
C EN T R E
MER S ENN E

Open Journal of Mathematical Optimization is a member of the
Centre Mersenne for Open Scientific Publishing

http://www.centre-mersenne.org/

Open Journal of
Mathematical
Optimization

Giovanni Righini
Efficient optimization of the Held–Karp lower bound
Volume 2 (2021), article no. 9 (17 pages)
https://doi.org/10.5802/ojmo.11

Article submitted on April 27, 2020, revised on August 12, 2021,
accepted on October 22, 2021.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

http://www.centre-mersenne.org/
https://doi.org/10.5802/ojmo.11
http://creativecommons.org/licenses/by/4.0/

Efficient optimization of the Held–Karp lower bound

Giovanni Righini
University of Milan, Department of Computer Science
via Celoria 18, Milano
Italy
giovanni.righini@unimi.it

Abstract
Given a weighted undirected graph G = (V, E), the Held–Karp lower bound for the Traveling Salesman Problem (TSP) is
obtained by selecting an arbitrary vertex p ∈ V , by computing a minimum cost tree spanning V \{p} and adding two
minimum cost edges adjacent to p. In general, different selections of vertex p provide different lower bounds. In this paper
it is shown that the selection of vertex p can be optimized, to obtain the largest possible Held–Karp lower bound, with
the same worst-case computational time complexity required to compute a single minimum spanning tree. Although
motivated by the optimization of the Held–Karp lower bound for the TSP, the algorithm solves a more general problem,
allowing for the efficient pre-computation of alternative minimum spanning trees in weighted graphs where any vertex can
be deleted.

Digital Object Identifier 10.5802/ojmo.11

Keywords Traveling salesman problem, Minimum spanning tree, Held–Karp lower bound, Union-Find data-structure.

1 Introduction and motivation

The Traveling Salesman Problem (TSP) is the well-known problem of computing a minimum cost Hamiltonian
cycle on a given weighted graph [1, 5]. Since the problem is NP -hard, many techniques have been devised not
only to solve it to optimality but also to compute upper and lower bounds to its optimal value. One of the
most celebrated lower bounding techniques was proposed in 1970 by Held and Karp [6]; it is known to provide
very tight lower bounds with limited computational effort and it is used as a sub-routine within state-of-the-art
TSP solvers, like Concorde [1], and state-of-the-art TSP heuristics, like the Helsgaun implementation of the
Lin–Kernighan algorithm [7]. The Held–Karp lower bound is still subject to investigation: besides being included
in branch-and-bound algorithms for the symmetric TSP [9], its properties have been studied for the asymmetric
TSP [10] and for the metric TSP [8]. Recent contributions include, for instance, hybridization with constraint
programming [2] and randomized approximation algorithms [3].

The lower bounding procedure proposed by Held and Karp is based on Lagrangean relaxation: at each
iteration the edge weights of the underlying graph G = (V,E) are modified so that the costs of Hamiltonian
cycles remain unaffected. Then, valid lower bounds for the TSP can be efficiently obtained from minimum
spanning 1-trees, i.e. spanning trees with an additional edge, relying on the observation that a Hamiltonian cycle
is a special case of a spanning 1-tree. This can be done in different ways: here below we list three of them (see
Figure 1).

Lower bound LB0:
a minimum spanning tree T ∗ of G;
a minimum cost edge not in T ∗.

Lower bound LBH(`) (Helsgaun [7]):
a minimum spanning tree T ∗ of G;
a minimum cost edge [`, j] 6∈ T ∗, incident to a leaf ` of T ∗.

Lower bound LBHK(p) (Held and Karp [6]):
a minimum spanning tree T ∗p̄ of the subgraph induced by V \p, where p is an arbitrary selected vertex;
two minimum cost edges of G with an endpoint in p.

© Giovanni Righini;
licensed under Creative Commons License Attribution 4.0 International

Volume 2 (2021), article no. 9

mailto:giovanni.righini@unimi.it
https://doi.org/10.5802/ojmo.11
https://creativecommons.org/licenses/by/4.0/
https://ojmo.centre-mersenne.org

2 Optimizing the Held–Karp lower bound

Figure 1 Left (LB0): a minimum spanning 1-tree, made by a minimum spanning tree and a minimum
cost edge (dashed). Center (LBH): a Helsgaun 1-tree, made by a minimum spanning tree and a minimum
cost edge (dashed) incident to a leaf (filled). Right (LBHK): a Held–Karp 1-tree, made by a minimum
spanning tree disregarding a vertex (filled) and two minimum cost edges incident to it (dashed). The
comparison illustrates the difference between the three corresponding lower bounds.

It is immediate to observe that LBH(`) ≥ LB0 for any choice of a leaf ` ∈ T ∗ and LBHK(p) ≥ LB0 for any
choice of p ∈ V , because LBH(`) and LBHK(p) are the costs of 1-trees of G, while LB0 is the cost of a minimum
1-tree of G.

Both LBH(`) and LBHK(p) depend on the selection of a vertex: then, both can be maximized by selecting
` and p in an optimal way. Let LB∗H = max ¯̀∈Λ(T ∗){LBH(`)}, where Λ(T ∗) indicates the set of leaves of T ∗,
and LB∗HK = maxp̄∈V {LBHK(p)}. Since LBHK(p) = LBH(`) when p = ` and since V ⊃ Λ(T ∗), then it is
guaranteed that LB∗H ≤ LB∗HK .

Although LB∗HK is more appealing than LB∗H for the tightness of the TSP lower bound that can be achieved,
the computation of LB∗H is much easier: it just requires to select the leaf of T ∗ for which the second smallest
cost of the incident edges is maximum. For this reason the Helsgaun lower bound is attractive for practical
implementation purposes.

The main motivation of this paper is the efficient optimization of LBHK(p), which is less trivial: a naive
procedure is to compute as many alternative minimum spanning trees as the number n of vertices of G, each
one spanning G with the exception of a vertex p ∈ V . This paper presents and analyzes an algorithm that
allows to compute all the alternative edges that are needed to rebuild a minimum cost spanning tree when a
vertex is deleted from G. This goal is achieved with the same worst-case computational complexity required by
the computation of a single minimum spanning tree of G. As a by-product, the algorithm allows to efficiently
compute LB∗HK .

The algorithm takes in input a weighted graph, a minimum spanning tree and a sorted list of all edges and it
returns an optimal set of alternative edges. In particular, it computes a vertex and a corresponding 1-tree that
provide the largest Held–Karp lower bound LB∗HK .

Paper outline
The next section gives an overview of the main idea behind the algorithm, with the aim of facilitating the
reader. The full details are presented in Sections 3, 4 and 5. Section 3 illustrates the main data-structures, their
properties, their initialization and some procedures for updating them. Section 4 describes the main algorithm
(Algorithm 7). Section 5 describes how the maximum value LB∗HK of the Held–Karp lower bound is obtained.

2 Overview of the algorithm

Consider an undirected graph G = (V,E) with edge costs c : E 7→ <; the number of vertices is n and the number
of edges is m. A minimum spanning tree T ∗ of G is assumed to be known and the edges of E are assumed to
having been sorted by non-decreasing cost in a previous execution of Kruskal algorithm.

When a vertex p ∈ V is deleted, T ∗ is disconnected into a forest F ∗p made of as many connected components
as the neighbors of p in T ∗. In the remainder they are called p-components, to mean that they arise when p is
deleted. When vertex p ∈ V is deleted, alternative edges must be found to reconnect the p-components and they
must be selected to produce a new minimum spanning tree T ∗p .

A trivial way to accomplish this task is to repeat, for each deleted vertex p ∈ V , te computation of a minimum
spanning tree T ∗p with Kruskal or Boruvka algorithm after having restored the state of a suitable data-structure

Giovanni Righini 3

to represent the p-components of F ∗p . The vertices in each p-component can be identified in O(n) and this is
the complexity to set up the state of a Union-Find data-structure (for readers unfamiliar with Union-Find, it
is illustrated in detail in Appendix A). Then, the computation of an alternative minimum spanning tree with
Kruskal algorithm requires O(m+ n log d(p)), where d(p) indicates the degree of vertex p ∈ V . Hence, repeating
this naive procedure for all vertices would require O(mn+ n2 logn).

To achieve a better worst-case time complexity one could work the other way around: all edges are scanned in
non-decreasing order of their cost, as in Kruskal algorithm, and for each edge [i, j] 6∈ T ∗ the algorithm searches
the vertices p such that the edge [i, j] reconnects two different p-components of F ∗p . For each vertex p and for
each pair of p-components in F ∗p , the first edge that is found to reconnect them, certainly belongs to T ∗p owing
to the edge ordering. In this way all forests F ∗p can be populated in parallel with alternative edges for all p ∈ V
until all alternative minimum spanning trees T ∗p are produced.

This search, if performed as described above, would be very inefficient. However, it can be restricted (and
accelerated) as follows. Consider the minimum spanning tree T ∗ and an edge [i, j] 6∈ T ∗. Adding edge [i, j]
to T ∗ defines a unique cycle C(i, j). The vertices along C(i, j), except i and j, are those for which [i, j] is a
candidate alternative edge: if a vertex p ∈ V along C(i, j) is deleted from T ∗, edge [i, j] reconnects two different
p-components. On the contrary, for all vertices p ∈ V not belonging to C(i, j), edge [i, j] cannot be a candidate
alternative edge, because both i and j belong to the same p-component. To efficiently scan C(i, j), the algorithm
illustrated in the remainder skips in constant time all vertices p along C(i, j) for which an alternative edge
reconnecting the p-components of i and j has already been found. The effect is illustrated in Figure 2. When
edge [i′, j′] is considered, it can be an alternative edge for vertices a, b, c, d and e. Later on, when the more
expensive edge [i′′, j′′] is considered, it can be an alternative edge for vertices f , g, h and l, but there is no point
in considering it for a, b, c, d and e again.

c

b d

a e

i′ j′
g h

f l

i′′ j′′

Figure 2 Cycles C(i′, j′) and C(i′′, j′′) partially overlap: since [i′, j′] is cheaper than [i′′, j′′], the
vertices belonging to C(i′, j′) can be skipped when [i′′, j′′] is considered.

This idea allows to achieve an overall computational complexity O(m+ n logn), since all operations executed
when a candidate alternative edge is discarded give a contribution O(1) for each edge, i.e. O(m) overall, while all
operations executed when a candidate alternative edge is inserted in one of the minimum alternative spanning
trees give a contribution O(logn) for each insertion, i.e. O(n logn) overall.

3 The data-structures

This section describes the main data-structures used in the algorithm, their properties and their initialization.
Some necessary terminology and definitions are also introduced.

3.1 The oriented minimum spanning tree
The minimum spanning tree T ∗ is initially oriented from an arbitrarily selected root vertex r ∈ V .

I Definition 1. The predecessor of any vertex p ∈ V \{r}, indicated by Pred(p), is defined as the vertex adjacent
to p along the path between p and r in T ∗.

I Property 2. Since T ∗ is a spanning tree, there exists a unique path between any vertex p ∈ V \{r} and r;
therefore the predecessor exists and is unique for each p ∈ V \{r}.

Pred(r) is set to a null value to indicate that the root vertex r has no predecessor.

4 Optimizing the Held–Karp lower bound

I Definition 3. On the oriented tree T ∗ the depth of any vertex p ∈ V , indicated by Depth(p), is defined as the
number of edges between r and p.

From Definition 3 and Property 2 the following property follows.

I Property 4. For any two vertices u and v such that v = Pred(u), it holds Depth(u) = Depth(v) + 1.

On the oriented tree T ∗ two additional values Dn(p) and Up(p) are defined for each vertex p ∈ V . Consider a
depth-first-search visit of T ∗ and let us define a move to happen every time an edge is traversed in any direction.

I Definition 5. We define Dn(r) = 1. For all p ∈ V \{r}, Dn(p) is the progressive number of the move that
reaches p from Pred(p). For all p ∈ V , Up(p) is the progressive number of the move that reaches Pred(p) from p.

The following properties hold.

I Property 6.
i. The indices Dn(p) and Up(p) have unique values in T ∗.
ii. Their values span the interval [1, . . . , 2n].
iii. For any vertex v ∈ V and for each vertex u ∈ V in the oriented subtree rooted at v, with u 6= v,

Dn(v) < Dn(u) < Up(u) < Up(v).

An example is illustrated in Figure 3.

4, 5

2, 3

1, 38

6, 37
7, 36

30, 35

31, 32
33, 34

8, 29

21, 28

26, 27 24, 25

22, 23

9, 20

16, 19 17, 18

10, 15

11, 12
13, 14

Figure 3 An oriented spanning tree with the values (Dn, Up) for each vertex.

Consider an edge [i, j] 6∈ T ∗. When it is added to T ∗ a unique cycle, indicated by C(i, j), is formed. Owing
to the orientation of T ∗, it is possible to define the apex of the cycle.

I Definition 7. The apex of a cycle C(i, j) is the minimum depth vertex along it.

Owing to the orientation of T ∗ and to Property 6, the following properties hold.

I Property 8.
i. For any cycle C(i, j), the apex exists and it is unique;
ii. if vertex p is the apex of C(i, j), then Dn(p) ≤ min{Dn(i),Dn(j)} and Up(p) ≥ max{Up(i),Up(j)}.

Let SubTree(p, i, j) be a boolean function that tests Property 8ii, to check whether an endpoint of edge [i, j]
is the apex of C(i, j) or not.

A consequence of Definition 7 and Property 8 is the following.

I Property 9. Given any edge [i, j] 6∈ T ∗, if a vertex p verifies SubTree(p, i, j) and it also belongs to C(i, j), then
it is the apex of C(i, j).

Property 9 is exploited in Algorithm 8 and 9 described in Section 4.

Giovanni Righini 5

Algorithm 1 The procedure that orients the minimum spanning tree.
1: procedure Orient
2: for p ∈ V do
3: δ(p)← ∅
4: for [i, j] ∈ T ∗ do
5: δ(i)← δ(i) ∪ {j}
6: δ(j)← δ(j) ∪ {i}
7: r ← Select
8: Pred(r)← 0
9: Depth(r)← 0

10: α← 0
11: DFS(r)

Algorithm 2 The recursive procedure to visit T ∗ in depth-first-search order.
1: procedure DFS(p)
2: α← α+ 1
3: Dn(p)← α

4: for k ∈ δ(p) do
5: if k 6= Pred(p) then
6: Pred(k)← p

7: Depth(k)← Depth(p) + 1
8: DFS(k)
9: α← α+ 1

10: Up(p)← α

3.1.1 Procedure Orient
The values of Pred, Depth, Dn and Up are initially computed by the procedure Orient shown in Algorithm 1.

The procedure pre-computes the star δ(p) of each vertex p ∈ V , from the list of edges of T ∗ (lines 2-6). A
root vertex r with no predecessor is arbitrarily selected and its predecessor and depth are set to 0 (lines 7-9).
Then T ∗ is visited in depth-first-search order from vertex r with a call to the recursive procedure DFS (line 11).

A counter α counts every move in either direction along the edges of T ∗. Every time a vertex p is reached
from Pred(p) by a call to DFS(p), α is increased by 1 (line 2) and its value sets Dn(p) (line 3). Then all the
neighbors of vertex p are visited (lines 4-8) with the only exception of Pred(p) (line 5). Before calling DFS(k)
for a generic neighbor k ∈ δ(p), the algorithm sets Pred(k) at the current vertex p (line 6) and Depth(k) at the
value Depth(p) + 1 (line 7). When the neighborhood of p has been completely explored, α is increased again
(line 9) and it sets Up(p) (line 10). Finally the search backtracks.

Complexity of Orient.
The computation of the star of each vertex (lines 2 to 6) takes O(n), because T ∗ contains n− 1 edges. All the
operations on lines 7-10 of Orient can be done in O(1). The time complexity taken by all instructions on lines 2,
3, 9 and 10 of DFS is O(n), because α ranges from 1 to 2n by Property 6. The total number of iterations of
the loop on lines 4-8 of DFS is twice the number of edges of T ∗, i.e. 2(n− 1), and the body of the loop (lines 6
and 7) is executed in O(1). Therefore the time complexity for visiting T ∗ with DFS is O(n).

3.2 Local subgraphs
I Definition 10. For each vertex p ∈ V a local subgraph G(p) = (V(p), T (p)) is defined: it has |V(p)| = d(p)
vertices, where d(p) is the degree of p in T ∗.

The vertices in V(p) are in one-to-one correspondence with the neighbors of p in T ∗ and therefore to the
p-components they belong to. Hence, with a little abuse of notation in the remainder the same indices are used
to indicate the neighbors of vertex p ∈ V and the corresponding vertices in the local subgraph V(p).

6 Optimizing the Held–Karp lower bound

Edges in local subgraphs are called links in the remainder, in order to make the difference with the edges of
graph G.

The link set T (p) is a forest for each p ∈ V ; it is initially empty; at the end of the execution, it is a spanning
tree of G(p). Each time the algorithm detects an alternative edge [i, j] to be used when vertex p is deleted, this
piece of information is recorded in T (p) (this happens in Algorithm 9 and Algorithm 10 described in Section 4).
Each link in T (p) is represented as a record with two fields: one is the link itself between two vertices of G(p),
and the other is the alternative edge [i, j] reconnecting the two corresponding p-components.

An example is shown in Figure 4. When vertex p is deleted from the spanning tree, edges [i, j] and [k, l]
are used to reconnect the three resulting p-components at minimum cost. Two corresponding links [a, b] and
[b, c] are inserted in the local subgraph G(p), forming a spanning tree T (p). Each link in T (p) has an associated
alternative edge in G.

G(p)

a

b

c

[i, j]
[k, l]pa

i j

b
k

l
c

Figure 4 Left: the spanning tree T ∗ and two alternative edges (dashed). Right: two corresponding
links [a, b] and [b, c] in the local subgraph G(p).

I Remark 11. The local subgraphs of the leaves of T ∗ have no links, since they contain a single vertex. Hence,
they are not used in the algorithm.

I Definition 12. Links in T (p) incident to the local vertex corresponding to Pred(p) are vertical links; links in
T (p) not incident to the local vertex corresponding to Pred(p) are horizontal links.

I Remark 13. The local forest T (r) cannot include vertical links, since r has no predecessor.

Figure 5 shows an example of vertical and horizontal links corresponding to a same alternative edge. When
the candidate alternative edge [i, j] is considered, a vertical link between the local vertices i and a is inserted
in G(k), because k is a vertex between i and the apex; a horizontal link between the local vertices k and j is
inserted in G(a), because a is the apex.

3.2.1 Local Union-Find data-structure
Since a spanning tree T (p) must be eventually computed for each local subgraph G(p), a Union-Find data-
structure is kept for each vertex p ∈ V . It is made by an array of d(p) linked lists. Each list L(p, k) is initialized
with a single element k ∈ V(p), corresponding to a neighbor k of p in T ∗. For each list two additional scalar
values are also recorded: Card(p, k) records the cardinality of L(p, k); Head(p, k) records the head of the list to
which the local vertex k belongs.

The operations executed on the Union-Find data-structure of vertex p ∈ V when T (p) is enriched with a new
link are the same as those reported in many textbooks on algorithms and data-structures (see for instance [4]).
For readers unfamiliar with them, they are recalled in Appendix A, where the pseudo-code of the procedure
Merge is also described. An example is shown in Figure 6.

3.2.2 Procedure Initialization
The procedure Initialization, shown in Algorithm 3, initializes the local data-structure of each vertex p ∈ V .

Giovanni Righini 7

G(a)

h

k j
[i, j]

G(k)

a

i

[i, j]

i

k

a

h

j

Figure 5 An example of links added to local subgraphs when a candidate alternative edge is
considered. In each local subgraph, the vertex corresponding to the predecessor is drawn in thick line.

G(p)

a

b
c

d

e

pa

b
c

d

e

Vertex Head Card L
a a 2 {a, b}
b a 0 {}
c c 1 {c}
d d 2 {d, e}
e d 0 {}

Figure 6 A vertex p with five neighbors (left), its local subgraph G(p) (center) and the corresponding
state of the Union-Find data-structure (right). Oriented arcs indicate the predecessors in T ∗. In G(p),
the vertex corresponding to e = Pred(p) is indicated by a thick line. Local vertices a and b have been
connected with a horizontal link; consequently, the lists of a and b have been merged in a single list,
so that L(a) = {a, b}, L(b) = ∅, Card(a) = 2, Card(b) = 0 and Head(a) = Head(b) = a. The local
vertex d has been connected to e = Pred(p) with a vertical link; consequently, the lists of d and e

have been merged in a single list, so that L(d) = {d, e}, L(e) = ∅, Card(d) = 2, Card(e) = 0 and
Head(d) = Head(e) = d.

The local vertex sets V(p) for all p ∈ V , initially empty (line 3), are populated in lines 5-6. The corresponding
Union-Find data-structure is initialized in lines 7-12. The local forests T (p) are initially empty (line 14).

The value AltTreeCost(p) indicates the total cost of the alternative edges that have been selected to reconnect
the p-components for each vertex p ∈ V . It is initialized at 0 on line 15.

Each spanning tree T (p) in the local graph of vertex p requires d(p)− 1 edges. Since
∑

p∈V d(p) = 2(n− 1),
then the number of (not necessarily distinct) alternative edges that must be selected is 2(n− 1)− n, i.e. n− 2.
This is the initial value of the variable µ, that counts the number of missing alternative edges (line 16). The
search for alternative edges terminates as soon as µ = 0.

8 Optimizing the Held–Karp lower bound

Algorithm 3 The procedure that initializes the local subgraphs.
1: procedure Initialization
2: for p ∈ V do
3: V(p)← ∅
4: for [i, j] ∈ T ∗ do
5: V(i)← V(i) ∪ {j}
6: V(j)← V(j) ∪ {i}
7: L(i, j)← {j}
8: Card(i, j)← 1
9: Head(i, j)← j

10: L(j, i)← {i}
11: Card(j, i)← 1
12: Head(j, i)← i

13: for p ∈ V do
14: T (p)← ∅
15: AltTreeCost(p)← 0
16: µ← n− 2

Complexity of Initialization.

The procedure Initialization contains three loops: the first and the third loop are repeated for each vertex in V ,
i.e. n times; the second loop is repeated for each edge of T ∗, i.e. n− 1 times. All operations within the loops
require O(1). Therefore Initialization takes O(n).

3.3 Oriented paths and trees
Consider a generic edge [i, j] 6∈ T ∗ and the corresponding cycle C(i, j), whose apex is indicated as apex(i, j).
Two oriented paths are defined as follows.

I Definition 14. The oriented path P (i, j) goes from vertex i to apex(i, j) in T ∗; the oriented path P (j, i) goes
from vertex j to apex(i, j) in T ∗.

It is possible that one of the two paths does not exist, when i or j is the apex of C(i, j), as illustrated in
Figure 7.

b d

a c

i j

j

b

a

i

Figure 7 Left: edge [i, j] corresponds to two oriented paths, one including a and b, the other including
c and d. Right: edge [i, j] corresponds to a single path, because one of its endpoints is the apex of
C(i, j). In both cases, the apex is indicated by a thick line. Oriented arcs indicate predecessors in T ∗.

I Definition 15. The internal vertices of a non-empty oriented path P (i, j) (or P (j, i)) are the vertices along it
excluding the endpoints, i.e. vertex i (or j) and apex(i, j).

As observed in Section 2, apex(i, j) and the internal vertices of P (i, j) and P (j, i) are those for which edge
[i, j] can be used as an alternative edge. In the local subgraph of apex(i, j) edge [i, j] corresponds to a horizontal
link, while in the local subgraphs of the internal vertices along the two paths edge [i, j] corresponds to a vertical
link, as shown in Figure 5. For this reason, the apex is processed separately from the internal vertices along the
two paths.

Giovanni Righini 9

I Definition 16. The root of a non-empty oriented path P (i, j) or P (j, i) is its vertex t with Depth(t) =
Depth(apex(i, j)) + 1.

For each internal vertex p of an oriented path P (i, j) edge [i, j] reconnects two p-components, one of them
containing i and the other one containing Pred(p) (and the same holds for P (j, i) swapping i with j). For each
candidate alternative edge [i, j] the algorithm scans P (i, j) from i and P (j, i) from j up to their roots. Therefore
all local forests of internal vertices of the two paths are considered to possibly insert a vertical link in each of
them.

I Definition 17. Two oriented paths P ′ and P ′′ overlap if and only if they have at least an internal vertex in
common.

When two (or more) oriented paths overlap, the algorithm merges them to form an oriented tree. The oriented
trees made by the oriented paths have the following properties.

I Property 18.
i. Each vertex belongs to at most one oriented tree;
ii. each oriented tree has a unique root, that is the minimum depth root of its paths;
iii. there is at least one vertical link in the local forest of each vertex in an oriented tree.

Owing to this property, every time the algorithm scans a path and it detects that part of it overlaps with an
existing oriented tree, the oriented tree is skipped in O(1) and the scan resumes directly from its root.

For this purpose, for each vertex p ∈ V a variable Path(p) records the index of the first path that introduces
a vertical link in G(p).

I Definition 19. A path is relevant if and only if it inserts a vertical link in at least one subgraph.

I Property 20. Since the number of vertical links is bounded above by n− 2 (the limit case occurs when T ∗ is
a path), this is also the maximum number of relevant paths.

Every time a new path is scanned, a path counter π is increased by 1 and the path root is initialized at 0.
Every time a vertical link is inserted in some local forest T (p), the path root is updated to p. At the end of the
scan, if the path root is still equal to 0, then the path is discarded as non-relevant and the path counter π is
decreased by 1. No update to any data-structure is done, while the currently scanned path has not yet been
recognized as relevant.

3.4 The Tree-Union-Find data-structure
A suitable data-structure is used to allow for efficiently merging relevant oriented paths into oriented trees. This
data-structure is indicated as Tree-Union-Find, to distinguish it from the Union-Find data-structures associated
with local subgraphs.

The Tree-Union-Find data-structure includes an array TList of linked lists, an array TCard, an array THead
and an array TRoot. Each component of such arrays corresponds to an oriented tree, i.e. a set of overlapping
relevant oriented paths: TList(τ) is the set of paths merged into the tree τ ; TCard(τ) is their number; THead(τ)
is the index of a representative path among those in TList(τ); TRoot(τ) is the root of tree τ , i.e. the minimum
depth vertex among the roots of the paths in TList(τ).

All arrays in the Tree-Union-Find data-structure are made by at most n− 2 elements, because no more than
n− 2 relevant paths can exist, owing to Property 20.

Algorithm 4 shows the initialization of a new path. Algorithm 5 shows how non-relevant paths are detected
and purged. Algorithm 6 illustrates the procedure that merges the subtrees containing two paths π′ and π′′:
TreeMerge assigns index τ ′ to the tree with maximum cardinality and τ ′′ to the other one, according to the
values of TCard (lines 2-7). The root of the resulting tree is selected as the one with minimum depth among
the root of τ ′ and the root of τ ′′ (lines 8-9). Then tree τ ′′ is appended to tree τ ′, so that THead(π) ← τ ′ for
all paths π in TList(τ ′′) (lines 10-11). Finally TCard and TList are updated, appending the shortest list to the
longest one (lines 12-14).

4 The algorithm

After the introduction of the necessary definitions and properties and the description of the main data-structures,
it is now possible to introduce the algorithm.

10 Optimizing the Held–Karp lower bound

Algorithm 4 The algorithm that initializes a new oriented path.
1: procedure InitPath
2: π ← π + 1
3: TList(π)← {π}
4: TCard(π)← 1
5: THead(π)← π

6: TRoot(π)← 0

Algorithm 5 The algorithm that deletes non-relevant paths.
1: procedure PurgePath(π)
2: if TRoot(THead(π)) = 0 then
3: π ← π − 1
4: TList(π)← ∅

Algorithm 6 The algorithm that merges two subtrees containing paths π′ and π′′.
1: procedure TreeMerge(π′, π′′)
2: if TCard(THead(π′)) > TCard(THead(π′′)) then
3: τ ′ ← THead(π′)
4: τ ′′ ← THead(π′′)
5: else
6: τ ′ ← THead(π′′)
7: τ ′′ ← THead(π′)
8: if (Depth(TRoot(τ ′′)) < Depth(TRoot(τ ′))) then
9: TRoot(τ ′)← TRoot(τ ′′)

10: for π ∈ TList(τ ′′) do
11: THead(π)← τ ′

12: TCard(τ ′)← TCard(τ ′) + TCard(τ ′′)
13: TCard(τ ′′)← 0
14: TList(τ ′))← TList(τ ′)) ∪ TList(τ ′′))

The main body of the algorithm is shown in Algorithm 7. The complexity of each step is indicated on the
corresponding line and it is proven in the remainder. The algorithm takes in input a graph G = (V,E), an edge
weighting function c, a minimum spanning tree T ∗ and a sorted list S of all edges e ∈ E. It returns the optimal
vertex p∗ and the corresponding 1-tree T ′ providing the largest Held–Karp lower bound LB∗HK .

Algorithm 7 The main algorithm.
1: procedure Main(G, c, T ∗,S)
2: // Find all alternative edges //
3: Orient . O(n)
4: Initialization . O(n)
5: Search . O(m+ n logn)
6: // Compute the maximum Held–Karp lower bound LB∗HK //
7: SelectVertex . O(m)
8: Return(p∗, T ′, LB∗HK)

Procedures Orient and Initialization have been already described in Section 3. Procedure SelectVertex is
described in the next Section; it is used to optimize the Held–Karp lower bound.

This Section describes in detail the procedure Search, that computes n alternative minimum spanning trees.
The Search procedure, shown in Algorithm 8, is made by a main loop (lines 3-18) whose body is divided

into three parts. At each iteration of the main loop a candidate alternative edge is considered and all the
corresponding vertical and horizontal links are inserted. The loop is repeated until all necessary links have been
inserted; this is detected from the test on the number of missing edges in the local subgraphs: µ = 0 (line 18).

Giovanni Righini 11

Algorithm 8 The procedure that detects all alternative edges.
1: procedure Search
2: π ← 0
3: repeat
4: /* Edge selection */
5: repeat
6: [i, j]← Extract(S)
7: until [i, j] 6∈ T ∗
8: /* Vertical links */
9: u← i

10: if ¬SubTree(i, i, j) then
11: PathScan(i, j, u)
12: v ← j

13: if ¬SubTree(j, i, j) then
14: PathScan(j, i, v)
15: /* Horizontal links */
16: if ¬SubTree(i, i, j) ∧ ¬SubTree(j, i, j) ∧ then(Stop(u) ∨ Stop(v))
17: ProcessApex(u, v, i, j)
18: until µ = 0

The first part of the body of the main loop (lines 4-7) is a secondary loop in which the next candidate
alternative edge (i.e. an edge not in T ∗) is extracted from the sorted edge list S. The candidate alternative edge
is indicated by [i, j].

In the second part (lines 8-14) Search scans the paths P (i, j) and P (j, i) to possibly insert vertical links. Two
indices u and v are used to identify the current vertex on the paths: u along P (i, j) and v along P (j, i). The
operations on the two paths are symmetrical and they are grouped in the procedure PathScan that is called
twice (lines 11 and 14). PathScan is called only if the corresponding path exists; this is the reason for tests on
lines 10 and 13. SubTree(p, i, j) is a boolean function that tests Property 8 (ii), to check whether an endpoint of
edge [i, j] is the apex of C(i, j) or not. In this way empty paths are disregarded.

The effect of this second part is twofold: first, to insert all possible vertical links in local forests; second, to
indicate how the search along each path terminates. This is represented by the value of the variables Stop(u) and
Stop(v). Consider the side of vertex i. If Stop(u) is true, the current vertex u is within the cycle C(i, j); hence,
when the loop is over, Pred(u) is apex(i, j). If Stop(u) is false, the path on the side of i has been merged with a
pre-existing oriented tree, whose root is at apex(i, j) or above (i.e. closer to the root) and therefore Pred(u) is
out of C(i, j). The same holds symmetrically for Stop(v) on the side of j.

In the third part (lines 15-17) a horizontal link is possibly inserted in the local forest of apex(i, j) by a call
to procedure ProcessApex (line 17). However, this is done only if the apex is different from i and j (i.e. both
oriented paths exist) and if at least one of the two current vertices u and v is within the cycle C(i, j). If both u
and v have reached the apex, then both the apex(i, j)-components of i and j are already connected with that of
Pred(apex(i, j)) and therefore no horizontal link must be inserted in T (apex(i, j)).

4.1 Procedure PathScan and vertical links
For each side of the cycle C(i, j) the current vertex is initialized at an endpoint of the candidate alternative edge
[i, j] (lines 9 and 12). The variable Stop is initialized at true (line 2) and a new path is initialized by a call to
InitPath (line 3) so that its index is π.

The current vertex, indicated by w, corresponds either to u or to v, depending on the call on line 11 or 14
of Search. The test on line 4 detects whether the predecessor of the current vertex w is at a larger depth then
apex(i, j). As soon as Pred(w) reaches the apex or above, the loop ends, because vertical links must be inserted
only in internal vertices of the oriented path.

Within the loop (lines 4-22) at each iteration an attempt is made to insert a vertical link between w and
Pred(p) in G(p), where p = Pred(w) (line 5). For this purpose the local Union-Find data-structure of vertex p is
tested to check whether w and Pred(p) are already connected or not (line 6).

12 Optimizing the Held–Karp lower bound

Algorithm 9 The procedure that inserts vertical links.
1: procedure PathScan(i, j, w)
2: Stop(w)← true
3: InitPath
4: while ¬SubTree(Pred(w), i, j) do
5: p← Pred(w)
6: if (Head(p, w)) 6= Head(p,Pred(p)) then
7: /* Insert a vertical link */
8: T (p)← T (p) ∪ {([w,Pred(p)], [i, j])}
9: AltTreeCost(p)← AltTreeCost(p) + c(i, j)

10: µ← µ− 1
11: Merge(p, w,Pred(p))
12: TRoot(THead(π))← p

13: w ← p

14: if Path(p) = 0 then
15: Path(p)← π

16: else
17: /* Skip Path(p) up to its root */
18: if TRoot(THead(π)) 6= 0 then
19: TreeMerge(π,Path(p))
20: w ← TRoot(THead(Path(p)))
21: if SubTree(w, i, j)) then
22: Stop(w)← false
23: PurgePath(π)

If the test succeeds (i.e. w and Pred(p) are not connected), a vertical link is inserted and several update
operations are done (lines 7-13). In particular, a new element is inserted in T (p) as a record with two fields: the
link is [w,Pred(p)], while the alternative edge is [i, j] (line 8); the total cost of the alternative edges AltTreeCost(p)
is increased by c(i, j) (line 9); the number of missing alternative edges is decreased by 1 (line 10). Then the local
Union-Find data-structure of vertex p is updated, merging the connected components of w and Pred(p) (line 11)
with a call to Merge (see Appendix A for the pseudo-code). When a vertical link is inserted, the path is relevant
and its root is updated to vertex p where the vertical link has been inserted (line 12). Finally the current vertex
w is moved one step forward along the path to p = Pred(w) (line 13).

That a vertical link has been inserted or not, two situations can occur: either no vertical link has been
inserted in T (p) in previous iterations (and in this case Path(p) = 0) or a vertical link has already been inserted
while scanning a path (and in this case the index of that path has been recorded in Path(p)). In the former
case, detected by the test on line 14, Path(p) is set to the index π of the current path (line 15) and no other
operation is required. In the latter case, the current vertex w is moved directly to the root of the oriented
subtree containing the path Path(p) and the subtree containing the current path π is merged with the subtree
containing path Path(p). The TreeMerge procedure is called (line 19) only if π has already been detected as
relevant (line 18). The current vertex is updated on line 20. Consequently, a new test is done to check whether w
is still below the apex of C(i, j) (line 21). If not, Stop is set to false (line 22).

When the loop is over, π is checked again: if it is non-relevant then it is purged (line 23).

4.2 Procedure ProcessApex and horizontal links
The procedure ProcessApex(u, v, i, j), shown in Algorithm 10, inserts a horizontal link in the local forest of
apex(i, j) if and only if the apex(i, j)-components of i and j are not already connected in T (apex(i, j)). If they
are already connected, the procedure has no effect.

To check whether the horizontal link can be inserted, it is necessary to know the indices of the two vertices
adjacent to the apex along P (i, j) and P (j, i). These correspond to u and v when Stop(u) and Stop(v) are true:
if Stop(u)∧ Stop(v), then Pred(u) = Pred(v) = apex(i, j). However, this is not the case when Stop is false. Hence,
the apex, indicated by p in Algorithm 10, is found as the predecessor of the current vertex for which Stop is true
(lines 2-5). At least one of Stop(u) and Stop(v) is guaranteed to be true, owing to the test on line 16 of Search.

Giovanni Righini 13

If one of the two current vertices, say u, has been moved to the apex or above, i.e. Stop(u) is false, then
the p-component of i is already connected with the p-component of Pred(p) in T (p). Hence a test on the local
Union-Find data-structure of vertex p must be done to check whether v and Pred(p) are connected or not. This
is the reason for setting a variable u′ to u if Stop(u) is true and to Pred(p) if Stop(u) is false (lines 6-9). The
same is done for v′ (lines 10-13).

If the test on the Union-Find data-structure succeeds (line 14), then a horizontal link is inserted; otherwise
the procedure terminates with no effect.

Before inserting the horizontal link, it is necessary to find the index of both vertices adjacent to the apex p
along P (i, j) and P (j, i). They are not both available if Stop is false for one of the two current vertices. Therefore,
u or v is reset to the position just below the apex, in case it is not (lines 15-16 and 17-18). This is done by a
procedure Find, that exploits the values of Up and Dn of all vertices adjacent to p. W.l.o.g. assume Stop(u) be false.
The execution of Find(p, i) implies a search among the vertices of V(p) to find the vertex which lies on the path
between i and p. This requires to find the (unique) vertex u ∈ V(p) such that (Dn(u) ≤ Dn(i))∧ (Up(u) ≥ Up(i)).

Once u and v have been set to the neighbors of the apex p along P (i, j) and P (j, i), the horizontal link
between them is finally inserted in T (p). The two fields of the new element in T (p) record the link [u, v] and the
alternative edge [i, j] (line 19); the cost of T (p) is increased by c(i, j) (line 20); the number µ of missing edges is
decreased by 1 (line 21). Finally the Union-Find data-structure of the local subgraph G(p) is updated by a call
to Merge (line 22) to connect the components of u and v (see Appendix A for the pseudo-code).

Algorithm 10 The procedure that inserts horizontal links.
1: procedure ProcessApex(u, v, i, j)
2: if (Stop(u)) then
3: p← Pred(u)
4: else
5: p← Pred(v)
6: if (Stop(u)) then
7: u′ ← u

8: else
9: u′ ← Pred(p)

10: if (Stop(v)) then
11: v′ ← v

12: else
13: v′ ← Pred(p)
14: if (Head(p, u′) 6= Head(p, v′)) then
15: if ¬Stop(u) then
16: u← Find(p, i)
17: if ¬Stop(v) then
18: v ← Find(p, j)
19: T (p)← T (p) ∪ {[u, v], [i, j]}
20: AltTreeCost(p)← AltTreeCost(p) + c(i, j)
21: µ← µ− 1
22: Merge(p, u, v)

Complexity of Search.

The number of iterations of the outer loop of Search (lines 3-18) is O(m); therefore the time taken by all constant
time operations in Search (including SubTree that takes constant time), PathScan and ProcessApex (including
InitPath and PurgePath), yield an overall O(m) contribution to the time complexity.

The loop on lines 5-7 can be implemented so that it takes O(1) time per iteration, i.e. O(m) overall. This
requires to sort the edges of T ∗ with the same criterion used to sort the edges in S (non-decreasing cost plus some
additional lexicographic criterion to break ties). This pre-sorting step requires O(n logn) because T ∗ contains
n− 1 edges. In this way the test on line 7 is a comparison between the edge [i, j] extracted from S and the first

14 Optimizing the Held–Karp lower bound

edge of T ∗ not yet extracted from S and it takes constant time. Hence, the pre-sorting step (not indicated in the
pseudo-code) and the loop on lines 5-7 require O(m+ n logn) time.

The block of operations on lines 7-13 of PathScan is executed O(n) times, because a vertical link is inserted
each time and the number of possible vertical links is O(n). Since all operations excepted Merge have O(1)
complexity, their overall contribution to the time complexity of the algorithm is O(n).

The test on line 14 of PathScan can succeed at most n times. Therefore the total contribution to the time
complexity of the O(1) operation on line 15 is O(n).

The block of operations on lines 17-22 of PathScan takes O(1) with the exception of the contribution of
TreeMerge. The complexity analysis requires to distinguish the case in which π is non-relevant (TRoot(THead(π)) =
0) from the case in which π is relevant (TRoot(THead(π)) > 0).

An empty path can exist only twice for each candidate alternative edge, once for each side of C(i, j). Therefore
the execution of this block with non-relevant π can occur O(m) times. In these cases TreeMerge is not executed
and thus the total contribution is O(m).

The number of relevant paths in the Tree-Union-Find data-structure is O(n), because all roots are different.
Therefore, a call to TreeMerge can occur at most O(n) times. Hence, the number of times the block is executed
with relevant π is O(n) and therefore the total contribution of these iterations is O(n) plus the contribution of
TreeMerge.

The number of times the loop on lines 4-22 of PathScan is executed is the sum of both types of iterations, i.e.
with relevant π and non-relevant π. Therefore the tests on lines 6 and 14 are executed O(m+ n) times.

The procedure ProcessApex is called at most once for each edge, i.e. O(m) times. Therefore all O(1) operations
on lines 2-13 contribute O(m).

The test on line 14 can succeed O(n) times, because the number of horizontal links that can be inserted is
O(n). Excluding the contribution of Merge and Find, the total contribution of the operations on lines 15-22 to
the time complexity is O(n).

The execution of Find(p, i) implies a search among the vertices of V(p) (i.e. the neighbors of p in T ∗) to
find the vertex which lies on the path between p and i on T ∗, i.e. the (unique) vertex u satisfying (Dn(u) ≤
Dn(i)) ∧ (Up(u) ≥ Up(i)). This task can be accomplished in O(log d(p)) (which is not worse than O(logn)) by
binary search, because the vertices of V(p) are sorted by their values of Dn and Up after the execution of Orient.
Since the number of calls to Find is O(n), as observed above, the overall contribution of Find to the total time
complexity is O(n logn).

At each call of Merge two lists in the local subgraph G(p) of some vertex p ∈ V are merged. This can happen
O(n) times overall, because O(n) alternative edges must be found. For the well-known property of the Union-Find
data-structure (recalled in Appendix A) for each local graph with d(p) vertices, the time taken by the update op-
erations is O(d(p) log d(p)). Summing up these contributions over all vertices results in an O(n logn) contribution
to the complexity of the whole algorithm, because

∑
p∈V d(p) log d(p) ≤

∑
p∈V d(p) logn = logn

∑
p∈V d(p) =

2|T ∗| logn = 2(n− 1) logn.
The total time taken by TreeMerge to merge trees is O(n logn), because of the properties of Union-Find:

every time two or more trees are merged, their lists are merged so that the shortest one is appended to the longest
one. This guarantees that no representative is updated more than logn times since the number of oriented trees
is O(n). Note that to achieve this result, it is necessary to accept that the root of an oriented tree does not
necessarily belong to its representative path.

The conclusion of this analysis is that the worst-case time complexity of Search is O(m+ n logn) which is
the same of a single run of Kruskal algorithm or Prim algorithm implemented with Fibonacci heaps.

5 Computation of the optimal Held–Karp lower bound LB∗
HK

If the computation of the n alternative minimum spanning trees is aimed at the optimization of the Held–Karp
lower bound LBHK(p), the procedure SelectVertex is executed, as shown in Algorithm 7, to compute the most
profitable vertex p, the resulting 1-tree and the corresponding value LB∗HK .

The procedure SelectVertex, illustrated in Algorithm 11, finds the two minimum cost edges e1(p) and e2(p)
incident in each vertex p (their costs are indicated by c1 and c2) and evaluates what the resulting 1-tree lower
bound would be if p were removed from T ∗, replacing its star with the alternative edges recorded in T (p) plus the
two edges e1(p) and e2(p). The vertex p∗ providing the largest value is returned, together with the corresponding

Giovanni Righini 15

value z, indicating the best lower bound that can be achieved, LB∗HK . The value StarCost(p) indicates the total
cost of the edges of T ∗ incident to each vertex p ∈ V .

In the last two lines of Algorithm 11 the optimal Held–Karp 1-tree T ′ is produced. Each element in T (p)
is stored as a record with two fields, one indicating the link in the local forest and the other indicating the
corresponding alternative edge. In the pseudo-code shown in Algorithm 11 the notation T̂ (p) indicates the set of
alternative edges corresponding to the elements of T (p).

Complexity of SelectVertex.

The computation of StarCost(p) for each vertex requires to scan each edge of the graph twice. Hence its complexity
is O(m). The operation of deleting from T ∗ the edges incident to p∗ (line 23) takes O(n). The operation of
merging the two lists of edges T ∗ and T̂ (p) (line 23) takes O(n). Therefore the overall complexity of SelectVertex
is O(m).

Algorithm 11 The procedure that computes the optimal Held–Karp lower bound.
1: procedure SelectVertex
2: z ← −∞
3: for p ∈ V do
4: StarCost(p)← 0
5: c1 ←∞
6: c2 ←∞
7: for k ∈ δ(p) do
8: StarCost(p)← StarCost(p) + c(p, k)
9: if c(p, k) < c1 then

10: c2 ← c1
11: c1 ← c(p, k)
12: e2 ← e1
13: e1 ← [p, k]
14: else
15: if c(p, k) < c2 then
16: c2 ← c(p, k)
17: e2 ← [p, k]
18: if AltTreeCost(p)− StarCost(p) + c1 + c2 > z then
19: z ← AltTreeCost(p)− StarCost(p) + c1 + c2
20: p∗ ← p

21: e∗1 ← e1
22: e∗2 ← e2

23: T ′ ← T ∗\δ(p∗) ∪ T̂ (p∗) ∪ {e∗1, e∗2}
24: Return(p∗, T ′, z)

6 Conclusions

The value of the 1-tree-based lower bound for the TSP can be optimized, not only following Helsgaun’s idea of
optimally selecting a leaf of a minimum spanning tree and an additional minimum cost edge incident to it, but
also by improving upon the original idea by Held and Karp of selecting a vertex p excluded from a minimum
spanning tree and two additional minimum cost edges incident to it. The algorithm presented here shows that
the vertex p that Held and Karp selected in an arbitrary way can be selected in an optimal way with the same
worst-case time complexity required to compute a minimum spanning tree on the same weighted graph, i.e.
O(m+ n logn); this is also the time complexity required by each iteration of the Held–Karp method when the
vertex p is selected in an arbitrary way. The resulting lower bound is guaranteed to be larger than or equal to
the lower bound provided by Helsgaun’s method.

The advantage of LB∗HK with respect to LB∗H obviously depends on the specific instance. Just to have a
rough estimate of the expected improvement that LB∗HK can provide, some limited computational tests were

16 Optimizing the Held–Karp lower bound

also carried out. Two data-sets were generated at random. Data-set A is made of 100 random graphs with 100
vertices and density 15%; edge weights were generated with uniform probability distribution in the range [0, 1000].
Data-set B is made of 100 Euclidean instances; each of them is defined by 100 points placed at random in a
square of size 100, with uniform probability distribution for both coordinates; graphs are complete and edge
weights correspond to Euclidean distances.

Results are reported in Table 1. Column LBHK indicates the average value of LBHK , i.e. the expected value
of the lower bound when the vertex p is chosen at random as suggested by Held and Karp. Column LB∗H reports
the optimized value of the 1-tree lower bound with Helsgaun method. Column LB∗HK reports the optimized
value of the Held–Karp lower bound. The rightmost columns reports the number of times LB∗HK was found
to be tighter than LB∗H . All values have been rounded to the closest integer. The experimental comparison
shows that not only LB∗HK dominates LB∗H but it is strictly better for more than half of the instances. The
improvement of LB∗HK over LB∗H is instance-dependent: in our tests it is zero or negligible for some instances,
significant for others. The improvement of LB∗HK over LBHK is always relevant (about 10− 20%). Computing
time was negligible and therefore it is not reported in Table 1.

Data-set LBHK LB∗H LB∗HK n. impr.
A 8990 11686 11759 55/100
B 530 595 597 63/100

Table 1 Comparison between optimized and non-optimized 1-tree-based lower bounds.

It should be remarked that the algorithm illustrated in this paper computes a lower bound to the TSP,
not a solution: it is conceived as a sub-routine within a more complex algorithm, such as a branch-and-bound
algorithm, devised to solve some combinatorial problem implying Hamiltonian cycles. Therefore, a meaningful
evaluation of the practical usefulness of the algorithm can be obtained only by evaluating the effect it produces
on the computing time of the algorithm in which it is embedded. Hence the efficient code implementation of this
algorithm can be a research topic deserving investigation.

Independently of the application to the Held–Karp lower bound, this paper provides an O(m + n logn)
algorithm to pre-compute the necessary alternative edges, so that a minimum spanning tree can be immediately
restored in a graph if a vertex is deleted (e.g. in case of node failure in a telecommunication network).

Acknowledgements
While developing his master thesis, Luca Diedolo made some preliminary experiments comparing LB∗HK with
LB∗H , triggering the study presented in this paper. Two anonymous reviewers and the editor provided very useful
and detailed comments and suggestions.

A Union-Find

The Union-Find data-structure is used to represent a partition of a ground set N into subsets that are iteratively
merged until a single set coinciding with the ground set is obtained. The Union-Find data-structure allows to
efficiently perform two operations:

retrieving which is the subset in which a given element k ∈ N is contained;
merging two subsets in a single one.
A list L(k) is associated with each element k ∈ N . Each list has a distinguished element acting as the head

of the list. The Union-Find data-structure also includes two vectors, indicated by Head and Card, with as many
components as the number of elements in the ground set. For each k ∈ N , Head(k) indicates the element that is
the head of the list containing k, while Card(k) indicates the number of elements in L(k). Initially L(k) = {k},
Card(k) = 1 and Head(k) = k forall k ∈ N .

The list to which a given element k ∈ N belongs can be retrieved in O(1), because it is indicated by Head(k).
Hence, the test whether two elements u ∈ N and v ∈ N belong to the same subset or not translates into testing
whether Head(u) = Head(v).

When two distinct lists with heads in u ∈ N and v ∈ N must be merged, the list with smallest cardinality
is appended to the list with largest cardinality. This is done by updating pointers in O(1), but it requires to
also update Head and Card. Assuming L(v) is appended to L(u), the values of Card are updated as follows:

Giovanni Righini 17

Card(u)← Card(u) + Card(v) and Card(v)← 0. Then, Head(k) must be set to u for all elements k ∈ L(v). This
operation takes linear time, for each iteration. However, appending the shortest list to the longest one guarantees
that the value of Card for all elements in the shortest list doubles at least. Hence, no element is subject to
the update operation more than logn times, where n = |N |. Therefore the update operations require at most
O(logn) for each element, i.e. O(n logn) overall.

Procedure Merge is called by PathScan and ProcessApex, when a link is inserted in a local forest. It is
illustrated in Algorithm 12.

Algorithm 12 The procedure that merges two lists in the Union-Find data-structure of a local subgraph G(p).
1: procedure Merge(p, u, v)
2: if Card(p,Head(p, u)) < Card(p,Head(p, v)) then
3: k′ ← v

4: k′′ ← u

5: else
6: k′ ← u

7: k′′ ← v

8: for k ∈ L(p,Head(p, k′′)) do
9: Head(p, k)← Head(p, k′)

10: Card(p,Head(p, k′))← Card(p,Head(p, k′)) + Card(p,Head(p, k′′))
11: Card(p,Head(p, k′′))← 0
12: L(p,Head(p, k′))← L(p,Head(p, k′)) ∪ L(p,Head(p, k′′))

References
1 David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook. The Traveling Salesman Problem: A

Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, 2006.
2 Pascal Benchimol, Jean-Charles Régin, Louis-Martin Rousseau, Michel Rueher, and Willem-Jan van Hoeve.

Improving the Held and Karp Approach with Constraint Programming. In Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2010, volume 6140 of Lecture Notes
in Computer Science, pages 40–44. Springer, 2010.

3 Chandra Chekuri and Kent Quanrud. Approximating the Held-Karp Bound for Metric TSP in Nearly-Linear Time.
In Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science, pages 789–800. IEEE
Computer Society, 2017.

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. MIT
Press, 2009.

5 Gregory Gutin and Abraham P. Punnen, editors. The Traveling Salesman Problem and Its Variations. Springer,
2007.

6 Michael Held and Richard M. Karp. The Traveling-Salesman Problem and Minimum Spanning Trees. Oper. Res.,
18:1138–1162, 1970.

7 Keld Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res.,
126:106–130, 2000.

8 Christine L. Valenzuela and Antonia J. Jones. Estimating the Held-Karp lower bound for the geometric TSP. Eur.
J. Oper. Res., 102:157–175, 1997.

9 Ton Volgenant and Roy Jonker. A branch and bound algorithm for the symmetric traveling salesman problem
based on the 1-tree relaxation. Eur. J. Oper. Res., 9:83–89, 1982.

10 David P. Williamson. Analysis of the Held-Karp lower bound for the asymmetric TSP. Oper. Res. Lett., 12:83–88,
1992.

	Introduction and motivation
	Paper outline

	Overview of the algorithm
	The data-structures
	 The oriented minimum spanning tree
	 Local subgraphs
	 Oriented paths and trees
	 The Tree-Union-Find data-structure

	The algorithm
	 Procedure PathScan and vertical links
	 Procedure ProcessApex and horizontal links

	Computation of the optimal Held–Karp lower bound LBHK*
	Conclusions
	Acknowledgements

	Union-Find

