An interior proximal gradient method for nonconvex optimization
Open Journal of Mathematical Optimization, Volume 5 (2024), article no. 3, 22 p.

We consider structured minimization problems subject to smooth inequality constraints and present a flexible algorithm that combines interior point (IP) and proximal gradient schemes. While traditional IP methods cannot cope with nonsmooth objective functions and proximal algorithms cannot handle complicated constraints, their combined usage is shown to successfully compensate the respective shortcomings. We provide a theoretical characterization of the algorithm and its asymptotic properties, deriving convergence results for fully nonconvex problems, thus bridging the gap with previous works that successfully addressed the convex case. Our interior proximal gradient algorithm benefits from warm starting, generates strictly feasible iterates with decreasing objective value, and returns after finitely many iterations a primal-dual pair approximately satisfying suitable optimality conditions. As a byproduct of our analysis of proximal gradient iterations we demonstrate that a slight refinement of traditional backtracking techniques waives the need for upper bounding the stepsize sequence, as required in existing results for the nonconvex setting.

Published online:
DOI: 10.5802/ojmo.30
Keywords: Nonsmooth nonconvex optimization, interior point methods, proximal algorithms, locally Lipschitz gradient
Alberto De Marchi 1; Andreas Themelis 2

1 University of the Bundeswehr Munich Department of Aerospace Engineering, Institute of Applied Mathematics and Scientific Computing Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
2 Kyushu University Faculty of Information Science and Electrical Engineering (ISEE) 744 Motooka, Nishi-ku, 819-0395 Fukuoka, Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Alberto De Marchi and Andreas Themelis},
     title = {An interior proximal gradient method for nonconvex optimization},
     journal = {Open Journal of Mathematical Optimization},
     eid = {3},
     pages = {1--22},
     publisher = {Universit\'e de Montpellier},
     volume = {5},
     year = {2024},
     doi = {10.5802/ojmo.30},
     language = {en},
     url = {}
AU  - Alberto De Marchi
AU  - Andreas Themelis
TI  - An interior proximal gradient method for nonconvex optimization
JO  - Open Journal of Mathematical Optimization
PY  - 2024
SP  - 1
EP  - 22
VL  - 5
PB  - Université de Montpellier
UR  -
DO  - 10.5802/ojmo.30
LA  - en
ID  - OJMO_2024__5__A3_0
ER  - 
%0 Journal Article
%A Alberto De Marchi
%A Andreas Themelis
%T An interior proximal gradient method for nonconvex optimization
%J Open Journal of Mathematical Optimization
%D 2024
%P 1-22
%V 5
%I Université de Montpellier
%R 10.5802/ojmo.30
%G en
%F OJMO_2024__5__A3_0
Alberto De Marchi; Andreas Themelis. An interior proximal gradient method for nonconvex optimization. Open Journal of Mathematical Optimization, Volume 5 (2024), article  no. 3, 22 p. doi : 10.5802/ojmo.30.

[1] Masoud Ahookhosh; Andreas Themelis; Panagiotis Patrinos A Bregman Forward-Backward Linesearch Algorithm for Nonconvex Composite Optimization: Superlinear Convergence to Nonisolated Local Minima, SIAM J. Optim., Volume 31 (2021) no. 1, pp. 653-685 | DOI | Zbl

[2] Anna Altman; Jacek Gondzio Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization, Optim. Methods Softw., Volume 11 (1999) no. 1–4, pp. 275-302 | DOI | Zbl

[3] Paul Armand; Riadh Omheni A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization, J. Optim. Theory Appl., Volume 173 (2017) no. 2, pp. 523-547 | DOI | Zbl

[4] Amir Beck; Nili Guttmann-Beck FOM – a MATLAB toolbox of first-order methods for solving convex optimization problems, Optim. Methods Softw., Volume 34 (2019) no. 1, pp. 172-193 | DOI | Zbl

[5] Pourya Behmandpoor; Puya Latafat; Andreas Themelis; Marc Moonen; Panagiotis Patrinos SPIRAL: A Superlinearly Convergent Incremental Proximal Algorithm for Nonconvex Finite Sum Minimization, Comput. Optim. Appl., Volume 88 (2024) no. 1, pp. 71-106 | DOI | Zbl

[6] Dimitri P. Bertsekas Nonlinear Programming, Athena Scientific, 1999

[7] Ernesto G. Birgin; José Mario Martínez Practical Augmented Lagrangian Methods for Constrained Optimization, Society for Industrial and Applied Mathematics, 2014 | DOI

[8] Jérôme Bolte; Shoham Sabach; Marc Teboulle; Yakov Vaisbourd First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems, SIAM J. Optim., Volume 28 (2018) no. 3, pp. 2131-2151 | DOI | Zbl

[9] Andrea Brilli; Giampaolo Liuzzi; Stefano Lucidi An interior point method for nonlinear constrained derivative-free optimization (2022) | arXiv

[10] Feishe Chen; Lixin Shen; Bruce W. Suter Computing the proximity operator of the p norm with 0<p<1, IET Signal Process., Volume 10 (2016) no. 5, pp. 557-565 | DOI

[11] Emilie Chouzenoux; Marie-Caroline Corbineau; Jean-Christophe Pesquet A Proximal Interior Point Algorithm with Applications to Image Processing, J. Math. Imaging Vis., Volume 62 (2020) no. 6, pp. 919-940 | DOI | Zbl

[12] Frank E. Curtis A penalty-interior-point algorithm for nonlinear constrained optimization, Math. Program. Comput., Volume 4 (2012) no. 2, pp. 181-209 | DOI | Zbl

[13] Alberto De Marchi Proximal gradient methods beyond monotony, Journal of Nonsmooth Analysis and Optimization, Volume 4 (2023) | DOI

[14] Alberto De Marchi; Xiaoxi Jia; Christian Kanzow; Patrick Mehlitz Constrained composite optimization and augmented Lagrangian methods, Math. Program., Volume 201 (2023) no. 1, pp. 863-896 | DOI | Zbl

[15] Alberto De Marchi; Andreas Themelis Proximal Gradient Algorithms under Local Lipschitz Gradient Continuity: A Convergence and Robustness Analysis of PANOC, J. Optim. Theory Appl., Volume 194 (2022) no. 3, pp. 771-794 | DOI | Zbl

[16] Anthony V. Fiacco; Garth P. McCormick Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley & Sons, 1968

[17] Anders Forsgren; Philip E. Gill; Margaret H. Wright Interior Methods for Nonlinear Optimization, SIAM Rev., Volume 44 (2002) no. 4, pp. 525-597 | DOI | Zbl

[18] Ragnar Frisch The logarithmic potential method of convex programming (1955) (Technical report)

[19] Philip E. Gill; Walter Murray; Michael A. Saunders; John A. Tomlin; Margaret H. Wright On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method, Math. Program., Volume 36 (1986) no. 2, pp. 183-209 | DOI | Zbl

[20] Jacek Gondzio Interior point methods 25 years later, Eur. J. Oper. Res., Volume 218 (2012) no. 3, pp. 587-601 | DOI | Zbl

[21] Christian Kanzow; Patrick Mehlitz Convergence Properties of Monotone and Nonmonotone Proximal Gradient Methods Revisited, J. Optim. Theory Appl., Volume 195 (2022) no. 2, pp. 624-646 | DOI | Zbl

[22] Narendra Karmarkar A new polynomial-time algorithm for linear programming, Combinatorica, Volume 4 (1984) no. 4, pp. 373-395 | DOI

[23] Leonid G. Khachiyan A polynomial algorithm in linear programming, Sov. Math., Dokl., Volume 20 (1979), pp. 191-194

[24] Zhijian Lai; Akiko Yoshise Riemannian Interior Point Methods for Constrained Optimization on Manifolds, J. Optim. Theory Appl., Volume 201 (2024) no. 1, pp. 433-469 | DOI | Zbl

[25] Puya Latafat; Andreas Themelis; Masoud Ahookhosh; Panagiotis Patrinos Bregman Finito/MISO for nonconvex regularized finite sum minimization without Lipschitz gradient continuity, SIAM J. Optim., Volume 32 (2022) no. 3, pp. 2230-2262 | DOI | Zbl

[26] Puya Latafat; Andreas Themelis; Panagiotis Patrinos On the convergence of adaptive first order methods: proximal gradient and alternating minimization algorithms (2023) | arXiv

[27] Puya Latafat; Andreas Themelis; Lorenzo Stella; Panagiotis Patrinos Adaptive proximal algorithms for convex optimization under local Lipschitz continuity of the gradient (2023) | arXiv

[28] Tianyi Lin; Shiqian Ma; Yinyu Ye; Shuzhong Zhang An ADMM-based interior-point method for large-scale linear programming, Optim. Methods Softw., Volume 36 (2021) no. 2–3, pp. 389-424 | DOI | Zbl

[29] Changshuo Liu; Nicolas Boumal Simple Algorithms for Optimization on Riemannian Manifolds with Constraints, Appl. Math. Optim., Volume 82 (2020) no. 3, pp. 949-981 | DOI | Zbl

[30] Haihao Lu; Robert M. Freund; Yurii Nesterov Relatively Smooth Convex Optimization by First-Order Methods, and Applications, SIAM J. Optim., Volume 28 (2018) no. 1, pp. 333-354 | DOI | Zbl

[31] Ashutosh Mahajan; Sven Leyffer; Christian Kirches Solving Mixed-Integer Nonlinear Programs by QP-Diving (2012) (Preprint ANL/MCS-P2071-0312) (Technical report)

[32] Yura Malitsky; Konstantin Mishchenko Adaptive Gradient Descent without Descent, Proceedings of the 37th International Conference on Machine Learning, Volume 119, PMLR (2020), pp. 6702-6712

[33] Yura Malitsky; Konstantin Mishchenko Adaptive Proximal Gradient Method for Convex Optimization (2023) | arXiv

[34] Andrea Montanari; Emile Richard Non-Negative Principal Component Analysis: Message Passing Algorithms and Sharp Asymptotics, IEEE Trans. Inf. Theory, Volume 62 (2016) no. 3, pp. 1458-1484 | DOI | Zbl

[35] Boris S. Mordukhovich Variational Analysis and Applications, Springer, 2018 | DOI

[36] Jorge J. Moré; Stefan M. Wild Benchmarking Derivative-Free Optimization Algorithms, SIAM J. Optim., Volume 20 (2009) no. 1, pp. 172-191 | DOI | Zbl

[37] Yurii Nesterov; Arkadii Nemirovkii Interior-Point Polynomial Algorithms in Convex Programming, Society for Industrial and Applied Mathematics, 1994 | DOI

[38] R. Tyrrell Rockafellar; Roger J. B. Wets Variational analysis, Grundlehren der Mathematischen Wissenschaften, 317, Springer, 1998 | DOI

[39] Saverio Salzo The Variable Metric Forward-Backward Splitting Algorithm Under Mild Differentiability Assumptions, SIAM J. Optim., Volume 27 (2017) no. 4, pp. 2153-2181 | DOI | Zbl

[40] Pantelis Sopasakis; Emil Fresk; Panagiotis Patrinos OpEn: Code Generation for Embedded Nonconvex Optimization, IFAC-PapersOnLine, Volume 53 (2020) no. 2, pp. 6548-6554 (21st IFAC World Congress) | DOI

[41] Andreas Themelis; Lorenzo Stella; Panagiotis Patrinos Forward-Backward Envelope for the Sum of Two Nonconvex Functions: Further Properties and Nonmonotone Linesearch Algorithms, SIAM J. Optim., Volume 28 (2018) no. 3, pp. 2274-2303 | DOI | Zbl

[42] Tuomo Valkonen Interior-proximal primal-dual methods, Appl. Anal. Optim., Volume 3 (2019) no. 1, pp. 1-28 | Zbl

[43] Robert J. Vanderbei; David F. Shanno An Interior-Point Algorithm for Nonconvex Nonlinear Programming, Comput. Optim. Appl., Volume 13 (1999) no. 1, pp. 231-252 | DOI | Zbl

[44] Andreas Wächter; Lorenz T. Biegler On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., Volume 106 (2006) no. 1, pp. 25-57 | DOI | Zbl

[45] Xianfu Wang; Ziyuan Wang A Bregman inertial forward-reflected-backward method for nonconvex minimization, J. Glob. Optim., Volume 89 (2023) no. 2, pp. 327-354 | DOI | Zbl

[46] Margaret H. Wright The interior-point revolution in optimization: history, recent developments, and lasting consequences, Bull. Am. Math. Soc., Volume 42 (2005) no. 1, pp. 39-56 | DOI | Zbl

[47] Stephen J. Wright Primal-Dual Interior-Point Methods, Society for Industrial and Applied Mathematics, 1997 | DOI

[48] Zongben Xu; Xiangyu Chang; Fengmin Xu; Hai Zhang L 1/2 Regularization: A Thresholding Representation Theory and a Fast Solver, IEEE Trans. Neural Netw. Learn. Syst., Volume 23 (2012) no. 7, pp. 1013-1027 | DOI

[49] Tong Yang; Michael I. Jordan; Tatjana Chavdarova Solving Constrained Variational Inequalities via a First-order Interior Point-based Method, The Eleventh International Conference on Learning Representations (ICLR) (2023)

Cited by Sources: