn c)-
dimensional vectors that acts as the identity on the �rstnr + nd components. Let� 2 Rk ; � 2 Rn r + n d + m̂ n c ; � 0 2 R
de�ne an interpolant

sk (x) :=
kX

i =1

� i � (kx � x i k) + h�; x i + � 0 (7)

to the points x1; : : : ; xk with values y1; : : : ; yk . (If the polynomial tail is of degree 0 according to Table 1, then�
is the all-zero vector; if the degree is� 1, � 0 is 0 as well.) Then for any x 2 Rn r + n d � f 0; 1gm̂ n c , the function s0

k ,
de�ned as:

s0
k (x) :=

kX

i =1

� i � (kx � � e(x i)k) + h� e(�); xi + � 0;

is such that sk (x) = s0
k (� e(x)) .

Proof. Since by de�nition � e is a permutation of the components of the vector(xn r + n d +1 ; : : : ; xn r + n d + m̂ n c
),

and acts as the identity on the �rst nr + nd components, we have:

k� e(x) � � e(x i)k = kx � x i k

and

h� e(�); � e(x)i = h�; x i :

This immediately implies sk (x) = s0
k (� e(x)) . J

Proposition 1 implies that the surrogate model in extended space is invariant to the order adopted in the
unary-encoding representation of the categorical variables. Indeed, if the solution to(4) is unique, yielding a

Giacomo Nannicini 5

unique surrogate modelsk , after permuting the unary encoding of the categorical variables we would obtain the
same surrogate model from(4). We remark that if the solution to (4) is not unique (see Section 4.1), then one
may obtain a di�erent sk after permuting the unary encoding of the categorical variables; however, even in this
case, each solution to(4) has an equivalent solution for the system obtained after permutation. Note that similar
properties do not hold when using the original space formulation: if categorical variables are represented by
integers in the interval [1; : : : ; mh], permuting these integers is not a component-wise permutation of the vector
x, and could in general change the norms ofkx � x i k.

We can therefore use the extended space formulation (6) together with surrogate models of the form (2) to
ensure that the setsSi are correctly treated as unordered. However,(6) is a constrained formulation, whereas the
algorithms of [16] and [33] (that RBFOpt is based on) assume unconstrained problems. In the next sections we
describe one way to deal with the constraints in(6). Another di�culty is given by the fact that the constraints
lead to linearly dependent columns in the submatrixP of (4); this issue is also discussed in the next sections. From
now on, we de�ne n := nr + nd + bmn c , i.e., the dimension of the extended space: the interpolation model(2) lives
in n-dimensional space. Note that we always require the representation of the categorical variables in extended
space to take on integer values, as is natural. This is in contrast with popular hyperparameter optimization
approaches, where the categorical variables are often treated as continuous for simplicity, and the fractional
values are then mapped to a valid discrete value in some heuristic way (such as setting the variable with the
largest fractional value to 1, and the rest to 0; this is the approach implemented, e.g., in Spearmint [37]). From
an optimization standpoint, it seems more rigorous to treat integer variables as such, because it is well-known
that a solution to the relaxed problem could be very far from the integer optimum, even for linear optimization
problems [27].

Finally, to better understand the structure of the surrogate model sk in the extended space, we rewrite it as
follows. For x 2 Rn r � Zn d � f 0; 1gm̂ n c , de�ne cat(x; h) := (xn r + n d + m̂ h � 1 +1 ; : : : ; xn r + n d + m̂ h), i.e., the subvector
corresponding to the unary representation of theh-th categorical variable. With this de�nition, note that sk can
be rewritten as:

sk (x) =
kX

i =1

� i � (k(x1; : : : ; xn r + n d) � (x i
1; : : : ; x i

n r + n d
) +

n cX

h=1

1cat (x;h)6= cat (x i ;h) k) + h�; x i + � 0:

From the above equation we can see that the argument of the radial basis function centered at the interpolation
point x i is shifted by the number of categorical variables that disagree withx i . Thus, for the radial basis function
part of the interpolant, the surrogate model is determined by the non-categorical variables, as well as the number
of disagreements with the categorical variables at the interpolation nodes: the only notion of distance between
categorical variables is reduced to the binary information agreement/disagreement, which is independent from
the order assigned to the setsSh . Furthermore, depending on the degree of the polynomial tail, there can be an
additional shift of the entire surrogate model that depends only on the values of the categorical variables (i.e.,
the part corresponding to categorical variables in the inner product termh�; x i).

It should be noted that if a categorical variable, say the �rst categorical variable for simplicity, has only
two possible values, i.e.,jS1j = 2 , then the extended space formulation is redundant: the constraintxn r + n d +1 +
xn r + n d +2 = 1 implies that xn r + n d +2 is simply the complement ofxn r + n d +1 . As will be discussed in Section 4.1,
one amongxn r + n d +1 ; xn r + n d +2 would always be eliminated when determining the coe�cients of the surrogate
model. Hence, we use the extended space formulation only for categorical variables that have strictly more than
two possible values: for those that have exactly two, we use the original space formulation, mapping them to a
binary variable.

4 Description of the optimization algorithm

Many RBF-based global optimization methods use a similar scheme that attempts to balanceexploration (trying
to improve a surrogate model of the objective function in unknown parts of the domain) with exploitation (trying
to �nd the best objective function value based on the current surrogate model); see, e.g., [14, 16, 24, 25, 33].
The algorithm that we propose is no exception, although we introduce some additional steps (Re�nement step
and Restoration step, see below) as compared to the more traditional framework. More speci�cally, we use the
following optimization scheme:

Initial step: Set k equal to the size of the initial sample set. Choosek a�nely independent points
x1; : : : ; xk 2
 e using an initialization strategy.

6On the implementation of a global optimization method for mixed-variable problems

Iteration step: Repeat the following steps until k exceeds the prescribed number of function evaluations.
(i) Compute the RBF interpolant sk to the points x1; : : : ; xk , solving (4). If the system is not full rank, �nd

the least squares solution. If the system cannot be solved, go to Restoration step.
(ii) Choose a trade-o� betweenexploration and exploitation.
(iii) Determine the next point xk+1 based on the choice at step (ii).
(iv) Evaluate f at xk+1 .
(v) Set k k + 1 . If the last Re�nement step was performed su�ciently many iterations ago, go to the

Re�nement step. Otherwise, repeat the Iteration step.
Re�nement step:

(i) Selectn + 1 points out of x1; : : : ; xk to initialize a local model.
(ii) Apply a local search method for a speci�ed numberk0 of iterations, obtaining points xk+1 ; : : : ; xk+ k 0

.
(iii) Set k k + k0 and go back to the Iteration step.

Restoration step: Attempt to change the set of interpolation points so that (4) admits a solution. If
successful, return to Iteration step. Otherwise, restart the algorithm.

The algorithm described above can be considered a meta-algorithm, with many possible instantiations. The
choice of the initial sample points is discussed in [10]; in this paper we always select them by constructing a latin
hypercube design aimed at maximizing the minimum distance between the sample points. In the following, we
provide an overview of the main di�erent implementations of the above meta-algorithm available in RBFOpt.
We remark that [10] describes several improvements to the meta-algorithm (in the context of Gutmann's RBF
method [16]); all of them are used by default in RBFOpt. Most notably, these are: automatic scaling of the
domain of the function; clipping and rescaling of the codomain; restriction of the search box during global
search � see [10] for details.

4.1 Solution of linear systems and non-unique interpolants

To compute the surrogate modelsk we must solve system(4). However, when the polynomialp(x) is of degree 1,
if some of the interpolation points are a�nely dependent then (4) has determinant 0. In continuous space, the
algorithm never generates a�nely dependent points4. With categorical variables, this is bound to happen: because
of the constraints

P m̂ h
j = m̂ h � 1

xn r + n d + j = 1 for all h = 1 ; : : : ; nc, the binary representation of each categorical
variable in extended space adds up to the all-one vector, which is already a column of(4) wheneverd = 1 in
Table 1. To solve this issue, whenever the problem has categorical variables andd = 1 , we eliminate the columns
xn r + n d + m̂ h for h = 1 ; : : : ; nc and the corresponding rows from(4). These are precisely the last columns of each
constraint

P m̂ h
j = m̂ h � 1

xn r + n d + j = 1 for all h = 1 ; : : : ; nc. This is motivated by the following simple observation.

I Proposition 2 (Reduced linear system). Supposed = 1 and nc � 1, i.e., there is at least one categorical variable.
Suppose further that we employ the extended space formulation of the problem(6). Denote by bP the matrix
obtained by eliminating the columnsxn r + n d + m̂ h for h = 1 ; : : : ; nc from P. Then if the system (4) has a solution,
so does the system:

� bP
bP> 0(n +1 � n c) � (n +1 � n c)

! �
�
�

�
=

�
F

0n +1 � n c

�
; (8)

Proof. Let ��; �� be a solution to (4). Sincexn r + n d + m̂ h = 1 �
P m̂ h � 1

j = m̂ h � 1
xn r + n d + j for all h = 1 ; : : : ; nc, we can

eliminate xn r + n d + m̂ 1 from P; if we de�ne v = (� 1; : : : ; � 1; 1; 0; : : : ; 0)> 2 Rn +1 as the vector with � 1 in the
�rst (bm1 � 1) components,1 in the bm1-component, 0 in all the other components, the substitution yields:

�
� P

P> 0(n +1) � (n +1)

� � ��
�� � �� m̂ 1 v

�
=

�
F

0n +1

�
:

This shows that (��; �� � �� m̂ 1 v) is also a solution to(4). However, by de�nition the bm1-component of �� � �� m̂ 1 v is
zero, implying that we can eliminate the column corresponding toxn r + n d + m̂ 1 from P (this also eliminates one
row from P> , which obviously does not restrict the set of solutions to the system). We can repeat this process for
xn r + n d + m̂ h for h = 2 ; : : : ; nc, showing that the reduced system admits a solution and completing the proof. J

4 To be precise, the algorithm only guarantees pairwise distinct points; but the probability of selecting a new point that is
a�nely spanned by the previous points is 0 with the MSRSM algorithm [33], and only happens in ill-conditioned cases for
Gutmann's algorithm [16].

Giacomo Nannicini 7

By the above proposition, we can solve(8) rather than (4), �nd a solution to the smaller system, and extend
it to a full solution by inserting zeroes in the positions corresponding to eliminated columns. The advantage of
this approach is that (8) may be an invertible system whereas(4) is not invertible under the stated conditions.

A�nely dependent points a�ect not only the nonsingularity of the system (4), but also the unisolvence
property of RBF interpolants, i.e., uniqueness of the interpolant [29]. In particular, when d = 1 in Table 1, the
su�cient condition for unisolvence � using a basis of polynomials of degree 1 � fails because we eliminate one
or more monomials from the polynomial basis. Thus, whend = 1 we can no longer guarantee the unisolvence
property. However, in practice we observe that the system(4) often has a solution even when this condition fails,
and sometimes a unique solution; this was also observed in [13].

Even when using the reduced matrix bP, it can sometimes happen that the algorithm generates a�nely
dependent interpolation points. Speci�cally, this can occur when there are integer or categorical variables, where
column entries belong to a discrete set; empirically, we observe this especially when the problem has many binary
variables. When this happens, we solve(8) as a least-squared-residuals problem. This is computationally more
expensive, but guarantees a solution. (The time spent in the solution of linear systems is negligible in practice.)

The least squares solution to the linear system is also used whenever there are not enough sample points to
build a full interpolant, i.e., k � n + 1 . Whereas the majority of the literature assumes that at leastn + 1 points
are sampled in the initialization phase (see, e.g., [16, 33, 10]), in practice this can be a severe drawback whenn
is large. Approaches to begin the optimization before samplingn + 1 points are described in [31, 34]; we follow
the approach of [34]5. Speci�cally, the number of initial sample points ninit is heuristically chosen according to
the following formula:

ninit =

(
b0:5(n + 1) e if n � 20

b0:4(n + 1) e otherwise.
(9)

If RBFOpt is executed in parallel with at least 2 threads, then the number of initial sample points is chosen as:

ninit =

8
>><

>>:

n + 1 if n � 20

b0:75(n + 1) e 21 � n � 50

b0:5(n + 1) e otherwise.

As long ask � n, we use the least squares solution to determine the coe�cients of the surrogate modelsk ; the
rest of the optimization algorithm remains unchanged. Wheneverk � n + 1 points are available and they are
a�nely independent, system (4) has a unique solution and we compute it using a direct method.

The reduced matrix bP is also employed in the Initial step of the algorithm. After generating an initial sample
set (see [10] for a description of the strategies to do so implemented in RBFOpt), we compute a singular value
decomposition of bP; as long as some singular value is close to zero, we generate a new sample set. Notice that if
there are no categorical variables thenbP coincides with P.

We remark that for all RBFs that do not have a polynomial tail of degree 1, i.e., all except the cubic and
thin plate splines, these additional steps are not necessary. However, the cubic and thin plate spline RBFs are
empirically among the most accurate, see e.g. [10], and the automatic model selection procedure employed by
RBFOpt (see Section 4.5) chooses one of these two RBFs very often in practice. Hence, the additional e�ort is
justi�ed.

4.2 Determining the next point: Iteration step

We implement a variation of two algorithms for global optimization using RBFs: Gutmann's RBF algorithm [16]
and the Metric Stochastic Response Surface Method (MSRSM) [33]. Both algorithms proceed in cycles, and use
a parameter � that determines the length of an optimization cycle.

4.2.1 Gutmann's RBF algorithm

A detailed description is given in [10]; here we report the main steps only. For some given pointy, let `k be the
RBF interpolant to the points f x i : i = 1 ; : : : ; kg [f yg, with function values 0; 0; : : : ; 0; 1 respectively. Let � k (y)
be the coe�cient of `k corresponding to the RBF centered aty. De�ne

gk (y) = (� 1)d+1 � k (y)[sk (y) � f �
k]2; y 2
 e n f x1; : : : ; xk g;

5 The numerical tests in [34] are based on a customized version of RBFOpt.

8On the implementation of a global optimization method for mixed-variable problems

where f �
k is a given value. Furthermore, de�ne:

hk (x) =

(
1

gk (x) if x 62 fx1; : : : ; xk g

0 otherwise:
(10)

Gutmann's RBF method then implements the following Iteration step:

Iteration step (for Gutmann's RBF algorithm):
(ii) Choose a target value f �

k 2 R [f�1g : f �
k � minx 2
 e sk (x).

(iii) Compute

xk+1 = arg max
x 2
 e

hk (x); (11)

where h(x) is de�ned as in (10).

Let y� := arg minx 2
 e sk (x), f min := min i =1 ;:::;k f (x i), and f max := maxi =1 ;:::;k f (x i). We employ a cyclic
strategy that picks target values f �

k 2 R [f�1g according to the following sequence of length� + 2 :

Step � 1 (InfStep): Choosef �
k �1 . In this case the problem of �nding xk+1 can be rewritten as:

xk+1 = arg max
x 2
 e

1
(� 1)d+1 � k (x)

:

This is a pure exploration phase, yielding a point far fromx1; : : : ; xk .
Step ` 2 f 0; : : : ; � � 1g (Global search): Choose

f �
k sk (y�) � (1 � `=�)2(f max � sk (y�)) : (12)

In this case, we try to strike a balance between improving model quality and �nding the minimum.
Step � (Local search): Choose f �

k sk (y�). Notice that in this case (10) is maximized at y� . Hence, if
sk (y�) < f min � 10� 10 jf min j we accepty� as the new sample pointxk+1 without solving (11). Otherwise we
choosef �

k f min � 10� 2jf min j. This is an exploitation phase.

4.2.2 MSRSM algorithm

De�ne dist (x) := min i =1 ;:::;k kx � x i k. The MSRSM algorithm implements the following Iteration step:

Iteration step (for the MSRSM algorithm):
(ii) Choose a target value � 2 [0; 1] [f1g .
(iii) Choose a �nite set of reference pointsR �
 e n f x1; : : : ; xk g, and compute

xk+1 = arg min
x 2
 e

�
maxy2 R dist(y) � dist(x)

maxy2 R dist(y) � miny2 R dist(y)
+

sk (x) � miny2 R sk (y)
maxy2 R sk (y) � miny2 R sk (y)

: (13)

Essentially, (13) tries to solve a bi-objective optimization problem in which the two objective functions are
the (negative of the) maximin distance from the points x1; : : : ; xk , and the value of the surrogate model. The
paper [33] uses a variation of (13), in which the second fraction in the expression has weight(1 � �) rather than
1. RBFOpt supports this version, but by default it uses equation (13) instead (see also [9]).

The value of � is chosen according to a cyclic strategy of length� + 2 in which each step has similar goals to
the corresponding step discussed in Gutmann's RBF method. The cyclic strategy is as follows:

Step � 1 (InfStep): Choose� 1 . In this case the problem of �nding xk+1 can be rewritten as:

xk+1 = arg max
x 2
 e

min
i =1 ;:::;k

kx � x i k:

This is a pure exploration phase.
Step ` 2 f 0; : : : ; � � 1g (Global search): Choose� maxf 1 � (` + 1) =�; 0:05g. This aims for balance between
exploration and exploitation.
Step � (Local search): Choose � 0. In this case, the solution to (13) is the point that minimizes the
surrogate model, i.e.,y� = arg miny2
 e sk y. If y� is such that sk (y�) < f min � 10� 10 jf min j, we accepty� as
the new point xk+1 . Otherwise, choose� 0:05. This is an exploitation phase.

Giacomo Nannicini 9

4.2.3 Solution of the search problems

We implement three di�erent approaches for the solution of the optimization problems (11) and (13):
(1) Problems (11) and (13) are solved with a simple genetic algorithm, that works by generating an initial

population X uniformly at random, then iteratively constructing a new population by taking:
The 0:25jX j best points in X (surviving population), according to the objective function being optimized;
0:25jX j points obtained by repeatedly performing the following procedure: we randomly pick two points
x1; x2 from the surviving population, and create a new point by choosing each entry from eitherx1 or x2

(mating);
0:5jX j points generated uniformly at random (new individuals);
a point obtained by taking the best individual in X , and randomly perturbing some of its entries
(mutation). The number of mutated entries increases as the number of iterations of the genetic algorithm
increases.

We appropriately round the above quantities so that the size of the populationjX j remains constant. In the
presence of categorical variables we sample points in the original space, where uniform random sampling is
easily implemented, then map them to the extended space.

(2) Rather than solving (11) and (13) directly, we sample a large number of points in
 e and choose the best
point in the sample. This is the approach advocated in [33]. In the presence of categorical variables we
sample points in the original space, where uniform random sampling is easily implemented, then map them
to the extended space.

(3) Problems (11) and (13) are solved by means of the mathematical programming solvers Ipopt and Bonmin.
This is the approach advocated in [16]. Since Bonmin supports constrained problems, we work directly in
the extended space when this approach is chosen (note that we must use Bonmin if discrete variables are
present).

We remark that the MSRSM scoring function requires a set of reference pointsR, see(13): the set of reference
points is taken to be the current population for the genetic algorithm, the whole sample when using the sampling
scheme, andx1; : : : ; xk for when using a mathematical programming solver.

4.3 Determining the next point: Re�nement step

As indicated at the beginning of Section 4, during the search we periodically execute a Re�nement step, with the
purpose of improving the best solution available by performing a local search around it. The scheme employed in
the Re�nement step is reminiscent of a trust region method [6, 39]. However, it is not a trust region method,
mainly because we construct a local model using points that may be outside the trust region, and we do not
require that the model is fully-linear or a similar property [8] (although the QR-like algorithm that we use to
improve the geometry of the interpolation set would in principle yield a fully-linear model, if it were allowed
to run to completion [39, 7]). Furthermore, our scheme is adapted to work on mixed-variable problems, rather
than only problems with continuous variables; proving rigorous local convergence guarantees in the discrete
setting is an involved task in itself, see e.g., [21], and here we limit ourselves to a heuristic approach to re�ne
candidate solutions. While trust region methods enjoy strong convergence properties [8], managing the set of
sample points and converging to a stationary point can be expensive, compared to surrogate model methods, in
terms of number of objective function evaluations. Empirically, we found that embedding a full trust region
method for local search could severely slow the global search, which is the main strength of RBF-based surrogate
model methods; hence, we opted for the methodology described below, that is guided by two design priciples:
(1) it is initialized using information from known points only; (2) it is quickly stopped if it fails to yield any
improvement. Note that with our approach the RBF surrogate model is still used for global and local search, but
it is complemented by a local linear model to search around the best known solution; this is contrast to the
approach recently proposed in [15], where the global surrogate model is abandoned altogether, and is replaced
by multiple local models managed with a trust-region-like algorithm.

We de�ne the following algorithmic parameters, utilized in the procedure.

� mr : minimum radius of the re�nement search.
� rm : (logarithm of the) radius multiplier for initialization.
� rs : threshold to shrink the re�nement search radius.
� re : threshold to expand the re�nement search radius.
� rm : threshold to accept the new iterate.

10On the implementation of a global optimization method for mixed-variable problems

Trf : frequency parameter of the re�nement search.
Trs : maximum number of consecutive re�nement iterations.
� grad : minimum norm of the gradient of the linear model.

The Re�nement step works as follows:

Model initialization: Let j arg mini =1 ;:::;k f (x i). Sort the points x1; : : : ; xk by increasing distance from
x j , and select the �rst n + 1 (this includes x j itself). Let S be the set containing these points. Set�x x j .
Let bx be the point in S with the

�
n +1

2

�
smallest distance to �x. Compute the initial radius of the re�nement

search� as:

� = max fk �x � bxk; � mr � 2� rm g:

Re�nement: repeat a given number of times, or until a stopping criterion is met.
(i) Let M be the matrix obtained using the points x i 2 S as columns.
(ii) If M does not containn + 1 a�nely independent columns, use a QR factorization of M to replace one

point in S with a new point (obtained by moving from �x in a direction taken from the columns of Q after
rescaling, with step length �) that increases the rank ofM , and go back to (i).

(iii) Otherwise, build a linear model c> x + b of the objective function using points (x i ; f (x i)) ; x i 2 S.
(iv) Move from the current iterate �x in the direction of improvement � c with step length:

t = max
0� t � �

f t : �x � tc 2 [xe;L ; xe;U]g:

Let �x0 = �x � tc be the new candidate point.
(v) Evaluate f (�x0). Update the re�nement search radius based on the expected decreasec> (�x � �x0) and the

actual decreasef (�x) � f (�x0): if f (�x) � f (�x 0)
c> (�x � �x 0) � � rs , set � �= 2, if f (�x) � f (�x 0)

c> (�x � �x 0) � � re set � 2� .

(vi) If f (�x) � f (�x 0)
c> (�x � �x 0) � � rm , set �x �x0.

(vii) Replace the point in S furthest from �x with the new point �x0, if it is closer, and go back to (i).

The Re�nement step is triggered after Trf full cycles of the global search strategy in the Iteration step (i.e.,
the strategy to select f �

k in Gutmann's RBF method, or � in MSRSM), but only if one of the following two
conditions apply: (i) a better solution was discovered since the last execution of the Re�nement step, or (ii) the
last Re�nement step was stopped because of its iteration limit (parameterTrs , see below), rather than for lack
of improvement.

When the Re�nement step ends, all points at which f has been evaluated are added tox1; : : : ; xk , and the
algorithm goes back to the Iteration step. The Re�nement step ends when one of the following conditions is
veri�ed:

after Trs consecutive iterations, unless we are close to hitting the limit on the maximum number of objective
function evaluations, or the CPU time limit (this is de�ned by a further parameter);
if the radius � of the re�nement search drops below� mr ;
if the norm of the gradient of the linear model drops below� grad .

The above scheme is designed with continuous variables in mind, but we heuristically apply the Re�nement
step also in the presence of integer or categorical variables. When the problem has integer or categorical variables,
the Re�nement step proceeds as described above, but every candidate point is rounded to an integer point before
being evaluated with f . In particular, every integer variable that takes on a fractional value in the candidate
point, say �x j , is rounded down with probability d�x j e � �x j , and rounded up with probability �x j � b �x j c; whereas
every unary representation of a categorical variable, say(�z1; : : : ; �zm h) such that

P m h
j =1 �zj = 1 in extended space,

is rounded to the orthonormal basis vectorei with probability �zi =
P m h

j =1 �zj for all i = 1 ; : : : ; mh . The rounding
process for integer and categorical variable is repeated a given number times, and the point with the best linear
model score is chosen as the next candidate. A similar procedure is applied in step (ii) to the column ofQ that
is about to replace one column inM : each entry is projected to the closest feasible vector in extended space,
using `1-norm distance.

4.4 Repairing numerical errors: Restoration step

Whenever numerical errors are detected in the solution of the linear system(4), we switch to a Restoration step
that works as follows. Given the list of interpolation points x1; : : : ; xk , for i = k; k � 1; : : : ; 1 we heuristically

Giacomo Nannicini 11

solve the problem:

max
x 2
 e

min
j =1 ;:::;k;j 6= i

kx � x j k;

then temporarily replace x i with the solution to the above problem, say �x. If the system (8) for the points
x1; : : : ; x i � 1; �x; x i +1 ; : : : ; xk is invertible, we permanently replacex i with �x, and the Restoration step is successful.
Otherwise, we reinstatex i and continue the Restoration step by decreasingi . We remark that several interpolation
points may be added in between successive solutions of(4), because the Re�nement step may perform multiple
iterations and it does not recompute the interpolant sk . For this reason, we cannot hope that removing the last
interpolation node is always su�cient to �x numerical errors.

The rationale for solving a maxmin distance problem when trying to improve the numerics is that proximity
to other interpolation points necessarily leads to an ill-conditioned linear system: if two points are very close
to each other, the corresponding rows in(4) are almost identical. This suggests maximizing the distance from
other interpolation points as the main criterion for choosing a point. Furthermore, this criterion corresponds to
the �pure exploration� phase of the MSRSM algorithm, trying to gather information in unexplored parts of the
search space; hence, it naturally �ts into our optimization scheme.

4.5 Automatic model selection

In order to dynamically choose the surrogate model that appears to be the most accurate for the problem at
hand, we assesses model quality using a cross validation scheme. This was introduced in [10]: here we give a brief
summary of the main ideas, and report some additional implementation details introduced subsequently.

Suppose we havek interpolation points x1; : : : ; xk with surrogate model sk . We assume that the points are
sorted by increasing function value:f (x1) � f (x2) � � � � � f (xk); this is without loss of generality as we can
always rearrange the points. We perform cross validation as follows. Forj 2 f 1; : : : ; kg, we �t a surrogate model
esk;j to the points (x i ; f (x i)) for i = 1 ; : : : ; k; i 6= j and evaluate the performance ofesk;j at (x j ; f (x j)) . We use an
order-based measure to evaluate performance of the surrogate model. For a given scalary, let orderk;j (y) be the
position at which y should be inserted in the ordered listf (x1) � � � � � f (x j � 1) � f (x j +1) � � � � � f (xk) to keep
it sorted. Since orderk;j (f (x j)) = j , we use the valueqk;j = jorderk;j (esk;j (x j)) � j j to assess the predictive power
of the model. We then averageqk;j with j ranging over some subset off 1; : : : ; kg to compute a model quality
score. This approach is a variation of leave-one-out cross validation in which we look at how the surrogate model
ranks the left-out point compared to the other points, rather than evaluating the accuracy of the prediction in
absolute terms. This is motivated by the observation that for the purpose of optimization, a surrogate model
that ranks all points correctly is arguably more useful than a surrogate model that attains small absolute errors,
but is not able to predict how points compare to each other [4].

We perform model selection at the beginning of every cycle of the search strategy to selectf �
k or � (depending

on the choice of algorithm: Gutmann's RBF or MSRSM). Our aim is to select the RBF model with the best
predictive power. We choose two di�erent models: one for local search, one for global search, corresponding
to di�erent Iteration steps of the algorithm. We do this by computing the average value �q10% of qk;j for
j = 1 ; : : : ; b0:1kc, and the average value�q70% of qk;j for j = 1 ; : : : ; b0:7kc.

The RBF model with the lowest value of �q10% is employed in the subsequent optimization cycle for the
Local searchstep and the Global searchstep with h = � � 1, while the RBF model with lowest value of �q70% is
employed for all the remaining steps. We consider all RBFs listed in Table 1. This implies that the type of RBF
dynamically changes during the course of the optimization.

In [10], we show that the values�q10% ; �q70% can be computed in timeO(m3), where m is the number of rows
of (4) (i.e., m = k + n + 1 for cubic and thin plate spline RBF, m = k + 1 for linear and multiquadric, m = k for
Gaussian). This is achieved by reusing the same LU factorization of the system(4) for each iteration of the cross
validation routine. Details of this approach are given in [10].

When automatic model selection is enabled, we build the surrogate model using thin plate splines until there
are enough points to start the automatic model selection procedure. Furthermore, afterTmcv executions of the
automatic model selection procedure, whereTmcv is a parameter, we trust the results obtained up to that point
and use the type of RBFs that gave the smallest error the largest number of times. Results for the local search
model and global search model are kept separate. In other words, the quantities�q10% and �q70% are computed
at most Tmcv times; after that, we always use the RBF type that gave the smallest value of�q10% the largest
number of times out of Tmcv for local search, and similarly with �q70% for global search. This can lead to large

12On the implementation of a global optimization method for mixed-variable problems

time savings on problems with several thousand interpolation points, as leave-one-out can become expensive if it
has to perform thousands of iterations with a large system (4).

4.6 Parallel optimizer

Our implementation supports asynchronous parallel evaluation of the objective functionf , which is assumed to be
the most time-consuming part of the optimization process. The parallel optimization algorithm is nondeterministic
due to its asynchronous nature. This algorithm was �rst introduced in [11]; here we give a brief overview, as well
as several implementation details that were not present in the version of [11].

The parallel optimizer works by creating a set of worker threads, coordinated by a master. The worker threads
perform tasks of two types: Type 1 is the evaluation of the objective function at a given point (which is assumed
to be time-consuming), Type 2 is the computation of a point at which the objective function should be evaluated
(which usually takes only a fraction of a second, but may take longer especially when some subproblems are
solved with Bonmin). We always dedicate one worker to perform tasks of Type 1 or of Type 2 related to the
Re�nement step; however, there is a global limit to the fraction of Re�nement steps that can be performed as
compared to the total number of iterations. The remaining workers are utilized for the Iteration step. As long
as there are available processors, the master removes a task from the queue of active tasks, and assigns it to a
worker. Tasks of Type 1 have priority over Type 2, due to their longer execution times. Within tasks of the same
type, a ��rst come, �rst served� policy is used.

Recall that to compute the surrogate modelsk we need pairwise distinct points (possibly a�nely independent,
depending on the degree of the polynomial tail). To ensure that the same point is not evaluated twice in parallel,
whenever a task of Type 2 is completed, by determining a pointxk+1 at which f should be evaluated next,
we add a temporary interpolation point at xk+1 , with value maxf min i =1 ;:::;k f f (x i)g; sk (xk+1)g. This point is
converted to a regular interpolation point when the corresponding objective function evaluation (task of Type 1)
is complete, and it is assigned its true function valuef (xk+1).

For the Re�nement step, a new sample set for the linear model is computed from scratch every time that a
point with better objective function value is discovered outside the Re�nement step; this is di�erent from the
serial optimization algorithm, where the Re�nement step is executed in consecutive iterations and no such event
can occur. Another major di�erence in the parallel optimizer is that we do not perform the Restoration step:
when (4) cannot be solved and the queue of active tasks is empty, we restart the algorithm. (If the queue is not
empty, the algorithm keeps processing tasks that have �nished until(4) can be solved, or the queue is empty.)
The choice to restart, rather than attempt a Restoration step, has several motivations. The main reason is that
removing an interpolation node requires synchronizing all threads to ensure exclusive access to the relevant data
structures; because function evaluations can be very time-consuming, this may leave several threads idle for
a long time. Another reason is that, since multiple point evaluations are performed in parallel, it is possible
that other points in the queue lead to numerical instability: the Restoration step would have to eliminate all
of them, potentially provoking a prolonged period of ine�cient CPU use. Finally, the Restoration step is not
guaranteed to work unless we allow removing multiple points from the setf x1; : : : ; xk g6; however, choosing a
subset of points to remove is a di�cult combinatorial problem, hence we opt for a simpler approach.

5 Computational experiments

RBFOpt is implemented in Python and available on GitHub; it can be automatically installed from PyPI using
pip . In this section we evaluate the computational performance of the solver, with a focus on testing the features
of the optimization algorithm described in Section 4. All experiments are run on identical virtual machines with
(virtual) Intel Xeon E5-2683 v4 CPUs, clocked at 2.10GHz and running Linux; these machines are instantiated on
an IBM cloud. We use Ipopt [38] and Bonmin [5] to solve all auxiliary subproblems that require a mathematical
programming solver (Bonmin is used only if the subproblem has integer variables). Note that these subproblems
are not necessarily solved to optimality, as they are generally nonconvex (e.g., minimizing the surrogate model
sk or solving (11)); we put a time limit of 20 seconds on each execution of the solvers, and Bonmin is con�gured
with the �B-BB� algorithm.

6 This is also the case for serial (i.e., non parallel) optimization, but in the serial case removing the most recent interpolation
point yields a numerically stable system (4) in all cases except when multiple points are added in consecutive Re�nement steps.

Giacomo Nannicini 13

Table 2 Details of the instances used for the tests. Legend for the sources: S1 is Dixon�Szegö [12],
S2 is the original GLOBALLIB, S3 is the MINLPLib 2 [22], S4 is [35], S5 is Neumaier's website [26], S6
denotes Schoen's smooth functions [36]. The functions with no indicated source are discussed in the
main text.

Instance # variables Source Instance # variables Source
Cont. Int. Cat. Cont. Int. Cat.

branin 2 0 0 S1 nvs06 0 2 0 S3
camel 2 0 0 S1 nvs07 0 3 0 S3
ex4_1_1 1 0 0 S2 nvs09 0 10 0 S3
ex4_1_2 1 0 0 S2 nvs14 0 5 0 S3
ex8_1_1 2 0 0 S2 nvs15 0 3 0 S3
ex8_1_4 2 0 0 S2 nvs16 0 2 0 S3
goldsteinprice 2 0 0 S1 prob03 0 2 0 S3
hartman3 3 0 0 S1 schoen_6_1_int 2 4 0 S6
hartman6 6 0 0 S1 schoen_6_2_int 2 4 0 S6
least 3 0 0 S2 schoen_10_1_int 4 6 0 S6
perm_6 6 0 0 S5 schoen_10_2_int 4 6 0 S6
perm0_8 8 0 0 S5 sporttournament06 0 15 0 S3
rbrock 2 0 0 S2 st_miqp1 0 5 0 S3
schae�er_f7_12_1 12 0 0 S4 st_miqp3 0 2 0 S3
schae�er_f7_12_2 12 0 0 S4 st_test1 0 5 0 S3
schoen_6_1 6 0 0 S6 branin_cat 2 0 1 �
schoen_6_2 6 0 0 S6 ex8_1_1_cat 2 0 2 �
schoen_10_1 10 0 0 S6 hartman3_cat 3 0 1 �
schoen_10_2 10 0 0 S6 hartman6_cat 6 0 1 �
shekel10 4 0 0 S1 schoen_10_1_cat 10 0 2 �
shekel5 4 0 0 S1 schoen_10_2_cat 10 0 2 �
shekel7 4 0 0 S1 gear4_cat 1 4 1 �
gear 0 4 0 S3 nvs07_cat 0 3 1 �
gear4 1 4 0 S3 nvs09_cat 0 10 1 �
nvs02 0 5 0 S3 st_miqp1_cat 0 5 1 �
nvs03 0 2 0 S3 schae�er_f7_12_1_int_cat 9 3 1 �
nvs04 0 2 0 S3 schae�er_f7_12_2_int_cat 9 3 1 �

5.1 Test instances

We test the algorithm on a set of 54 instances, with the following characteristics:

22 instances have continuous variables only, but no integer or categorical variables;
20 instances have integer variables only, or continuous and integer variables, but no categorical variables;
12 instances have any combination of variable types and have at least one categorical variable.

In Table 2 we give details on the number of variables and the source of each problem. All these problems are
highly nonconvex, and their dimension is relatively small. The instances with categorical variables are obtained
by modifying other problem instances, easily identi�ed by their names. The categorical variables determine one
or both of the following: (1) they modify some of the problem's data, i.e., vectors of coe�cients that appear in
the cost function; (2) they modify some of the functions involved in the expression for the objective function,
although they do not modify their arguments (e.g., the objective function contains an expressiong(x1 + 2x2),
and one of the categorical variables determines what functiong is used among a �nite set). All categorical
variables in our set of test problems have at least three possible values, since, as already mentioned, categorical
variables with only two possible values are modeled as binary variables.

We also use a randomized procedure to create larger instances starting from a base instance, multiplying its
dimension by a given positive integer number. We now give a high-level description of this procedure; full details
can be found in the publicly available source code, as a precise description is tedious and does not add further
insight. Let n be the number of variables of the base instance with objective functionf , and s the size multiplier.
The objective function of the enlarged instance is:

sX

i =1

ci f (x (i � 1)n +1 ; : : : ; x (i)n) + cs+1 f (`1(
X

j 2 R 1

a1j x j); : : : ; `n (
X

j 2 R n

anj x j)) ;

where R1; : : : ; Rn is a partition of the set f 1; : : : ; sng, the coe�cients ci ; aij are randomly chosen within a
speci�ed range, ci > 0 for all i = 1 ; : : : ; s + 1 ,

P s+1
i =1 ci = 1 , and the ` i are a�ne functions that map their

argument to the original domain of f . In other words, the enlarged objective function is the sum of several copies
of f de�ned on disjoint sets of variables, with a copy of f that acts on linear combinations of all the variables.
By construction (in particular, the a�ne functions ` i are carefully chosen), the value of the optimum stays the
same as in the base instance. We �nally permute all the variables in the enlarged instance. Notice that we do

14On the implementation of a global optimization method for mixed-variable problems

not change the variable type; e.g., if the base instance has3 continuous variables and2 categorical variables,
using dimension multiplier s = 2 yields an instance with 6 continuous variables and4 categorical variables. From
an empirical evaluation, the enlarged instances are much more di�cult than the base instances; this is likely due
to the �nal copy of f that acts on linear combinations of variables, thus creating interactions between decision
variables that may not have been present in the original instance. Our �nal test set consists of all instances listed
in Table 2, plus all instances obtained with the above procedure with a size multipliers = 2 . This yields 108
problem instances, with a number of variables varying from 1 to 30.

5.2 Comparison of algorithmic variants

To compare algorithmic variants of RBFOpt, we plot performance and data pro�les [23], which are de�ned as
follows. De�ne the budget for an algorithm as the maximum number of function evaluations allowed. Unless
speci�ed otherwise, in our experiments the budget is set to50(n + 1) . For a given instance and a set of algorithms
A, let f � be the best function value discovered by any algorithm, andx0 the �rst point evaluated by each
algorithm, which we impose to be the same. Let0 < � < 1 be a tolerance. We say that an algorithmsolvesan
instance up to tolerance� if it returns a point �x such that:

f (x0) � f (�x) � (1 � �)(f (x0) � f �); (14)

and the algorithm fails otherwise. In other words, the algorithm has to close at least1 � � of the gap between
the initial point and the best point found by any algorithm.

Let P be the set of problem instances in the test set. Lettp;a be the number of function evaluations required
by algorithm a to solve problem p (tp;a = 1 if algorithm a fails on problem p according to the convergence
criterion (14)), and np the number of variables of problemp. The data pro�le for an algorithm a is the fraction
of problems that are solved within budget � (np + 1) , de�ned as:

da(�) :=
1

jPj

�
�
�
�

�
p 2 P :

tp;a

np + 1
� �

� �
�
�
� :

The performance ratio of algorithm a on problem p is de�ned as:

r p;a :=
tp;a

minf tp;a : a 2 Ag
:

According to this de�nition, the performance ratio is 1 for the best performing algorithm on a problem instance.
The performance pro�le of algorithm a is de�ned as the fraction of problems where the performance ratio is at
most � , de�ned as:

pa(�) :=
1

jPj
jf p 2 P : r p;a � � gj :

For each of the 108 problem instances, we test 20 di�erent random seeds. All tested variants are given the
same sequence of random seeds. We remark that if two variants of the algorithm use the same number of points
in the initialization phase and have the same random seed, then they will generate exactly the same initial
sample set. For every instance, we aggregate the 20 di�erent random seeds by taking the median objective
function value at every iteration; the performance and data pro�les are constructed using the aggregate data. In
this section we use the serial version of the optimization algorithm.

In our �rst set of experiments we compare the two methodologies for the Iteration step discussed in Section 4.2
(i.e., Gutmann's method and MSRSM), combined with the three approaches to solve the resulting subproblems
discussed in Section 4.2.3: the genetic algorithm, the sampling method, and the mathematical optimization
solver. We remark that the mathematical optimization solvers are relatively slow, taking up to 20 seconds per
solve on the more di�cult problems, whereas the genetic algorithm and the sampling method only require a
fraction of a second due to their heuristic nature. For this set of experiments only, we parametrize the genetic
algorithm and the sampling method in a search-intensive fashion, increasing the number of sampled points and
the number of iterations of the genetic algorithm compared to their default values (the genetic algorithm uses a
base population size of5000 + n=5 points and performs 40 iterations, compared to a default of 400 + n=5 and 20
iterations, while the sampling algorithm samples3000n points, compared to a default of1000n). All the other
parameters for the algorithm are left to their default values. We also remark that the implementation of the

Giacomo Nannicini 15

(a) Performance pro�le, � = 10 � 2 (b) Data pro�le, � = 10 � 2

(c) Performance pro�le, � = 10 � 4 (d) Data pro�le, � = 10 � 4

Figure 1 Performance pro�les (left) and data pro�les (right) for di�erent Iteration step procedures.
Legend: GA = genetic algorithm, Sa = sampling method, So = mathematical optimization solver.

MSRSM method with mathematical optimization solvers is not competitive with the other variants, because the
solution of (13) with a solver for convex problems is essentially hopeless: the expression of the maxmin distance
is highly nonconvex and solvers have a very high chance of getting trapped in poor local minima. Hence, we only
report results for �ve algorithmic variants: all combinations of Gutmann's method and MSRSM with the genetic
algorithm, the sampling approach, and the mathematical optimization solver approach, minus the combination
MSRSM + mathematical optimization solver. Results are plotted in Figure 1. The plots quite convincingly show
that the genetic algorithm is overall the best choice, with both Gutmann's method and MSRSM. The sampling
method has a similar performance, while using the mathematical optimization solver is considerably worse. We
attribute this to the fact that the subproblems involved in the Iteration step are hard nonconvex problems, and
the solvers are likely to struggle. (We remark that the minimization of the surrogate model is always performed
using Ipopt or Bonmin, regardless of the methodology used to solve subproblems in the Iteration step.) The
di�erence between Gutmann's method and MSRSM is small, but MSRSM emerges as the winner by a small
margin. In the following, we use MSRSM with the genetic algorithm as the default settings. An important
conclusion of our numerical study is the fact that neither method dominates the other: while MSRSM seems
slightly better and enjoys the bene�t of being conceptually simpler, our plots indicate that Gutmann's method
is competitive.

In the second set of experiments we analyze the impact of the number of sample points for the Initialization
step of the algorithm. As discussed in Section 4.1, we allow building a surrogate model with less thann + 1
points, in which case the system(4) may have multiple solutions. In Figure 2 we report results when using
0:25(n + 1) ; 0:5(n + 1) ; n + 1 ; 1:5(n + 1) ; 2(n + 1) sample points to initialize sk , as well as the number of points
de�ned in (9), labeled �Default� in the plots. We can see that 0:25(n + 1) ; 0:5(n + 1) , and �Default� have the best

16On the implementation of a global optimization method for mixed-variable problems

(a) Performance pro�le, � = 10 � 2 (b) Data pro�le, � = 10 � 2

(c) Performance pro�le, � = 10 � 4 (d) Data pro�le, � = 10 � 4

Figure 2 Performance pro�les (left) and data pro�les (right) using a di�erent number of sample
points in the initialization procedure.

performance with � = 10 � 2, and there is no winner among these three. For� = 10 � 4, the curve for �Default� is
not visible in Figure 2c because it is hidden behind the curve for0:5(n +1) : this is expected, since by equation(9),
�Default� uses 0:5(n + 1) on most problem instances. Choosing0:25(n + 1) emerges as the winner in these tests,
followed by 0:5(n + 1) and �Default�, which are indistinguishable on this set of test problems. The motivation
for the �Default� setting, which seems slightly inferior to 0:25(n + 1) in these tests, is robustness: using a very
small number of sample points can increase the variance of the algorithm, hence we prefer the safer setting.

In the last set of experiments for this section, we look at the impact of the Re�nement step. Plots are
reported in Figure 3. We compare RBFOpt without the Re�nement step, with three versions of the algorithm
that employ the Re�nement step at di�erent frequencies. Here the results are very clear: the Re�nement step
signi�cantly improves the performance of the algorithm on this set of instances. The plots suggest that running
the Re�nement step as frequently as possible is a good idea. A head-to-head comparison7 between the algorithm
with Re�nement step frequencies of 1 and 3 reveals that the di�erence is quite small and not as one-sided as it
would appear from Figure 3, see Figure 4 (results for� = 10 � 3 are essentially identical to those for� = 10 � 4).
We set the Re�nement frequency to 3 as the default value, mostly based on empirical evaluation on applications
outside the benchmark set reported here.

5.3 Categorical variables: original versus extended space

In this section we analyze the performance of the optimization algorithm with the two di�erent representations
for categorical variables discussed in Section 3. We use the same approach as in the previous section; all algorithm

7 It is known that performance pro�les depend on the entire set of algorithms evaluated; therefore, pairwise comparisons can
sometimes yield useful information.

Giacomo Nannicini 17

(a) Performance pro�le, � = 10 � 2 (b) Data pro�le, � = 10 � 2

(c) Performance pro�le, � = 10 � 4 (d) Data pro�le, � = 10 � 4

Figure 3 Performance pro�les (left) and data pro�les (right) with and without the Re�nement step.
The �Frequency� of the Re�nement step indicates after how many Iteration steps it is performed.

(a) Data pro�le, � = 10 � 2 (b) Data pro�le, � = 10 � 4

Figure 4 Data pro�les with di�erent frequencies of the Re�nement step.

parameters are set to their default values indicated in the previous section. For this set of experiments we use the
problem instances with categorical variables only, see Table 2, as well as their enlarged version with dimension
multiplier s = 2 . To reduce variance, we use the same points for the Initialization step, regardless of the choice
of extended or original space. This is accomplished as follows: for every instance and every random seed, we

18On the implementation of a global optimization method for mixed-variable problems

(a) Performance pro�le, � = 10 � 2 (b) Data pro�le, � = 10 � 2

(c) Performance pro�le, � = 10 � 4 (d) Data pro�le, � = 10 � 4

Figure 5 Performance pro�les (left) and data pro�les (right) for optimization in extended and
original space.

generate the initial samples in extended space (the number of samples is chosen according to(9)); we then map
these points to their equivalent in the original space, and use them to initialize the optimization in original space.
As a consequence, the optimization in original space uses more initial samples than it normally would. Results
are reported in Figure 5.

The plots for � = 10 � 2 indicate a clear superiority for optimization in extended space; with � = 10 � 4 the
di�erence is not so clear, with the extended space formulation showing better performance on some instances
that can be solved quickly, but the original space formulation converges on more instances in the long run. A
possible explanation for this behavior is the fact that the optimization algorithm is quite robust to innaccuracies
in the surrogate model (because it favors points with large distance from those already evaluated, and it performs
local search around the best known point), hence no reasonable formulation for the categorical variables will
perform too poorly. We also remark that with � = 10 � 3 (not reported here), the plots are similar to � = 10 � 4,
but the di�erence is less pronounced. Overall, the extended space formulation is to be preferred: it manages to
close99% of the gap on all test problems (as indicated by the plots for� = 10 � 2), and for almost all problems, it
does so very quickly; in the long run the original space formulation solves a few more instances to high precision,
but this does not seem enough to o�set the advantage of the extended space formulation in the initial iterations.

To compare the original and extended space formulations from a di�erent angle, we also set up an experiment
to assess the usefulness of the surrogate models constructed in these two spaces. This is accomplished as
follows. For every function with categorical variables in Table 2, we generate an initial sample ofk points, with
k 2 f (n + 1) ; 5(n + 1) ; 10(n + 1) ; 50(n + 1) g. These points are generated as a latin hypercube design maximizing
the minimum distance between points, and they are generated in extended space. We then construct a surrogate
model interpolating at these points, generate 20000 additional random points in the domain of the function,

Giacomo Nannicini 19

Table 3 Average (standard deviation) of the absolute di�erence between the true rank and the
inferred rank of random points, in the original and the extended space.

(n + 1) points 5(n + 1) points 10(n + 1) points 50(n + 1) points
RBF type Original Extended Original Extended Original Extended Original Extended
Cubic 4.1 (1.8) 4.2 (1.9) 15.7 (8.0) 14.3 (8.2) 28.8 (16.2) 25.4 (15.9) 120.5 (83.5) 102.9 (80.1)
Gaussian 4.8 (2.3) 4.5 (2.4) 20.9 (11.9) 20.2 (12.3) 39.5 (25.2) 38.1 (25.9) 193.1 (131.8) 186.7 (133.6)
Linear 3.5 (1.4) 3.3 (1.3) 15.2 (7.9) 14.7 (7.7) 27.1 (15.1) 25.5 (14.5) 119.1 (81.5) 107.6 (78.2)
Multiquad. 3.4 (1.4) 3.3 (1.3) 15.4 (8.0) 14.5 (7.7) 27.0 (15.2) 25.4 (14.6) 118.1 (82.4) 107.6 (79.0)
Thin pl. sp. 4.1 (1.8) 4.2 (1.9) 15.4 (8.0) 13.9 (8.0) 28.1 (16.2) 25.0 (15.9) 117.6 (82.1) 101.7 (77.9)

and rank these 20000 points using the surrogate model. More precisely, assume w.l.o.g. (up to reordering) that
the interpolation points are sorted by increasing function value, i.e.,f (x1) � f (x2) � � � � � f (xk); for every
point x we infer its position in the sorted list f (x1); : : : ; f (xk) by using its surrogate model valuesk (x). We
then compare this number with the true position of f (x) in the sorted list, and record the absolute value of the
di�erence between the two numbers. This is a measure of how well the surrogate model is able to rank unseen
points as compared to the known interpolation points. We record the average and standard deviation of the
di�erence over the 20000 randomly generated points. The same procedure is repeated in the original space, using
exactly the same points mapped from the extended space. The results are reported in Table 3.

Even though the standard deviations are fairly high, the averages indicate that the extended space formulation
is able to better predict the rank of unseen points. Indeed, the average rank errors are smaller for the extended
space model in 18 out of the 20 cases reported in Table 3, and the only two cases in which the extended space has
higher average error are recorded when the number of interpolation points is small (n + 1), so that the di�erences
between extended and original space are small in the absolute sense. For a larger number of interpolation points,
the surrogate model in extended space is consistently better. This, together with the previous set of experiments,
and the theoretical justi�cation given in Section 3, gives a strong indication of the bene�ts of our choice.

5.4 Comparison with existing open-source derivative-free solvers

We compare the performance of RBFOpt, parametrized according to the results discussed in previous sections,
with several derivative-free solvers that support categorical variables, namely:

Nevergrad [30] version 0.4.0, a collection of evolutionary algorithms for hyperparameter optimization; here,
we test three algorithms that are recommended by [30] for their versatility and generally good performance:
OnePlusOne, PSO (particle swarm optimization), and TwoPointsDE.
NOMAD [20] version 3.9.1, an implementation of the mesh adaptive direct search algorithm [3].
Optuna [1] version 2.3.0, a hyperparameter optimization algorithm that uses a tree-structured Parzen
estimator to deal with categorical variables.
Scikit-Optimize [17] version 0.8.1, a Bayesian optimization algorithm using Gaussian processes (using the
function gp_minimize).
SMAC (sequential model-based algorithm con�guration) [18] version 0.13.1, another Bayesian optimization
algorithm using Gaussian processes8.

This selection covers the most popular methodologies for derivative-free optimization with categorical variables.
We remark that in the above list, only NOMAD is developed for derivative-free optimization in the traditional
sense, whereas the other software target hyperparameter optimization problems, which generally have added
complications (e.g., the objective function evaluation are nondeterministic, and there may be complicated
constraints involving the categorical variables); nonetheless, all these algorithms can be applied to black-box
optimization problems with categorical variables (a comparison on a hyperparameter optimization problem is
given in Section 5.6). All algorithms except NOMAD provide a Python library (NOMAD's Python library does
not support categorical variables).

We report performance and data pro�les in Figure 6. Several remarks are in order to clarify the experimental
setup of this section. First, we try to initialize each algorithm with the same set of points to reduce variance:
RBFOpt, Nevergrad, Scikit-Optimize are initialized with the experimental design generated by RBFOpt, NOMAD
is initialized with the best point in the experimental design generated by RBFOpt, while Optuna and SMAC use

8 We used the SMAC4BOinterface; at the time of writing this paper, the other interfaces did not work in the available beta version
of the software package.

20On the implementation of a global optimization method for mixed-variable problems

(a) Performance pro�le, � = 10 � 2 (b) Data pro�le, � = 10 � 2

(c) Performance pro�le, � = 10 � 4 (d) Data pro�le, � = 10 � 4

Figure 6 Performance pro�les (left) and data pro�les (right) comparing: Nevergrad OnePlusOne,
Nevergrad Particle Swarm Optimization, Nevergrad TwoPointsDE, NOMAD, Optuna, Scikit-Optimize,
SMAC, and RBFOpt.

their own initialization procedures. Second, due to resource constraints we impose a limit of 3 hours of CPU
time for each problem instance; the only two algorithms that hit the time limit are Scikit-Optimize and SMAC,
most likely due to the optimization of the expected improvement criterion, whereas all other algorithms are
considerably faster (e.g., RBFOpt takes on average 5 minutes per instance, Scikit-Optimize almost 2 hours
on average). More precisely, Scikit-Optimize times out on 1053 instances, whereas SMAC times out on 1720
instances, out of 2160. Since we observed cases where Scikit-Optimize and SMAC take more than a day to
hit the function evaluation limit, the time limit is necessary to conclude the experimental evaluation within a
reasonable time frame. We remark that the slow down when the number of variables or the function evaluation
budget are large is a known limitation of Bayesian optimization methods [15]. Despite hitting the time limit, the
performance of Scikit-Optimize and SMAC is comparable to that of the other hyperparameter optimization
algorithms, because the slow down only occurs after a few hundred function evaluations (the evaluation limit is
often � 1000), which is su�cient for them to �nd a good solution.

Figure 6 shows that on this set of test instances, the comparison is heavily in favor of RBFOpt. NOMAD is
the second best solver, but RBFOpt performs better by a noticeable margin; SMAC is fairly close to NOMAD for
� = 10 � 4, whereas all remaining algorithms are far from achieving the same performance level as the top solvers.

5.5 Parallel optimization

To assess the performance of the parallel version of the optimization algorithm, we modify our test functions so
that each objective function evaluation waits for X seconds, whereX is a random variable, before returning
a value. Thus, we simulate the e�ects of a time-consuming objective function oracle. We test two possible

Giacomo Nannicini 21

Table 4 Shifted geometric mean of the wall-clock time to converge to an optimal solution.

Num Faster evaluation (� 20 sec) Slower evaluation (� 55 sec)
CPUs Time Speedup # conv. Time Speedup # conv.

1 797.0 1.00 1255 2405.5 1.00 1255
2 473.5 1.68 1274 1490.3 1.61 1260
4 307.2 2.59 1195 958.7 2.51 1175
8 221.2 3.60 982 708.8 3.39 975
16 176.8 4.50 635 480.1 5.01 620

distributions for X , both of which are log-normal: in the �rst case logX is distributed as N (3; 0:5), where
N (�; �) is the normal distribution with mean � and standard deviation � ; in the second caselogX is distributed
as N (4; 0:75). In both cases we truncate the distributions at 300 seconds, i.e., each objective function evaluation
takes at most 300 seconds. Notice that the expected value of the �rst distribution is� 20 (seconds), the expected
value of the second distribution is � 55. We denote the �rst case as the �Faster evaluation� set, the second case
as the �Slower evaluation� set. We use the same budget of50(n + 1) function evaluations, and run the algorithm
with 1, 2, 4, 8 or 16 CPUs9. To assess the speedup achieved by the parallel algorithm, we report the wall-clock
time to converge within 0:1% of the optimal solution. Notice that the larger the number of CPUs, the faster the
evaluation budget is depleted; since the parallel algorithm is unlikely to be as e�cient as the serial version, as
the number of CPUs increases we expect to converge on a smaller number of instances. Thus, when reporting
the average time to convergence we only consider instances and random seeds for which all the variants analyzed
in this comparison determine the optimum (up to the speci�ed tolerance). Additionally, we report the number of
instances of which convergence to the speci�ed tolerance is attained. The data is reported in Table 4; we use
shifted geometric means for the wall-clock times, de�ned as

� Q k
i =1 (t i + 1)

� 1=k
� 1 for a set of k values t1; : : : ; tk .

In total, there are 568 combinations of instances and random seeds for which all variants converge on the �Faster
evaluation� set, and 550 on the �Slower evaluation� set.

Table 4 shows that parallel optimization is not as e�cient as serial optimization: the speedup for using c
CPUs is roughly

p
c in our tests. However, in certain applications this is still a favorable tradeo�, as multiple

CPUs are easy to obtain and wall-clock time can be important. In particular, on this set of test instances using
up to 4 CPUs increases the speed of the optimization, with a negligible e�ect on the number of instances on
which the algorithm converges. For 8 or more CPUs the algorithm converges on signi�cantly fewer instances as
compared to serial optimization (about 50% of the instances, with 16 CPUs); however, we emphasize once again
that in these tests we keep the same function evaluation budget for all variants of the algorithm, therefore we are
likely to run out of budget quickly with 8 or 16 CPUs. In other words, the low number of instances on which the
8-CPU and 16-CPU version of the parallel optimization algorithm converges implies that parallel optimization is
less e�cient than serial optimization for the same budget, but the signi�cant speedups indicate that is more
e�cient for the same amount of wall-clock time. Finally, changing the distribution of the objective function
evaluation times seems to have little e�ect in these tests: in the �Slower evaluation� experiments, despite a much
larger mean evaluation time and an increased variance, the recorded speedup factors are very similar to the
�Faster evaluation� experiments.

5.6 Application to hyperparameter optimization

We evaluate the performance of the optimization algorithm to optimize the hyperparameters of a random forest
classi�er on a speci�c dataset. We use the RandomForestClassi�er class implemented in Scikit-learn [28], trained on
the �forest cover type� dataset. This is a classi�cation dataset with 581012 samples of dimension 54, and 7 classes;
seehttp://archive.ics.uci.edu/ml/datasets/Covertype for more information. The RandomForestClassi�er
has 10 hyperparameters, listed in Table 5; three of them are categorical, but one of them has only two possible
values (the �criterion� parameter) and it is therefore treated as a binary variable. We evaluate the performance
of a classi�er by 5-fold cross validation, and use the average performance on the test set as the objective function.
To transform it into a minimization problem, we computed the objective function as 100 minus the recorded
accuracy. The CPU time for a single evaluation of the objective function varies a lot, depending on the chosen

9 Although it may seem natural to set a function evaluation budget that depends on the number of parallel threads, we use a �x
budget for practical reasons: with 108 problem instances, 20 random seeds for each instance, a budget of50(n + 1) evaluations,
at approximately 1 minute per function evaluation these experiments already take more than one year of CPU time.

22On the implementation of a global optimization method for mixed-variable problems

Table 5 Hyperparameters of the random forest classi�er. For max_features , the choices arep
num_features ; log(num_features); num_features ; for class_weight , the choices are given by three

vectors of weights that attempt to rebalance the proportion of samples in each class in di�erent ways
(uniform, proportional to frequency, proportional to the square root of the frequency).

Name Type Domain Description

n_estimators Int. f 10; 20; : : : ; 1000g Number of trees
criterion Cat. f 0; 1g Measure of split quality
max_depth Int. f 5; 6; : : : ; 99g [f1g Maximum depth
min_samples_split Int. f 2; 3; : : : ; 20g Minimum number of samples required to split an

internal node
min_samples_leaf Int. f 1; 2; : : : ; 10g Minimum number of samples required to be a leaf
min_weight_fraction_leaf Real [0; 0:5] Minimum weighted fraction of the sum total of

weights required to be at a leaf node
max_features Cat. f 0; 1; 2g Number of features to consider when looking for

the best split
min_impurity_decrease Real [0; 1] A node will be split if this split induces a decrease

of the impurity greater than or equal to this value
class_weight Cat. f 0; 1; 2g Weights associated with classes
ccp_alpha Real [0; 1] Complexity parameter used for minimal cost-

complexity pruning

hyperparameters; it is typically between 100 and 1000seconds, but it can take up to a few hours. We use default
values for all parameters of RBFOpt. We compare several algorithms:

RBFOpt with the extended space formulation of categorical variables;
RBFOpt with the original space formulation of categorical variables;
Nevergrad with the TwoPointsDE algorithm, which has the best performance for small� in the experiments
of Section 5.4;
NOMAD, using the p-MADS parallel version;
Optuna;
Scikit-Optimize, using the gp base estimator and one-hot encoding for categorical variables.

SMAC is excluded from this set of experiments due to technical problems when running the available beta
version on multiple CPUs. We additionally tested the Coop-MADS variant of NOMAD, but we do not report the
corresponding results because p-MADS proved to be superior on this problem instance. Note that the one-hot
encoding employed in Scikit-Optimize uses the same principle as the extended space formulation of this paper.
The wall-clock time limit is set to 6 hours for all algorithms.

We run 20 di�erent random seeds for each of these algorithms, using these seeds to initialize the optimization
algorithms and the training of the classi�er, thereby making the training deterministic and reproducible. As
remarked in Section 5.4, RBFOpt and NOMAD assume that the objective function is deterministic, therefore
�xing the random seeds is justi�ed for these algorithms. For the remaining solvers, which target hyperparameter
optimization problems, the random seed does not have to be �xed and in principle their performance could improve
if we allow the solvers to evaluate the same point multiple times with di�erent random seeds for the training
phase. In particular, with our setup each algorithm observes only one realization of the chosen generalization
error estimator (i.e., accuracy using 5-fold cross validation) for a given values of the hyperparameters, whereas
hyperparameter optimization solvers can in principle observe multiple realizations and use this information to
their advantage. We do not explore this possibility, noting that given the relatively tight wall-clock time limit,
we expect the approach described above (i.e., �xed random seed for each run) to be a reasonable trade o�. We
report the average objective function value over time, where the average is taken with respect to the 20 random
seeds. Results are given in Figure 7. The runs corresponding to the same random seed are initialized with the
same set of points for RBFOpt, Nevergrad and Scikit-Optimize: this has the goal of reducing variance in the
experiments. NOMAD is initialized using the �rst point in the latin hypercube design generated by RBFOpt,
while Optuna uses its own initialization strategy.

In Figure 7a and 7c we plot the objective function value for RBFOpt in original and extended space,
respectively, using up to 16 CPUs. The plots showcase the bene�ts of asynchronous parallel optimization when
the main concern is the wall-clock time, rather than overall e�ciency of the search in terms of the number of

	Introduction
	Surrogate models with radial basis functions
	Optimization with categorical variables in extended space
	Description of the optimization algorithm
	Solution of linear systems and non-unique interpolants
	Determining the next point: Iteration step
	Determining the next point: Refinement step
	Repairing numerical errors: Restoration step
	Automatic model selection
	Parallel optimizer

	Computational experiments
	Test instances
	Comparison of algorithmic variants
	Categorical variables: original versus extended space
	Comparison with existing open-source derivative-free solvers
	Parallel optimization
	Application to hyperparameter optimization

	Conclusion

