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Abstract
In this short note, we provide a simple version of an accelerated forward-backward method (a.k.a. Nesterov’s accelerated
proximal gradient method) possibly relying on approximate proximal operators and allowing to exploit strong convexity
of the objective function. The method supports both relative and absolute errors, and its behavior is illustrated on a set
of standard numerical experiments.

Using the same developments, we further provide a version of the accelerated proximal hybrid extragradient method
of [21] possibly exploiting strong convexity of the objective function.
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1 Introduction

In this work, we consider a standard composite convex minimization problem of the form

min
x∈Rd

{F (x) ≡ f(x) + g(x)} , (1)

where f : Rd → R is a L-smooth convex function (with 0 < L <∞), and g : Rd → R ∪ {+∞} is a proper closed
convex function. In addition, we allow either f or g to be possibly µ-strongly convex. In this setting, we propose
an inexact accelerated forward-backward method for solving (1) relying on the access to the gradient of f , and
to an iterative routine for approximating the proximal operator of g.

Relation to previous works

The main algorithms presented in this note were originally presented in [3], along with their worst-case analyses.
It was removed from [3] for exposition and length purposes. The same methods were then re-analyzed and used
by [1] for accelerating higher-order tensor algorithms.

When the proximal operator of g is readily available, the method presented below becomes a variant of
standard accelerated (or fast) forward-backward (or proximal gradient) methods for convex minimization, see
e.g., [5, 24], and the introductory survey by [14].

Purely backward versions (f = 0) emerged earlier from the works of [15] and [21, 30], whereas the first
purely forward version (g = 0) was developed by [22]. The first inexact versions of accelerated forward-backward
methods that we are aware of were presented in [18, 31, 36], whereas versions with relative errors appeared
more recently in [6, 20]. In contrast, our method allows handling different types of error (namely absolute and
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2 Inexact accelerated forward-backward

relative errors of different types), while allowing to exploit strong convexity of f or g—see e.g. [11, 23, 24], for
original analyses in the strongly convex case, when the proximal operator of g is readily available. The same
developments allow obtaining a version of the accelerated hybrid proximal extragradient method (A-HPE)—in
the spirit of [21]—for exploiting strong convexity of the problem at hand.

The notion of an “approximate proximal point” used in this note (see Section 2.2) was used in a few previous
works, starting with the hybrid extragradient method [32, 33]. It was also used for its accelerated version [21] and
in the context of another forward-backward splitting method [20]. In these works, the primal-dual requirement is
presented under a different formulation involving the notion of ε-subdifferentials [7, Section 3] (or ε-enlargement
in the context of monotone operators [8, 9, 10]). Among others, a variant of the hybrid extragradient method
was also studied in [10] under both absolute and relative errors, similar in spirit with the accelerated methods
presented below. A survey on common notions of “approximate proximal point” used in the literature can be
found in [4, Section 2].

Paper organization and contribution

This note is organized as follows. First, we give some basic results and notations in Section 2. We provide the
inexact accelerated forward-backward in Section 3, along with a worst-case analysis, relying on a standard
Lyapunov argument (for which we provide symbolic notebooks, helping the reader reproducing the algrebraic
part of the proof without pain). Numerical experiments illustrating the practical behavior of the method are then
provided in Section 4. After that, Section 5 shows how to slightly modify the proof for obtaining an accelerated
hybrid proximal extragradient method [21], specifically for the case f = 0. We draw some conclusions in Section 6.

Notations

We refer to classical textbooks [16, 26] for standard elements of convex analysis. We use the notation F0,∞(Rd)
to denote the set of closed convex proper functions on Rd. The corresponding subset of closed convex proper
functions that are µ-strongly convex and L-smooth (with 0 ≤ µ < L ≤ ∞) is denoted Fµ,L(Rd). That is,
h ∈ Fµ,L(Rd) if and only if

(µ-strong convexity) ∀ x, y ∈ Rd, sh(x) ∈ ∂h(x), sh(y) ∈ ∂h(y), it holds ‖sh(x)− sh(y)‖ ≥ µ‖x− y‖,
(L-smoothness) ∀ x, y ∈ Rd, sh(x) ∈ ∂h(x), sh(y) ∈ ∂h(y), it holds ‖sh(x)− sh(y)‖ ≤ L‖x− y‖,

where ∂h(x) denotes the subdifferential of h at x ∈ Rd. When h ∈ Fµ,L(Rd) with L <∞, we use h′(x) to denote
the unique element h′(x) ∈ ∂h(x) (i.e. the gradient of h at x).

Codes

For helping the reader reproducing the analytical results (via Mathematica notebooks) as well as numerical
experiments, our code is available at

https://github.com/mathbarre/StronglyConvexForwardBackward.

2 Background results

2.1 Smooth strongly convex functions
We recall some standard inequalities satisfied by smooth convex and strongly convex functions, which we use in
the sequel for exploiting strong convexity and smoothness, see e.g. [23].

Proposition 1 (µ-strong convexity). Let g ∈ Fµ,∞(Rd). For all x, y ∈ Rd and all sg(x) ∈ ∂g(x) it holds that

g(y) ≥ g(x) + 〈sg(x), y − x〉+ µ
2 ‖x− y‖

2.

Proposition 2 (L-smoothness & convexity). Let f ∈ F0,L(Rd) with L < +∞. For all x, y ∈ Rd it holds that

f(y) ≥ f(x) + 〈f ′(x), y − x〉+ 1
2L‖f

′(x)− f ′(y)‖2.

In the sequel, the use of the inequalities provided by Theorem 1 and Theorem 2 are motivated by their
interpolation (or extension) properties; that is, the analyses provided below were obtained following a principled
approach to worst-case analyses of first-order methods, see e.g., [34] or [4] specifically for the cases of methods
relying on approximate proximal operations.

https://github.com/mathbarre/StronglyConvexForwardBackward
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2.2 Proximal operations
The proximal operation is a basic primitive that is widely used in modern optimization methods; it is a
central building blocks in many optimization algorithms, see e.g., [25, 29]. The proximal operator of a function
g ∈ F0,∞(Rd) with step size λ > 0 is defined as

proxλg(z) = argmin
x∈Rd

{
λg(x) + 1

2‖x− z‖
2} , (2)

with z ∈ Rd. When g ∈ F0,∞(Rd), the proximal operation is well defined, and its solution is unique. A
comprehensive list of cases where (2) has an analytical solution is provided in [13]. In other cases, the proximal
operator has to be approximated. For doing that, one can define the following primal and dual problems associated
to the proximal operation

min
x∈Rd

{Φp(x; z) ≡ λg(x) + 1
2‖x− z‖

2}, (P)

max
v∈Rd

{Φd(v; z) ≡ −λg∗(v)− 1
2‖z − λv‖

2 + 1
2‖z‖

2}, (D)

where g∗ ∈ F0,∞(Rd) is the Fenchel conjugate of g. Let us further note that proxλg(z) is the unique solution
to (P), and that proxg∗/λ(z/λ) is the unique solution of (D). In this context, the primal and dual solutions are
linked by the well-known Moreau’s identity proxλg(z) + λ proxg∗/λ (z/λ) = z.

Under relatively weak conditions (such as ri(domg) 6= ∅, see e.g., [26, Corollary 31.2.1]), strong duality holds
between (P) and (D) and hence

min
x∈Rd

Φp(x; z) = max
v∈Rd

Φd(v; z).

Motivated by those elements, we use the quantity

PDλg(x, v; z) = Φp(x; z)− Φd(v; z), (PD)

for quantifying how well (x, v) approximates the pair (proxλg(z),proxg∗/λ(z/λ)), in the sequel.

2.3 A notion of approximate proximal point
In this section, we define the notion of approximate proximal point of g ∈ Fµ,∞(Rd) used throughout the paper
(see Section 1 §“Relation to previous works” for historical references for the case µ = 0). This notion features two
parameters: a tolerance and a lower bound on the strong convexity parameter of g (possibly 0). The estimate of
the strong convexity is used for relating proximal points of g(·) in terms of that of gµ(·) = g(·)− µ

2 ‖·‖
2 ∈ F0,∞(Rd),

and the tolerance is used for quantifying the quality of an approximate solution to the proximal problem on
gµ(·), which simplifies the analyses below. More precisely, for g ∈ Fµ,∞(Rd), it is relatively straightforward to
verify that

proxλg(z) = prox λ
1+λµgµ

(
z

1+λµ

)
,

with gµ(x) = g(x)− µ
2 ‖x‖

2. This observation motivates the introduction of the following inexactness criterion.

Definition 3. Let µ > 0, g ∈ Fµ,∞(Rd), and let λ > 0 be a step size and ε ≥ 0 be a tolerance. For a triplet
(x, v, y) ∈ Rd × Rd × Rd we use the notation

(x, v) ≈ε,µ
(

proxλg(y),prox g∗
λ

( yλ )
)
,

for denoting that

PD λ
1+λµgµ

(
x, v − µx; y

1+λµ

)
≤ ε,

with gµ(x) = g(x)− µ
2 ‖x‖

2 and PD is the primal-dual gap of the proximal problem defined in (PD).

In the following technical lemma, we provide an explicit expression for quantifying the quality of a triplet
(x, v, y) ∈ Rd × Rd × Rd in light of Theorem 3.
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Lemma 4. Let µ ≥ 0, g ∈ Fµ,∞(Rd), and let λ > 0 be a step size and (x, v, z) ∈ Rd × Rd × Rd. The following
equality holds

PD λ
1+λµgµ

(x, v − µx; z
1+λµ ) = 1

2(1+λµ)2 ‖x− z + λv‖2

+ λ
1+λµ

(
g(x)− g(w) + µ

2 ‖x− w‖
2 − 〈x− w, v〉

)
,

(3)

with gµ(·) = g(·)− µ
2 ‖ · ‖

2 and w ∈ Rd satisfying v − µx+ µw ∈ ∂g(w) (i.e., w ∈ ∂g∗µ(v − µx)).

Proof.
PD λ

1+λµgµ
(x, v − µx; z

1+λµ ) = 1
2‖x−

z
1+λµ + λ

1+λµ (v − µx)‖2

+ λ
1+λµ

(
gµ(x) + g∗µ(v − µx)− 〈x, v − µx〉

)
= 1

2(1+λµ)2 ‖x− z + λv‖2

+ λ
1+λµ

(
g(x) + µ

2 ‖x‖
2 + g∗µ(v − µx)− 〈x, v〉

)
.

(4)

In particular

g∗µ(v − µx) = max
y
{〈y, v − µx〉 − g(y) + µ

2 ‖y‖
2},

and by choosing w ∈ Rd such that v − µx+ µw ∈ ∂g(w) we get

g∗µ(v − µx) = 〈w, v − µx〉 − g(w) + µ
2 ‖w‖

2. (5)

Finally, using the expression of g∗µ(v − µx) in (4) leads to the desired results. J

In the next section, we present an inexact accelerated forward-backward method where inexactness in proximal
computations are measured using the primal-dual criterion from Theorem 3.

3 An inexact accelerated forward-backward method

In this section, we provide the main contribution of this work, namely Algorithm 3.1. This method aims at
solving problem (1) when the gradient of f is readily available and the proximal operator of g can be efficiently
approximated within a target precision (e.g., by an iterative method). It further allows to exploit g to be
µ-strongly convex. In the case where f is strongly convex, one can shift this strong convexity to g instead (by
removing the corresponding quadratic of f and adding it to g). Of course, any under-approximation of µ can be
used within the method.

The worst-case analysis is based on a simple Lyapunov (or potential) argument, following the now standard
template for accelerated schemes as in [22], for which surveys are provided in e.g., [2, 38], and [14, Chapter 4].
As a byproduct of the analysis, the method does not require an accurate estimate of the smoothness constant L,
whose estimation is improved on the fly using standard backtracking tricks, similar in spirit with [5, 22].

The algorithm below builds on approximations of the forward-backward operator (with step sizes λk) of
problem (1). More precisely, it relies on primal-dual pairs (xk+1, vk+1) approximating the forward-backward
operator evaluated at some iterates yk, and satisfying

(xk+1, vk+1) ≈εk,µ

(
proxλkg(yk − λkf

′(yk)),prox g∗
λk

(yk−λkf
′(yk)

λk
)
)
,

where εk encodes some approximation level. In this work, this error term is parameterized by three sequences of
nonnegative scalars {σk}k, {ζk}k, {ξk}k that can be chosen by the user for possibly mixing both relative (or
multiplicative) and absolute (or additive) error terms

εk = σ2
k

2(1+λkµ)2 ‖xk+1 − yk‖2 + ζ2
kλ

2
k

2(1+λkµ)2 ‖vk+1 + f ′(yk)‖2 + λkξk
2(1+λkµ)2 ,

where {ξk}k parameterizes the absolute error term, and where {σk}k and {ζk}k parametrize two types of relative
errors. Of course, convergence properties of the algorithm depend on the choice of those sequences of parameters,
as provided in Theorem 8 and Theorem 9 below. Examples of simple rules for {σk}k, {ζk}k, {ξk}k are provided
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in Section 4 (typically, {σk}k, {ζk}k can be chosen constant, whereas {ξk}k should be either identically 0 or
decreasing fast enough).

Before going into the algorithm itself, let us mention that the backtracking line-search strategy (Btr) for
estimating the smoothness constant builds on the condition

f(yk) ≥ f(xk+1) + 〈f ′(xk+1), yk − xk+1〉+ λk
2(1−σ2

k
)‖f
′(yk)− f ′(xk+1)‖2, (Smooth)

where xk’s and yk’s are some iterates. In particular, picking λk ∈ (0, 1−σ2
k

L ] (hence depending on the true
smoothness constant L) guarantees (Smooth) to be satisfied without backtracking, as, when f ∈ F0,L(Rd),
Theorem 2 holds.
I Remark 5 (Related methods). When the objective function is not strongly convex (i.e. µ = 0), the update
rules of Algorithm 3.1 are very similar to those of the accelerated inexact forward-backward methods from [20,
Algorithm 3] (when ζk = 0 and ξk = 0) or [6, Algorithm 2] (when σk = 0 and ξk = 0). Compared to those works
in this setup, Algorithm 3.1 allows using both relative and absolute errors while having a backtracking strategy.
Note also the similarities with some inexact FISTA [31, 36], although these methods do not re-use explicitly the
dual direction vk+1 and focus on absolute error terms (i.e., σk = ζk = 0). Finally, when the computation of the
proximal operator is exact, we recover one of the many variants of an accelerated forward-backward method; see
for example [5, 24, 35]; we refer to [14, Chapter 4] and the references therein for further discussions.

3.1 Algorithm

An inexact accelerated forward-backward method (Algorithm 3.1)
Input:

Objective function: f ∈ F0,L(Rd), g ∈ Fµ,∞(Rd), and µ ≥ 0.
Initial point: x0 ∈ Rd.
Initial step size: λ0 > 0.
Tolerance parameters: sequences {σk}k, {ζk}k with σk, ζk ∈ [0, 1), and {ξk}k with ξk ≥ 0.
Backtracking parameters 0 < α < 1 and β ≥ 1.

Initialization: z0 = x0, A0 = 0.
Run: For k = 0, 1, . . .:

ηk = (1− ζ2
k)λk (6)

Ak+1 = Ak + ηk+2Akµηk+
√
η2
k

+4ηkAk(1+ηkµ)(1+Akµ)
2

yk = xk + (Ak+1−Ak)(Akµ+1)
Ak+1+Ak(2Ak+1−Ak)µ (zk − xk)

εk = σ2
k

2(1+λkµ)2 ‖xk+1 − yk‖2 + ζ2
kλ

2
k

2(1+λkµ)2 ‖vk+1 + f ′(yk)‖2 + λkξk
2(1+λkµ)2

(xk+1, vk+1) ≈εk,µ

(
proxλkg(yk − λkf

′(yk)),prox g∗
λk

(yk−λkf
′(yk)

λk
)
)

[If (Smooth) is not satisfied, set λk ← αλk and go back to step (6)] (Btr)

zk+1 = zk + Ak+1−Ak
1+µAk+1

(µ(xk+1 − zk)− (vk+1 + f ′(yk)))
λk+1 = βλk

Output: xk+1

The following theorem contains the main (Lyapunov-based) ingredient of the worst-case analysis.

Theorem 6. Let f ∈ F0,L(Rd), g ∈ Fµ,∞(Rd), F ≡ f + g, k ≥ 0, parameters σk, ζk ∈ [0, 1), ξk ≥ 0 and some
λk > 0 such that (Smooth) is satisfied. For any xk, zk ∈ Rd, and Ak ≥ 0, it holds that

Ak+1(F (xk+1)− F (x?)) + 1+µAk+1
2 ‖zk+1 − x?‖2 ≤ Ak(F (xk)− F (x?)) + 1+µAk

2 ‖zk − x?‖2 + Ak+1
2 ξk, (7)

with x? ∈ argminx F (x), and where zk+1 and xk+1 are constructed by one iteration of Algorithm 3.1.
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The proof of this Theorem is deferred to Section 3.2. The following (classical) corollary establishes that the
growth rate of the sequence {Ak}k drives the convergence rate of the worst-case guarantee. Those factors Ak+1,
controlling the convergence rate, were greedily chosen (as large as possible) while enforcing (7) to hold.

Corollary 7. Let f ∈ F0,L(Rd), g ∈ Fµ,∞(Rd) and F ≡ f + g. Let x0 ∈ Rd, λ0 be a positive initial step size,
α ∈ (0, 1) and β ≥ 1 be some backtracking parameters, sequences (relative error parameters) {σk}k, {ζk}k,
satisfying σk, ζk ∈ [0, 1) and a sequence (absolute error parameters) {ξk}k with ξk ≥ 0. Let xN ∈ Rd be the
output after N ∈ N∗ iterations of Algorithm 3.1 on F initiated at x0 ∈ Rd, it holds that

F (xN )− F (x?) ≤ 1
2AN ‖x0 − x?‖2 +

N−1∑
i=0

Ai+1
2AN ξi,

where x? ∈ argminx F (x).

Proof. We denote by Φk the quantity (a.k.a., the Lyapunov/potential function)

Φk = Ak(F (xk)− F (x?)) + 1+µAk
2 ‖zk − x?‖2,

for k ≥ 0. Theorem 6 allows nesting the Φk’s together as

ΦN ≤ ΦN−1 + AN
2 ξN−1 ≤ . . . ≤ Φ1 +

N−1∑
i=1

Ai+1
2 ξi ≤ Φ0 +

N−1∑
i=0

Ai+1
2 ξi.

We reach the target conclusion using AN (F (xN )− F (x?)) ≤ ΦN , together with z0 = x0 and A0 = 0. J

Let us note that when µ = 0, we recover a composite version of the A-HPE method [21]. In that case, we
can bound Ak ≥ 1

4

(∑k−1
i=0
√
ηk

)2
≥ ηmin

4 k2, assuming the existence of some ηmin ≤ ηk for all k ≥ 0. Such a
lower bound on ηk exists as soon as the parameters {σk}k, {ζk}k are well chosen (see for example Theorem 8
and Theorem 9 below), and due to the L-smoothness of the function. Similarly, when µ > 0, Ak’s are growing
exponentially as

Ak+1 = Ak + ηk+2Akηkµ+
√

4ηkAk(Akµ+1)(ηkµ+1)+η2
k

2

≥ Ak(1 + ηkµ) +Ak
√
ηkµ(1 + ηkµ)

= Ak/
(

1−
√

ηkµ
1+ηkµ

)
,

with A1 > 0, reaching 1/Ak ≤ ηmin

(
1−

√
ηminµ

1+ηminµ

)k−1
assuming again the existence of some ηmin ≤ ηk for all

k ≥ 0. The following corollaries provide more precise convergence bounds for Algorithm 3.1, by quantifying
the growth rate of the Ak’s, for some particular choices of parameters {σk}k (constant), {ζk}k (constant), and
{ξk}k (parameterized function of k), linking the behavior of the decrease rate of the absolute errors ξk with the
convergence bound.

Corollary 8. Let f ∈ F0,L(Rd), g ∈ Fµ,∞(Rd) and F ≡ f + g. Let x0 ∈ Rd, λ0 be an initial positive step size,
α ∈ (0, 1) and β ≥ 1 be some backtracking parameters, sequences (relative error parameters) σk = σ, ζk = ζ with
σ, ζ ∈ [0, 1) and a sequence (absolute error parameters) ξk = Cρk with C, ρ > 0. Let xN ∈ Rd be the output after
N ∈ N∗ iterations of Algorithm 3.1 on F initiated at x0 ∈ Rd, it holds that

F (xN )−F (x?) ≤ 1
2η

(
1−

√
ηµ

1+ηµ

)N−1
‖x0−x?‖2 +



C

2(1 −
√

ηµ
1+ηµ − ρ)

(
1 −
√

ηµ
1+ηµ

)N
if ρ < 1 −

√
ηµ

1+ηµ ,

1
2
CN

(
1 −
√

ηµ
1+ηµ

)N−1
if ρ = 1 −

√
ηµ

1+ηµ ,
C

2(ρ− 1 +
√

ηµ
1+ηµ )

ρN if ρ > 1 −
√

ηµ
1+ηµ ,

for some η = min
i=0,...,N−1

ηi ≥ ηmin = (1− ζ2) min
(
λ0,

α(1−σ2)
L

)
and where x? ∈ argminx F (x).

Proof. Starting from the conclusion of Theorem 7, we obtain the desired result using classical properties of
geometric sums along with Ak ≤

(
1−

√
ηµ

1+ηµ

)N−k
AN where η = min

i=0,...,N−1
ηi ≥ ηmin. J
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When µ = 0, the proof is still valid, and 1
AN

= O(N−2). In particular, we recover the same rates as those
of [36, Theorem 4.4] (who used the particular choice vk+1 = yk−λkf ′(yk)−xk+1

λk
).

Corollary 9. Let f ∈ F0,L(Rd), g ∈ Fµ,∞(Rd) and F ≡ f + g. Let x0 ∈ Rd, λ0 be an initial positive step size
and sequences (relative error parameters) σk = σ, ζk = ζ with σ, ζ ∈ [0, 1). Let xN ∈ Rd denote the output after
N ∈ N∗ iterations of Algorithm 3.1 on F initiated at x0 ∈ Rd.

We further let α ∈ (0, 1) and β = 1 be the backtracking parameters, and a sequence (absolute error parameters)
ξk = C(k + 1)−q with C, q ≥ 0. It holds that

F (xN )− F (x?) ≤ 2
ηminN2 ‖x0 − x?‖2 +


2C ηmax

ηmin

(
∑∞

k=0
(k+1)2−q)
N2 if q > 3,

2C ηmax
ηmin

(1+ln(N))
N2 if q = 3,

2C ηmax
ηmin

(
1
N2 + 1

(3−q)Nq−1

)
if 1 < q < 3,

with ηmin = (1− ζ2) min(λ0,
α(1−σ2)

L ), ηmax = (1− ζ2) max(λ0,
(1−σ2)
L ) and x? ∈ argminx F (x).

We further let α ∈ (0, 1) and β ≥ 1 be the backtracking parameters, and a sequence ξk = 0 (no absolute error).
It holds that

F (xN )− F (x?) ≤ 2
ηminN2 ‖x0 − x?‖2,

where ηmin = (1− ζ2) min(λ0,
α(1−σ2)

L ) and x? ∈ argminx F (x).

Proof. Starting from the conclusion of Theorem 7, we obtain the desired result in the case β = 1 using
comparisons of sums with integrals along with the bounds ηmin

4 k2 ≤ Ak ≤ ηmaxk
2. In the second case, where

β ≥ 1 and ξk = 0, the target result follows from ηmin
4 k2 ≤ Ak. J

3.2 Proof of Theorem 6
The following proof is presented in a purely algebraic form consisting in a weighted sum of inequalities satisfied
by the functions f and g as well as inexactness requirements. Indeed, it has been obtained from a dual certificate
of a performance estimation problem (see [4, Section 3] for more details on performance estimation in the context
of inexact proximal operations). As mentioned in Section 1, the algebraic equivalences stated below can be
verified either by hand or with help of Mathematica notebooks (see Section 1, §“Codes”).

Proof. Let wk+1 ∈ Rd such that vk+1 − µxk+1 + µwk+1 ∈ ∂g(wk+1). Using (3), this leads to

PD λk
1+µλk

(
g(·)−µ2 ‖·‖

2
)(xk+1, vk+1 − µxk+1; yk−λkf

′(yk)
1+µλk ) = 1

2(1+λkµ)2 ‖xk+1 − yk + λk(vk+1 + f ′(yk))‖2

+ λk
1+λkµ

(
g(xk+1)− g(wk+1)

+ µ
2 ‖xk+1 − wk+1‖2 − 〈xk+1 − wk+1, vk+1〉

)
.

The proof consists in performing a weighted sum of the following inequalities:
strong convexity of g between wk+1 and x? with weight ν1 = Ak+1 −Ak

g(x?) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, x? − wk+1〉+ µ
2 ‖wk+1 − x?‖2,

strong convexity of g between wk+1 and xk with weight ν2 = Ak

g(xk) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, xk − wk+1〉+ µ
2 ‖wk+1 − xk‖2,

strong convexity of g between wk+1 and xk+1 with weight ν3 = Ak+1λkµ

g(xk+1) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, xk+1 − wk+1〉+ µ
2 ‖wk+1 − xk+1‖2,

convexity of f between yk and x? with weight ν4 = Ak+1 −Ak

f(x?) ≥ f(yk) + 〈f ′(yk), x? − yk〉,
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convexity of f between yk and xk with weight ν5 = Ak

f(xk) ≥ f(yk) + 〈f ′(yk), xk − yk〉,

convexity and 1−σ2
k

λk
-smoothness of f between xk+1 and yk required by (Smooth) with weight ν6 = Ak+1

f(yk) ≥ f(xk+1) + 〈f ′(xk+1), yk − xk+1〉+ λk
2(1−σ2

k
)‖f
′(yk)− f ′(xk+1)‖2,

approximation requirement on xk+1 with weight ν7 = Ak+1
λk

σ2
k

2 ‖xk+1 − yk‖2 + ζ2
kλ

2
k

2 ‖vk+1 + f ′(yk)‖2 + λk
2 ξk ≥λk(1 + λkµ)

(
g(xk+1)− g(wk+1)

+ µ
2 ‖xk+1 − wk+1‖2 − 〈xk+1 − wk+1, vk+1〉

)
+ 1

2‖xk+1 − yk + λk(vk+1 + f ′(yk))‖2.

The weighted sum can be written as

0 ≥ ν1
[
g(wk+1)− g(x?) + 〈vk+1 − µxk+1 + µwk+1, x? − wk+1〉+ µ

2 ‖wk+1 − x?‖2]
+ ν2

[
g(wk+1)− g(xk) + 〈vk+1 − µxk+1 + µwk+1, xk − wk+1〉+ µ

2 ‖wk+1 − xk‖2]
+ ν3

[
g(wk+1)− g(xk+1) + 〈vk+1 − µxk+1 + µwk+1, xk+1 − wk+1〉+ µ

2 ‖wk+1 − xk+1‖2]
+ ν4 [f(yk)− f(x?) + 〈f ′(yk), x? − yk〉] + ν5 [f(yk)− f(xk) + 〈f ′(yk), xk − yk〉]

+ ν6

[
f(xk+1)− f(yk) + 〈f ′(xk+1), yk − xk+1〉+ λk

2(1−σ2
k

)‖f
′(yk)− f ′(xk+1)‖2

]
+ ν7

[
λk(1 + λkµ)

(
g(xk+1)− g(wk+1) + µ

2 ‖xk+1 − wk+1‖2 − 〈xk+1 − wk+1, vk+1〉
)

+ 1
2‖xk+1 − yk + λk(vk+1 + f ′(yk))‖2 − σ2

k

2 ‖xk+1 − yk‖2 − ζ2
kλ

2
k

2 ‖vk+1 + f ′(yk)‖2 − λk
2 ξk

]
.

(8)

Substituting yk and zk+1 in the weighted sum, that is

yk = xk + (Ak+1−Ak)(1+µAk)
Ak+1+µAk(2Ak+1−Ak) (zk − xk)

zk+1 = zk + Ak+1−Ak
1+µAk+1

(µ(xk+1 − zk)− (vk+1 + f ′(yk))) ,

(8) is equivalently reformulated as

Ak+1(F (xk+1)− F (x?)) + 1+µAk+1
2 ‖zk+1 − x?‖2

≤ Ak(F (xk)− F (x?)) + 1+µAk
2 ‖zk − x?‖2 + Ak+1

2 ξk

− Ak(Ak+1−Ak)µ(1+Akµ)
2(Ak+1+Ak(2Ak+1−Ak)µ)‖xk − zk‖

2

− Ak+1λk
2(1−σ2

k
)‖f
′(xk+1)− f ′(yk) + (1− σ2

k)yk−xk+1
λk

‖2

− µ(Ak+1+Ak(2Ak+1−Ak)µ)
2(1+Ak+1µ) ‖xk+1 − yk + (Ak+1−Ak)2

Ak+1+Ak(2Ak+1−Ak)µ (vk+1 + f ′(yk))‖2

+Ak+1
Ak+1(Ak+1−ηk)−Ak(1+ηkµ)(2Ak+1−Ak)

2(Ak+1+Ak(2Ak+1−Ak)µ) ‖vk+1 + f ′(yk)‖2

≤ Ak(F (xk)− F (x?)) + 1+µAk
2 ‖zk − x?‖2 + Ak+1

2 ξk

+Ak+1
Ak+1(Ak+1−ηk)−Ak(1+ηkµ)(2Ak+1−Ak)

2(Ak+1+Ak(2Ak+1−Ak)µ) ‖vk+1 + f ′(yk)‖2

= Ak(F (xk)− F (x?)) + 1+µAk
2 ‖zk − x?‖2 + Ak+1

2 ξk,

where the inequality in the second to last line comes from the fact that factors in front of three squared Euclidean
norms are nonpositive. In addition, the last equality follows from the particular choice of Ak+1 satisfies

Ak+1(Ak+1 − ηk)−Ak(1 + ηkµ)(2Ak+1 −Ak) = 0,

which implies that the factors in front of the last squared Euclidean norm vanishes. J
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4 Numerical examples

In this section, we present a few numerical experiments illustrating the behavior of the accelerated inexact
forward backward method (Algorithm 3.1) on two convex problems. More precisely, we applied the method to a
factorization problem and to a total variation problem.

In both cases, we use a Tikhonov regularization, improving the conditioning and rendering the problems
strongly convex, and illustrate the numerical performances of the algorithm with different tunings, including in
the purely relative (ξk = 0) and absolute accuracy (σk = ζk = 0) setups, as well as the influence of the knowledge
of strong convexity parameter.

4.1 Factorization problem
Our first numerical experiment is a CUR-like factorization problem, introduced in [19]. It consists, given a matrix
W ∈ Rm×p, in solving the minimization problem

min
X

F (X) ≡ 1
2‖W −WXW‖2

F︸ ︷︷ ︸
f(X)

+λrow

nr∑
i=1
‖Xi‖2 + λcol

nc∑
j=1
‖Xj‖2 + µreg

2 ‖X‖
2
F︸ ︷︷ ︸

g(X)

,

where ‖ · ‖F is the Frobenius norm, and where Xi and Xj respectively denote the ith row and the jth column of
the matrix X. This problem has already been used in [31] for illustrating convergence guarantees of an inexact
accelerated proximal gradient method with absolute errors. As in [31], we use an inexact version of the proximal
operator of the regularization part, which we solve via a dual block coordinate ascent method [17] (i.e., we solve
the dual of the proximal problem). Our implementation (see link in §Codes from Section 1) is based on that
of [31], and our experiments are done on the “a1a” dataset from the LIBSVM library [12]. The corresponding
matrix W is normalized for having zero mean and unit norm. We also impose λcol =

√
p
mλrow for having a similar

scaling for the row and column regularization parameters. The choice of the error criteria and regularization
parameters is detailed in Fig. 1 where we plot gaps between the objective function values at the iterates of
Algorithm 3.1 and the optimal objective value versus the number of iteration of Algorithm 3.1 (left) and versus
the total number of dual block coordinate ascent iterations (right).

4.2 Total variation regularization
In this section, we compare the behaviors of the accelerated inexact forward backward method (Algorithm 3.1)
with different tunings, on the classical problem of deblurring through total variation regularization [27, 28, 37].
Given a blurred image Y ∈ Rn×n and a blurring operator A, the problem consists in solving

min
X

F (X) ≡ 1
2‖AX − Y ‖

2
F︸ ︷︷ ︸

f(X)

+λreg

n∑
i,j=0

‖(∇X)i,j‖2 + µreg
2 ‖X‖

2
F︸ ︷︷ ︸

g(X)

,

where ∇ is the discrete gradient of an image, see e.g., [11, Equation (2.4)]. One way of dealing with this
problem is to approximate the proximal operator of the discrete total variation plus the Tikhonov regularization.
As in [20, 36], we apply FISTA [5] on the dual of the proximal subproblem (which is provided e.g., in [11,
Example 3.1]), which we use in the accelerated inexact forward-backward method.

In the experiments Y is the popular 256 × 256 greyscale boat image (see e.g., http://sipi.usc.edu/
database/). We blur Y via a 5 × 5 box blur kernel A, and add a Gaussian noise of standard deviation 0.01
times the mean of the blurred image and zero mean to the picture. Some results are detailed in Fig. 2 where we
plot gaps between the objective function values at the iterates of Algorithm 3.1 and the optimal objective value
versus the number of iterations of Algorithm 3.1 (left) and versus the total number iterations of FISTA on the
dual subproblem (right).

http://sipi.usc.edu/database/
http://sipi.usc.edu/database/
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Figure 1 Algorithm 3.1 on CUR factorization. The initial step size is set to λ0 = 1−σ2
0

L
, initial L to

‖W‖4, λrow = λcol
√
m/p = 2.10−3 (∼ 30% nonzero coefficients in the solution) and µreg = 2.10−3L.

Top: σk = 0.8, ζk = 0 and ξk = 0. Bottom: accelerated inexact forward-backward with µ = µreg and no
backtracking. When backtracking is used, α is set to 1

2 and β to 1.1. “Total iterations” refers to total
the number of block coordinate ascent iterations used in the subroutine that computes the proximal
steps approximately. F? is approximated by the smallest objective values encountered in 2.104 total
iterations of block coordinate ascent.
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forward-backward with µ = µreg and backtracking. When backtracking is used, α is set to 1

2 and β to 1.1.
“Total iterations” refers to total the number of FISTA iterations used in the subroutine that computes
the proximal steps approximately. F? is approximated by the smallest objective values encountered in
2.104 total FISTA iterations.
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5 An accelerated hybrid proximal extragradient method

In this section, we provide an improved analysis for the specific case f = 0 (no smooth convex term in (1)). This
type of methods is often used as a globalization strategy for higher-order methods, see [21]. The version presented
in this section allows exploiting the possible strong convexity of the objective, which was not incorporated in
previous versions of the method, to the best of our knowledge.

5.1 Algorithm

An accelerated hybrid proximal extragradient method (Algorithm 5.1)
Input:

Objective function: g ∈ Fµ,∞(Rd).
Initial point: x0 ∈ Rd.
Step sizes: {λk}k with λk > 0.
Tolerance parameters: sequence {σk}k with σk ∈ [0, 1].

Initialization: z0 = x0, A0 = 0.
Run: For k = 0, 1, . . .:

Ak+1 = Ak + (2(1− σk) + λkµ)λk
1+2Akµ+

√
1+4Ak(1+Akµ)

(1+λkµ)2−σk(σk+λkµ)
(2(1−σk)+λkµ)λk

2(1−σ2
k

+λkµσk)

yk = xk + (Ak+1−Ak)(1+µAk)
Ak+1+µAk(2Ak+1−Ak) (zk − xk)

εk = σ2
k

2(1+λkµ)2 ‖xk+1 − yk‖2

(xk+1, vk+1) ≈εk,µ
(

proxλkg(yk),proxg∗/λk( ykλk )
)

zk+1 = zk + Ak+1−Ak
1+µAk+1

(µ(xk+1 − zk)− vk+1)

Output: xk+1

When µ = 0 and σk is fixed, this method actually reduces to the optimized relatively inexact proximal point
algorithm from [4, (ORIPPA)]. In this case, the growth rate of the sequence {Ak}k is essentially

Ak ≥ 1
4

(
k−1∑
i=0

√
2λi

(1+σi)

)2

≥ O(k2) for k ≥ 1,

when the parameters {λk}k, {σk}k are well chosen (e.g., constant parameters). When µ > 0, the sequence {Ak}k
grows as

Ak+1 ≥ Ak

(
1 + 2(1−σk)+λkµ

1−σ2
k

+λkµσk

(
λkµ+

√
λkµ

(1+λkµ)2−σk(σk+λkµ)
(2(1−σk)+λkµ)

))

= Ak

(
(1+λkµ)2−σk(σk+λkµ)+

√
λkµ(2(1−σk)+λkµ)((1+λkµ)2−σk(σk+λkµ))

1−σ2
k

+λkµσk

)
= Ak

(
(1+λkµ)2−σk(σk+λkµ)−λkµ(2(1−σk)+λkµ)

1−σ2
k

+λkµσk

)/(
1−

√
λkµ(2(1−σk)+λkµ)

(1+λkµ)2−σk(σk+λkµ)

)
= Ak

/(
1−

√
λkµ(2(1−σk)+λkµ)

(1+λkµ)2−σk(σk+λkµ)

)
,

with A1 = λ0
2(1−σ0)+λ0µ

(1−σ2
0+λ0µσ0) ≥ λ0. In particular we recover the rate of the inexact accelerated forward-backward

method when σk = 1. In addition, we notice that

1−
√

λkµ(2+λkµ−2σk)
(1+λkµ)2−σk(σk+λkµ) ∼ 1−

√
2

1+σk λkµ,

when λkµ� 0.
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Theorem 10. Let g ∈ Fµ,∞(Rd), k ≥ 0, a parameter σk ∈ [0, 1] and some λk > 0. For any xk, zk ∈ Rd and
Ak ≥ 0, it holds that

Ak+1(g(xk+1)− g(x?)) + 1+µAk+1
2 ‖zk+1 − x?‖2 ≤ Ak(g(xk)− g(x?)) + 1+µAk

2 ‖zk − x?‖2,

with x? ∈ argminx g(x), and where zk+1, xk+1 are constructed by one iteration of Algorithm 5.1.

Proof. The proof of this theorem is deferred to Section 5.2 J

Just as for the its forward-backward version, one can obtain a final worst-case guarantee driven by the growth
rate of the sequence {Ak}k.

Corollary 11. Let g ∈ Fµ,∞(Rd), {λk}k be a sequence of positive parameters, and a sequence (relative error
parameters) {σk}k satisfying σk ∈ [0, 1]. Let xN ∈ Rd be the output after N ∈ N∗ iterations of Algorithm 5.1 on
g initiated at x0 ∈ Rd, it holds that

g(xN )− g(x?) ≤ 1
2AN ‖x0 − x?‖2,

where x? ∈ argminx g(x).

Proof. The proof follows from the same lines as that of Theorem 7, using Theorem 10 instead of Theorem 6. J

5.2 Proof of Theorem 10
The proof follows the same structure as that of in Section 3.2, and simply consists in reformulating a weighted
sum of inequalities.

Proof. First we consider σk ∈ (0, 1] as the case σk = 0 requires a particular treatment. Let wk+1 ∈ Rd such that
vk+1 − µxk+1 + µwk+1 ∈ ∂g(wk+1). Using (3), this leads to

PD λk
1+µλk

(
g(·)−µ2 ‖·‖

2
)(xk+1, vk+1 − µxk+1; yk

1+µλk ) = 1
2(1+λkµ)2 ‖xk+1 − yk + λkvk+1‖2

+ λk
1+λkµ

(
g(xk+1)− g(wk+1) + µ

2 ‖xk+1 − wk+1‖2

− 〈xk+1 − wk+1, vk+1〉
)
.

The proof consists in performing a weighted sum of the following inequalities:
strong convexity between wk+1 and x? with weight ν1 = Ak+1 −Ak

g(x?) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, x? − wk+1〉+ µ
2 ‖wk+1 − x?‖2,

strong convexity between wk+1 and xk with weight ν2 = Ak

g(xk) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, xk − wk+1〉+ µ
2 ‖wk+1 − xk‖2,

strong convexity between wk+1 and xk+1 with weight ν3 = Ak+1(1−σk+λkµ)
σk

g(xk+1) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, xk+1 − wk+1〉+ µ
2 ‖wk+1 − xk+1‖2,

approximation requirement on xk+1 with weight ν4 = Ak+1
λkσk

σ2
k

2 ‖xk+1 − yk‖2 ≥ 1
2‖xk+1 − yk + λkvk+1‖2 + λk(1 + λkµ)

(
g(xk+1)− g(wk+1)

+ µ
2 ‖xk+1 − wk+1‖2 − 〈xk+1 − wk+1, vk+1〉

)
.

Substituting yk and zk+1 in the weighted sum, that is

yk = xk + (Ak+1−Ak)(1+µAk)
Ak+1+µAk(2Ak+1−Ak) (zk − xk)

zk+1 = zk + Ak+1−Ak
1+µAk+1

(µ(xk+1 − zk)− vk+1) ,
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the weighted sum is equivalently reformulated as

Ak+1(g(xk+1)− g(x?)) + 1+µAk+1
2 ‖zk+1 − x?‖2

≤ Ak(g(xk)− g(x?)) + 1+µAk
2 ‖zk − x?‖2

− Ak(Ak+1−Ak)µ(1+Akµ)
2(Ak+1+Ak(2Ak+1−Ak)µ)‖xk − zk‖

2

− λk
2

(
λkµ(Ak+1+Ak(2Ak+1−Ak)µ)

1+Ak+1µ

)
‖yk−xk+1

λk
− µ(A2

k+1+A2
kσk)+Ak+1(1−σk−2Akµσk)

Ak+1(1+Ak+1µ)(1−σ2
k

)+λkµσk(Ak+1+Ak(2Ak+1−Ak)µ)vk+1‖2

− λk(1−σ2
k)Ak+1

2σk ‖yk−xk+1
λk

− µ(A2
k+1+A2

kσk)+Ak+1(1−σk−2Akµσk)
Ak+1(1+Ak+1µ)(1−σ2

k
)+λkµσk(Ak+1+Ak(2Ak+1−Ak)µ)vk+1‖2

+ Ak+1((2AkAk+1−A2
k)(1−σ2

k+λ2
kµ

2+λkµ(2−σk))−A2
k+1(1−σ2

k+λkµσk)+Ak+1λk(2(1−σk)+λkµ))
2(A2

k
λkµ2σk−A2

k+1µ(1−σ2
k

)−Ak+1(1−σ2
k

+λkµσk(1+2Akµ))) ‖vk+1‖2

≤ Ak(g(xk)− g(x?)) + 1+µAk
2 ‖zk − x?‖2

+ Ak+1((2AkAk+1−A2
k)(1−σ2

k+λ2
kµ

2+λkµ(2−σk))−A2
k+1(1−σ2

k+λkµσk)+Ak+1λk(2(1−σk)+λkµ))
2(A2

k
λkµ2σk−A2

k+1µ(1−σ2
k

)−Ak+1(1−σ2
k

+λkµσk(1+2Akµ))) ‖vk+1‖2

= Ak(g(xk)− g(x?)) + 1+µAk
2 ‖zk − x?‖2,

where the inequality in the second to last line comes from the fact that factors in front of squared Euclidean
norms are nonpositive, and the last equality from the fact that Ak+1 is chosen such that it satisfies

(2AkAk+1 −A2
k)(1− σ2

k + λ2
kµ

2 + λkµ(2− σk))−A2
k+1(1− σ2

k + λkµσk) +Ak+1λk(2(1− σk) + λkµ) = 0.

Note that the intermediary expressions largely simplifies when choosing this Ak+1, as the last term disappears,
and the two other squared Euclidean norms become (up to nonpositive multiplicative factors) ‖xk − zk‖2 and
‖yk−xk+1

λk
− 1−σk+λkµ

1−σ2
k

+λkµvk+1‖2.
For the case σk = 0 (i.e., exact proximal computations) vk+1 ∈ ∂g(xk+1) and we proceed as previously by

performing the following weighted sum of inequalities:
strong convexity between xk+1 and x? with weight ν1 = Ak+1 −Ak

g(x?) ≥ g(xk+1) + 〈vk+1, x? − xk+1〉+ µ
2 ‖xk+1 − x?‖2,

strong convexity between xk+1 and xk with weight ν2 = Ak

g(xk) ≥ g(xk+1) + 〈vk+1, xk − xk+1〉+ µ
2 ‖xk+1 − xk‖2.

Substituting yk, xk+1 and zk in the weighted sum, that is

yk = xk + (Ak+1−Ak)(1+µAk)
Ak+1+µAk(2Ak+1−Ak) (zk − xk)

xk+1 = yk − λkvk+1

zk+1 = zk + Ak+1−Ak
1+µAk+1

(µ(xk+1 − zk)− vk+1) ,

the weighted sum is equivalently reformulated as

Ak+1(g(xk+1)− g(x?)) + 1+µAk+1
2 ‖zk+1 − x?‖2

≤ Ak(g(xk)− g(x?)) + 1+µAk
2 ‖zk − x?‖2 + Ak+1(Ak+1−λk(2+λkµ))−Ak(2Ak+1−Ak)(1+λkµ)2

2(1+Ak+1µ) ‖vk+1‖2

− µAk(Ak+1−Ak)(1+Akµ)
2(Ak+1+Ak(2Ak+1−Ak)µ)‖xk − zk‖

2

≤ Ak(g(xk)− g(x?)) + 1+µAk
2 ‖zk − x?‖2 + Ak+1(Ak+1−λk(2+λkµ))−Ak(2Ak+1−Ak)(1+λkµ)2

2(1+Ak+1µ) ‖vk+1‖2

= Ak(g(xk)− g(x?)) + 1+µAk
2 ‖zk − x?‖2,

where the inequality in the second to last line comes from the fact that factor in front of squared Euclidean
norm is nonpositive, and the last equality from the fact that Ak+1 is chosen such that it satisfies

Ak+1(Ak+1 − λk(2 + λkµ))−Ak(2Ak+1 −Ak)(1 + λkµ)2 = 0,

when σk = 0. J
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6 Conclusion

In this note, we proposed an inexact accelerated forward-backward method for solving composite convex
minimization problems, along with some worst-case guarantees. The method supports inexact evaluations of
the proximal subproblems, backtracking line-search on the smoothness parameter, and allows exploiting the
possible strong convexity of one of the component in the objective function. The analysis relies on a now standard
Lyapunov argument of the same type as that of [22], and the numerical behavior is illustrated on a factorization
and a total variation problem.

We further provide a version of the hybrid proximal extragradient method [21] allowing to exploit strong
convexity of the objective.
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