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Abstract
The conditional gradient method (CGM) is widely used in large-scale sparse convex optimization, having a low per
iteration computational cost for structured sparse regularizers and a greedy approach for collecting nonzeros. We explore
the sparsity acquiring properties of a general penalized CGM (P-CGM) for convex regularizers and a reweighted
penalized CGM (RP-CGM) for nonconvex regularizers, replacing the usual convex constraints with gauge-inspired
penalties. This generalization does not increase the per-iteration complexity noticeably. Without assuming bounded
iterates or using line search, we show O(1/t) convergence of the gap of each subproblem, which measures distance to a
stationary point. We couple this with a screening rule which is safe in the convex case, converging to the true support at
a rate O(1/(δ2)) where δ ≥ 0 measures how close the problem is to degeneracy. In the nonconvex case the screening rule
converges to the true support in a finite number of iterations, but is not necessarily safe in the intermediate iterates. In
our experiments, we verify the consistency of the method and adjust the aggressiveness of the screening rule by tuning
the concavity of the regularizer.
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1 Introduction

Conditional gradient methods (CGMs) are used in constrained optimization to quickly arrive at sparse solutions
of large-scale optimization problems. In this paper, we generalize their applicability to nonconvex penalized
(unconstrained) problems and investigate safe screening methods to obtain sparse supports in finite time. We
describe these problems as

minimize
x∈Rd

f(x) + φ(rP(x)), (1)

where f : Rd → R is a convex loss function with an L-Lipschitz continuous gradient, φ : R+ → R is a strictly
convex monotonically increasing function, and rP : Rd → R+ a nonconvex variant of a gauge function, defined
as the solution to

rP(x) = min
cp≥0

∑
p∈P0

γ(cp)p :
∑
p∈P0

cpp = x

 (2)

for some concave monotonically increasing function γ : R+ → R+. Here, P0 is a finite collection of vectors in
Rd. In the usual nonzero sparsity case, this penalty reduces to well-studied nonconvex penalties like SCAD,
LSP, or p-“norms” for 0 < p < 1. Problems of this form arise in machine learning, compressed sensing, low-rank
matrix factorization, etc., and are often observed in practice to be more effective sparsifiers than their convex
relaxations [17].
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2 Screening for a Reweighted Penalized Conditional Gradient Method

In particular, we solve (1) using the following iteration scheme

s(t) = argmin
s∈Rd

∇f(x(t))T s+ h(t)(s), (Min-Maj)

x(t+1) = (1− θ(t))x(t) + θ(t)s(t), (Merge)

where h(t)(s) is a local convexification of φ(rP(s)) at x(t). We call this the reweighted penalized conditional
gradient method (RP-CGM), as it resembles both the conditional gradient method (CGM) in sparse convex
optimization and reweighting schemes in majorization-minorization methods for nonconvex optimization.

I Example 1. The `1 norm is formed by picking P0 = {±e1, . . . ,±ed} the signed unit bases, and γ(ξ) = ξ. Then
the solution to (2) is always unique and can be expressed in closed form as rP(x) = ‖x‖1. Picking instead a
concave penalty γ(ξ) = 2

√
ξ leads to the variation rP(x) = 2

∑
i

√
|xi| the “half norm”. Similar transformations

also lead to the smoothed capped absolute deviation (SCAD) penalty, minimum concave penalty (MCP), etc.
(See Table 1.)

By using a generalized convex aggregate penalty φ, we can sweep the space between constrained and
unconstrained problems, via the penalty’s tunable curvature: maximum curvature reduces to the usual constrained
problem, and minimum curvature to the usual LASSO penalty problem. The addition of the nonconvex elementwise
term γ strengthens the sparsifying behavior. However, because of the sometimes erratic way that the conditional
gradient method picks step directions, simple implementations of these features easily lead to divergence.
Therefore, a main contribution of this work is to identify carefully the conditions on φ and γ such that these two
modified CGMs perform optimally.

The other main contribution of this work concerns safe screening, in which the variable search space is
reduced dynamically by identifying which components will safely not appear in the converged solution. For
example, in nonzero sparsity, we identify early on the indices i in which we are guaranteed that x∗i = 0, in
hopes of prematurely estimating the solution sparsity pattern. This technique is intended to reduce memory and
computational cost.

1.1 Related work
1.1.1 Conditional gradient method
When h(s) = ιP(s) the indicator for s in P, the proposed method is the conditional gradient method (CGM)
[24, 29]. Also called the Frank-Wolfe method, it has been studied since the 50s and was revitalized recently [39]
for its success at quickly estimating solutions to sparse optimization problems. Because this foundational method
serves as a baseline, we will refer to it as the “vanilla CGM”.

This method is particularly useful when the computation of the supporting hyperplane in the (Min-Maj) step
is cheap (e.g., when P is the unit ball of the `1-norm or a group norm). Much work has come from expanding
its use to general (atomic) norms [20, 38, 39, 62] with many variations such as backward steps [42, 59] and
fully-corrective steps [65]. Many connections between the CGM and existing methods have also been discovered,
such as to mirror descent [2], cutting plane method [72], and greedy coordinate-wise methods [20]. In its simplest
version (with no away-steps, line search, or strongly convex assumptions on f or P) the minimum duality gap in
CGM converges at rate O(1/t) [24].

1.1.2 Convex gauge function
When γ(cp) = cp, we define κP(x) := rP(x), which reduces to the usual convex gauge function for the closed
convex set P [30, 60]. Gauge functions can be seen as generalized versions of the `1-norm, which is a convex
promoter of nonzero vector sparsity, and include penalties like the total variation (TV) norm, nuclear norm,
OWL norm [71], OSCAR norm [6], and general conic constraints. Several works have looked at optimization
over general gauges [30, 32] and in particular for sparse optimization [15, 39].

1.1.3 Penalized CGM
When h(t)(s) is a convex penalty, we refer to the proposed method as the penalized CGM (P-CGM). Compared to
CGM, P-CGM has been much less studied [36, 50, 69], and has appeared under different names, like regularized
coordinate minimization [23]. An O(1/t) convergence rate has been shown for specific smooth functions [50], with
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bounded assumptions on iterates [2], or with improvement steps to ensure boundedness of sublevel sets [36, 69].
When f is quadratic and for a special form of φ, the P-CGM can be shown to be equivalent to a form of the
iterative shrinkage method, and under proper problem conditioning, has linear convergence [9, 10].

1.1.4 Reweighted methods for nonconvex minimization
Our main algorithmic novelty is to solve a sequence of reweighted penalized CGM (RP-CGM) iterations in
order to accommodate nonlinear γ, which appear in nonconvex penalties like SCAD or MCP penalties in
difference-of-convex or majorization-minimization methods. This results in a nonconvex penalty h(x), which in
practice have been shown to have superior sensing properties [17, 21, 26, 33, 48, 56, 67, 68]. We leverage these
observations to improve the screening properties of RP-CGM; by increasing the concavity of γ, we can create an
aggressive support recovery method based on an easily computable duality-gap-like residual.

1.1.5 Applications
A main use case of CGMs is in finding generalized sparse solutions to convex losses [15, 39], where the `1-norm
penalty, which promotes element-wise sparsity [13, 14, 22, 63], is generalized to gauge functions that promote
sparsity with respect to “atoms”, or low dimensional facets of a convex set. This generalizes sparse optimization to
applications such as low-rank matrix optimization [31, 69] and grouped feature extraction [6, 64, 71]. Additionally,
these atoms may be feasible solutions to combinatorial problems, such as in submodular optimization [1] and
object tracking [16]. CGM has also been applied to a variety of machine learning tasks, such as graphical
models [41], multitask learning [61], SVMs [43], particle filtering [44], and deep learning [5, 57].

1.1.6 Safe screening
A screening rule returns an estimate of the support of x∗ given a noisy approximation x. The screening rule
is safe if there are no false positives (and called sure if there are no false negatives). Safe screening rules for
LASSO were first proposed by [25], and have since been extended to a number of smooth losses and generalized
penalties [7, 28, 46, 49, 51, 66]. An interesting related work is the “stingy coordinate descent” method [40]
for LASSO, which optimizes the sparse regularized problem in a CGM-like manner, but uses screening to
dynamically skip steps; this kind of method can be extended to P-CGM as well for generalized atoms. In
nonconvex optimization, support recovery is discussed by [12] for handling nonlinear constraints which are
iteratively linearized, and screening rules by [58] are proposed for a reweighted proximal gradient method.

1.2 Contributions and outline
We analyze the support recovery and convergence properties of P-CGM and RP-CGM on (1). We assume that
the loss function f is L-smooth, the function φ grows at least asymptotically quadratically, the function γ has
slope bounded away from 0 and +∞, and the set P0 is either finite or a union of a finite set and a nonoverlapping
cone. We give three main contributions.

Under mild assumptions the RP-CGM converges to a stationary point. In particular, without boundedness
assumptions on iterates, using the deterministic step size schedule of θ(t) = 2/(1 + t), the function value error
and gap-like residual of RP-CGM converge as O(1/t).
We offer an online gap-based screening rule, which at each iteration removes some of the non-support atoms
of the true solution x∗. This method is safe for convex penalties and a useful heuristic for nonconvex penalties;
for all penalties it converges in finite time to the true support. Having this information can improve caching
for improving subproblem efficiency, and can be used in two-stage methods if the method is ended early.
In general, CGM without line search or away steps does not guarantee finite-time support recovery. We
thus give a finite-time support identification rate of O(1/δ2) on the post-screened atoms, where δ is a
problem-dependent conditioning parameter that measures its distance to degeneracy.

We present the RP-CGM in three stages, with increasing complexity. In Section 2 we consider the nonconvex
element-wise penalty, giving the key intuition behind the general method, with simple proofs and analysis. In
Section 3 we consider the generalized convex gauge penalized problem, using P-CGM, and show how to handle
simple recession cones in P . Finally, in Section 4, we introduce reweighting of the gauge penalties, and give fully
general convergence results and screening rules. Experimental results suggest promising method behavior in
Section 5.
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2 Reweighted Penalized CGM for simple sparse recovery

In this section, we introduce the RP-CGM over problems intending to regularize for nonzero elementwise sparsity.
The goal is to present a simple implementation of the full method, to clearly describe the implementation
and screening steps, and give intuition to its analysis. Later, we will expand the analysis for more generalized
problems.

We begin by considering the optimization problem

minimize
x∈Rd

F (x) := f(x) + φ(r(x))︸ ︷︷ ︸
h(x)

, r(x) =
d∑
i=1

γ(|xi|). (3)

This is the simplification of (1) with r := rP and P0 = {±e1, . . . ,±ed} the signed unit basis. The more general
case of the rP gauge-like penalty follows a similar analysis to what is presented in this section, and can be viewed
intuitively as sparsity in a preimage space.

2.1 Reweighted penalized CGM
Inspired by methods in majorization-minimization and difference-of-convex literature, we propose the RP-CGM,
which at each iteration takes a penalized conditional gradient step over the following convex proxy problem

min
x∈Rd

F (x;x(t)) := f(x) + φ
(
r(x(t))− r(x(t);x(t)) + r(x;x(t))

)
, (4)

where r(x;x) :=
∑
i γ
′(|xi|)|xi| is the linearized function of r with reference point x. We summarize the linearized

function in terms of a slope and offset

wi = γ′(|x(t)
i |), r0 = r(x(t))− r(x(t), x(t)).

The RP-CGM on (3) runs by repeatedly iterating

s(t) = argmin
s∈Rd

∇f(x)T s+ φ

(
r0 +

∑
i

wi|si|
)
, (5)

x(t+1) = x(t) + θ(t)(s(t) − x(t)), (6)

for some predetermined decaying step size sequence θ(t) = O(1/t). We decompose step (5) as follows. First,
assigning the reweighted variables

ui = siwi, vi = −∇f(x)i/wi; (7)

then (5) is equivalently expressed as

u = argmax
u∈Rd

vTu− φ(r0 + ‖u‖1), (8)

which incidentally is also the conjugate function of g(u) = φ(r0 + ‖u‖1). Now, we further simplify the task by
dividing u into a direction and magnitude

û = 1
‖u‖1

u, ξ = ‖u‖1.

Then, because û and ξ can be optimized independently, (8) can be further simplified to two separable problems:

û = argmax
u∈Rd

{vTu : ‖u‖1 = ξ}, ξ = argmax
ξ

‖v‖∞ ξ − φ(r0 + ξ).

Solving for û is exactly the same as the usual LMO for vanilla CGM, and is simply û = sign(vk)ek where
k = argmaxk |vk|. Solving for ξ is at worse a 1-D convex optimization problem, which can be solved efficiently
via bisection. However, if we pick φ cleverly, then recognizing that the convex conjugate φ∗(ν) = maxξ νξ − φ(ξ),
then the optimal ξ + r0 = (φ∗)′(ν) the derivative of φ∗. (To relate to the vanilla CGM, where φ(ξ) = ι·≤1(ξ), the
convex conjugate φ∗(ν) = ν and is always optimized at ξ = 1.) This leads to the efficient generalization of CGM
in Alg. 1.
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Algorithm 1 RP-CGM on simple sparse optimization
1: procedure RP-CGM(f , φ, γ, T )
2: Initialize with any x(0) ∈ Rd.
3: for t = 1, . . . , T do
4: Compute negative gradient z = −∇f(x(t)).
5: Compute reweighting terms in three steps. . Reweight
6: 1. Compute weights wi = γ′(|x(t)

i |) for i = 1, . . . , d.
7: 2. Compute offset r0 = r(x(t))− r(x(t);x(t)).
8: 3. Compute reweighted negative gradient vi = zi/wi for i = 1, . . . , d.
9: Compute next atom s = ξ sign(vk)ek in two steps. . Min-maj

10: 1. Find the maximizing index k = argmaxi |vi|.
11: 2. Compute the magnitude ξ = (φ∗)′(‖v‖∞)− r0.
12: Update x(t+1) = (1− θ(t))x(t) + θ(t)s where θ(t) = 2/(1 + t). . Merge

return x(T )

2.1.1 The convex penalty function φ

The vanilla CGM is written as an optimization function over a bounded set

minimize
x∈Rd

{f(x) : x ∈ P}, (9)

where P is some closed compact set. For example, a common choice of P is a norm ball. By introducing φ, we
allow the problem statement to generalize not just to convex sets, but convex penalties as well. Specifically, let
us first constrain γ(xi) = |xi|. Then if φ(ξ) = ι·<1(ξ) is an indicator function, then (3) is equivalent to (9) where
P is the `1-norm ball. On the other extreme, if we allow φ(ξ) = ξ, (3) resembles the usual LASSO penalized
problem for sparse optimization. This type of problem poses a big problem in the RP-CGM world, since the
conjugate function φ∗(ν) = ι·<1(ν) and the recovered ξ will either be 0 (no step) or +∞ (diverge right away).
Therefore, it is clear that some curvature must be imposed upon φ for Algorithm 1 to be convergent.

B Assumption 1 (Lower quadratic bound). We assume φ is lower-bounded by a quadratic function φ(ξ) ≥
µφξ

2 − φ0, for some µφ > 0 and φ0.

This minimum curvature assumption is also essential for convergence analysis. Under the usual CGM
framework, each new iterate s ∈ P is by design bounded, so as long as θ(t) decays, convergence is guaranteed. In
the P-CGM and RP-CGM case, Assumption 1 is much weaker than boundedness, and leads to the following
growth property.

I Lemma 2. If Assumption 1 holds, then φ∗ is smooth everywhere, and the derivative of φ∗ is asymptotically
nonexpansive; e.g., for some finite-valued ξ0, (φ∗)′(ν) ≤ ν

µφ
+ ξ0.

The proof is in Appendix A. Since ξ = (φ∗)′(ν) will be the magnitude of each new step, this Lemma says
that ξ can grow at most linearly with ν, the magnitude of the gradient. We can interpret this as a relaxation of
a boundedness assumption to a controlled growth assumption, which is not fully general, but still much more
relaxed.

I Example 3 (Monomials). For 1 ≤ α, β ≤ +∞, the following φ : R+ → R+ and φ∗ : R+ → R+ form a conjugate
pair:

φ(ξ) = 1
α
ξα, φ∗(ν) = 1

β
νβ ,

1
α

+ 1
β

= 1.

In particular, in the case that α = 1, then β → +∞, and the function

φ∗(ν) = lim
β→+∞

1
β
νβ =

{
0, ν ≤ 1
+∞, ν > 1.

In this case, whenever ν > 1 then φ∗(ν) = +∞; we exclude this case as P-CGM will not converge. When α ≥ 2,
φ is strongly convex and we can show O(1/t) convergence of P-CGM. When 1 < α < 2, φ∗(ν) is finite and the
iterates are well-defined, but the method may converge or diverge.
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Table 1 A list of several popular concave penalties, and their slope behavior at extremities. The last
entry shows the effect of the piecewise construction, which becomes linear with non-zero slope at large
values of ξ.

γ(c) limc→0 γ
′(c) limc→+∞ γ

′(c)
Fractional fns q−1cq, 0 < q < 1 +∞ 0

LSP log(1 + |c|/θ) for θ > 0 θ−1 0

SCAD


λ|c| |c| ≤ λ,
−c2+2θλ|c|−λ2

2(θ−1) λ < |c| ≤ θλ,
(θ + 1)λ2/2 |c| ≥ θλ,

for θ > 2 λ 0

MCP

{
λ|c| − c2/(2θ) |c| ≤ θλ,
θλ2/2 |c| > θλ,

for θ > 0 λ 0

Locally convex (12), given γ0 and ξ limc→0 γ
′
0(c) γ′0(ξ)

I Example 4 (Barrier functions). Consider

φ(ξ) = − 1
β

log(C − ξ)− ξ

Cβ
+ log(C)

β
, (10)

which is a log-barrier penalization function for ξ ≤ C; as β → +∞, φ(ξ) approaches the indicator function for
this constraint. Its conjugate is

φ∗(ν) = Cν − β−1 log(Cβν + 1),

achieved at ξ = C2βν/(Cβν + 1). For all C > 0, β > 0, and ν 6= −(Cβ)−1, both φ∗ and ξ∗ exist and are finite.
Note also the implicit constraint, as φ(κP(x)) is finite only if x ∈ CP.

2.2 The concave sparsifier γ

The function γ is inspired by concave regularization functions like the LSP or fractional p-norms, that have been
shown in practice to more aggressively enforce sparsity. Other popular concave penalties are listed in Table 1; a
more complete table is given by [33, 58].

The linearization (4), given γ concave, is a majorant of (3)

d∑
i=1

γ(|x(t)
i |)︸ ︷︷ ︸

r(x(t))

+ γ′(|x(t)
i |)(|xi| − |x

(t)
i |)︸ ︷︷ ︸

r0:=r(x;x(t))−r(x(t);x(t))

≥
d∑
i=1

γ(|xi|) = r(x) (11)

and is exactly equal when x(t) reaches a stationary point. However, actually computing the reweighted LMO can
be numerically ill-defined if wi = γ′(|x(t)

i |) is either 0 or +∞, since the reweighted variables (7) will be ill-defined.
This leads us to impose Assumption 2 on γ.

B Assumption 2 (γ). Assume that γ : R+ → R+ is concave, monotonically increasing, and differentiable
everywhere on its domain, and the derivative γ′(ξ) is lower and upper bounded by

0 < γmin := lim
ξ→∞

γ′(ξ) ≤ γ′(ξ) ≤ lim
ξ→0+

γ′(ξ) =: γmax < +∞, ∀ ξ ≥ 0.

Additionally, γ(0) = 0.

Note that the standard nonconvex sparsifiers (SCAD, MCP, LSP, p-norm for p < 1) do not satisfy these
assumptions, and when used directly in this reweighting scheme will cause numerical instability. Therefore, we
make the following modifications, to ensure stability of RP-CGM.

In cases where γ′(ξ)→ +∞ as ξ → 0, we modify to γ̂(ξ) = γ(ξ + ξ0) for some hyperparameter ξ0 > 0.
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In cases where γ′(ξ)→ 0 as ξ → +∞, we use a piecewise linear extension given a “boundary point” ξ:

γ̂(ξ) =
{
γ(ξ), 0 ≤ ξ ≤ ξ,
γ′(ξ)(ξ − ξ) + γ(ξ), ξ > ξ.

(12)

See also Figure 1.
It is interesting to note that though we do not use the “full effect” of these canonical sparsifiers, we are able to
leverage their aggressive sparsifying effect. When even a very small amount of nonconvex curvature is present,
we notice a significant benefit in the numerical experiments in terms of screening and sparsification of the final
solution.

2.3 Stationary points and support recovery
We define the support of x as the indices of the nonzeros as supp(x) = {i : xi 6= 0}. For a method producing
iterates x(1), x(2),→ x∗, we say that this method has recovered the support at iteration t if for all t ≥ t,
supp(x(t)) = supp(x∗).

For a continuous function h : Rd → R, the point x∗ is a Clarke stationary point of (3) if 0 ∈ ∇f(x∗) + ∂h(x∗)
where ∂h(x) = conv{limx′→x∇h(x′)} is the Clarke subdifferential of h at x [18, 19]. Given Assumptions 1 and 2,
the Clarke subdifferential for h(x) is 1

(∂h(x))i =
{
{gφ sign(xi) γ′(|xi|) : gφ ∈ ∂φ(r(x))} xi 6= 0,
φ′(0) · [−γmax, γmax], xi = 0,

where we use the · notation here for scaling elements in a set (α · S = {αx : x ∈ S}). In other words, in cases
where φ′(r(x)) exists, the optimality conditions can be summarized as follows: x∗ is a stationary point of (3) if

x∗i 6= 0 ⇒ −∇f(x∗)i = φ′(r(x)) γ′(|xi|)
x∗i = 0 ⇒ −∇f(x∗)i ∈ φ′(r(x)) · [−γmax, γmax].

I Example 5. Suppose that γ(xi) = |xi| and φ(ξ) = 1
2ξ

2. Since h(x) = φ(r(x)) is convex in this example, the
Clarke subdifferential reduces to the usual convex subdifferential, and can be expressed element-wise

(∂h(x))i = ‖x‖1 ·


[−1, 1], xi = 0,
{1}, xi > 0,
{−1}, xi < 0.

The optimality conditions can also be summarized in terms of “wiggle room”; that is, whenever xi = 0, then
∇f(x)i lies in an interval. But when xi 6= 0, ∇f(x)i must take a specific value. Duality will then allow the
element-wise gradient to act as a sparsity indicator. (See also [53, 69].)

I Example 6. Consider the concave regularizer h(x) :=
(∑

i

√
|xi|+ ξ0

)2. This construction arises from φ(ξ) = ξ2

and r(ξ) =
√
|ξ|+ ξ0. Its Clarke-subdifferential can be expressed element-wise

(∂h(x))i =

∑
j

√
|xj |+ ξ0

 ·


[−ξ−1/2
0 , ξ

−1/2
0 ], xi = 0,{

1√
|xi|+ξ0

}
, xi > 0,{

−1√
|xi|+ξ0

}
, xi < 0.

Again, note that the duality conditions show “wiggle room” in the values of ∇f(x) at stationary x = x∗, for
the indices for which xi = 0. However, in the case of nonconvex functions γ, the gradient at optimality is less
informative, since γ′(|xi|) changes with different input values, and moreover is not necessarily maximal when
|xi| > 0. For this reason, designing screening rules is nontrivial for nonconvex penalty functions, and fully safe
rules may not prove fully efficient.

1 In general, φ(x) may not be differentiable for all x. However, since φ is convex and only defined on R+, then φ′(0) :=
limξ→0+

φ(ξ)−φ(0)
ξ must exist.
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Figure 1 Transformations φ and γ. Left: Level sets for the penalty h(x) = φ(
∑

i
γ(|xi|)). The

concave penalty γ increases the “spike-ness”; the convex penalty φ increases the effect of the aggregate
value. Right: Three example functions of γ. RP-CGM will behave erratically when γmin = 0 (red and
blue) and γmax is unbounded (red), so we use a penalty that is bounded on both ends (green = concave
+ linear).

2.4 Duality
We now give the primal and Fenchel dual formulations of (3) given a reference point x:

(P-simple) min
x∈Rd

F (x;x) := f(x) + φ

(
r0 +

∑
i

wi|xi|
)

︸ ︷︷ ︸
=:h(x;x)

(D-simple) max
z

FD(z;x) := −f∗(−z)−φ∗
(

max
i

|zi|
wi

)
+ r0

(
max
i

|zi|
wi

)
︸ ︷︷ ︸

h∗(z;x)

.

Here, we define r0 := r(x)− r(x;x) and wi = γ′(|xi|). Given x, both primal and dual objective functions are
convex. In particular, the duality gap of this convexified subproblem, using a primal candidate x and dual
candidate z = −∇f(x), can be expressed as

gap(x;x) = f(x) + f∗(∇f(x))︸ ︷︷ ︸
=xT∇f(x)

+h(x;x) + h∗(−∇f(x);x)

and adds little overhead when used to monitor the progress of Alg. 1. Now, we will show that gap(x;x) is an
effective residual measurement, and indeed converges to 0 at the usual O(1/t) rate.

2.5 Convergence of RP-CGM
We begin with an unusual twist on a usual assumption.

B Assumption 3 (L-smoothness). We assume that f is convex and L-smooth w.r.t. ‖ · ‖1:

f(y)− f(x) ≤ ∇f(x)T (y − x) + L

2 ‖y − x‖
2
1, ∀ x, y. (13)

An important consequence of (13) is that, while the set of minimizers of (P-simple) may not necessarily be
unique, their gradient ∇f(x∗) will be unique. Specifically, (13) implies that

f(x)− f(y) ≥ ∇f(y)T (x− y) + 1
2L‖∇f(x)−∇f(y)‖2∞, ∀ x, y (14)
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and in particular taking y = x∗ where −∇f(x∗) ∈ ∂h(x∗;x), we have

f(x) + h(x;x)− f(x∗)− h(x∗;x) ≥ 1
2L‖∇f(x)−∇f(x∗)‖2∞, ∀ x

and thus x is optimal only if ∇f(x) = ∇f(x∗).
Under Assumption 3, we first show that the duality gap of the original nonconvex problem (3) is (as expected)

bounded away from 0, and is thus an inadequate measure of suboptimality.

I Proposition 7 (Duality gap of nonconvex regularizer). For h(x) = φ(r(x)),

h(x)− h∗∗(x) ≥ φ(r(x))− φ(γmin‖x‖1).

Proof. First, given the conjugate function

h∗(z) := sup
x
xT z − φ(r(x))

and picking{
xi → sign(zi) · α for one |zi| = ‖z‖∞,
xi = 0 otherwise,

gives

h∗(z) ≥ α‖z‖∞ − φ(γ(α)).

Since φ is monotonically increasing and γ is concave, we have the majorant property of the linearizer, and

φ(γ(α)) ≤ φ(γ′(α0) · (α− α0) + γ(α0)).

Therefore

h∗(z) ≥ sup
α

α‖z‖∞ − φ(γ′(α0) · (α− α0) + γ(α0)) ≥ φ∗
(
‖z‖∞
γ′(α0)

)
+ (γ′(α0)α0 − γ(α0))︸ ︷︷ ︸

≥0

(
‖z‖∞
γ′(α0)

)
.

In particular, since this holds for any α0, h∗(z) ≥ φ∗
(
‖z‖∞
γmin

)
. Therefore,

h∗∗(x) ≤ sup
z

xT z − φ∗
(
‖z‖∞
γmin

)
= φ(‖x‖1γmin). J

In other words, the duality gap of the original nonconvex problem is somewhat useless for screening, since it
does not converge to 0. Instead, we measure convergence via the gap of the linearized problem at x = x.

I Proposition 8 (Residual). The duality gap gap(x, z;x) between (P-simple) and (D-simple) at primal variable
x and dual variable z = −∇f(x), with reference point x, satisfies (at x = x)

gap(x, z;x) ≥ 0 ∀ x, gap(x, z;x) = 0 ⇐⇒ x is a stationary point of (3).

Proof. Since gap(x, z;x) is a duality gap, it is always nonnegative. Explicitly, denote ν = maxi
(
|∇f(x)i|
γ′(|xi|)

)
. Then,

since f(x) + f∗(∇f(x)) = ∇f(x)Tx,

gap(x, z;x) = xT∇f(x) + φ(r(x)) + φ∗(ν) + (r(x;x)− r(x)) · ν
(a)
≥ xT∇f(x) + r(x)ν + (r(x;x)− r(x)) · ν

= xT∇f(x) +
∑
i

wi|xi|︸ ︷︷ ︸
‖w�x‖1

·max
j

(
|∇f(x))j |

wj

)
︸ ︷︷ ︸
‖∇f(x)�w‖∞

(b)
≥ xT∇f(x)− xT∇f(x) = 0
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where � and � represent element-wise multiplication and division, respectively. Tightness of (a) occurs iff
Fenchel–Young is satisfied with equality, e.g. ν ∈ ∂φ(r(x)). Tightness of (b) occurs iff

max
j

|∇f(x)j |
γ′(|xj |)

= −∇f(x)i · sign(xi)
γ′(|xi|)

, ∀ xi 6= 0. (15)

Combining these two observations, then gap(x,−∇f(x);x) = 0 if and only if

−∇f(x)i ∈


{−gφ γ′(|xi|) : gφ ∈ ∂φ(r(x))}, xi < 0,
{gφ γ′(|xi|) : gφ ∈ ∂φ(r(x))}, xi > 0,
φ′(0) · [−γ′(0), γ′(0)], xi = 0,

which is the condition for x = x∗ a stationary point of (3). J

I Theorem 9 (Convergence of RP-CGM, simple case). Pick any x(0) ∈ Rd where h(x(0)) is finite. Define
the sequence x(t), t = 1, . . . by the steps dictated in (Min-Maj) and (Merge), using the step size sequence
θ(t) = 2/(1 + t). Given Assumptions 1, 2, 3, then

F (x(t))− F (x∗) = O(1/t), min
t′≤t

res(x(t′)) = O(1/t).

This is a special case of Theorem 33, which is proven in Section 4 and Appendix B. The proof is inductive,
and shows that O(1/t) behavior “kicks in” at a large enough t; explicit constants are given in Section 4.

2.6 Convex support recovery and screening
To understand how gap-based screening works, suppose first that for some x, we magically have a bound on the
gradient error over all indices:

ε > |(∇f(x))i − (∇f(x∗))i|, ∀ i.

Then the value of the true maximum gradient at the stationary point is at most ε away from the maximum
value of the current gradient, e.g.

‖∇f(x∗)‖∞ ≥ ‖∇f(x)‖∞ − ε.

Moreover, if at any index k,

|∇f(x)|k < ‖∇f(x)‖∞ − 2ε ≤ ‖∇f(x∗)‖∞ − ε,

this implies that the highest possible value that |∇f(x∗)|k could be is

|∇f(x∗)|k ≤ |∇f(x)|k + ε < ‖∇f(x∗)‖∞;

in other words, index k cannot possibly be maximal. Therefore, it must be that at optimality, x∗k = 0. The last
missing detail is the observation that the duality gap gives us this ε bound explicitly.

Now we formalize this notion. From optimality conditions, x∗ minimizes (P-simple) if

−∇f(x∗)i
αwi

∈

{
{sign(x∗i )}, x∗i 6= 0
[−1, 1], x∗i = 0,

(16)

for some α ∈ ∂ξφ(r0 + ξ) at ξ =
∑
i wix

∗
i . In other words, for this convex reweighting problem, the sparsity

pattern of x∗ can be partially ascertained from ∇f(x∗), in that the set of nonzeros of x∗ must be contained in
the set of maximal indices of the reweighted ∇f(x∗). Formally, define

dsupp(x;x) :=
{
i : |∇f(x)i|

γ′(|xi|)
= max

j

|∇f(x)j |
γ′(|xj |)

}
. (17)

Then the optimality condition (16) states that supp(x∗) ⊆ dsupp(x∗;x), where x∗ minimizes (P-simple). We
are in particular interested in x∗ = x∗ the stationary point of (3). From this observation, we have our first
screening property.
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I Proposition 10 (Screening for simple sparsity). If ‖∇f(x)−∇f(x∗)‖∞ ≤ ε, then

‖∇f(x)‖∞ − |∇f(x)i| > 2εγmax ⇒ x∗i = 0. (18)

Proof. First, define vi = |∇f(x)i|
wi

and v∗i = |∇f(x∗)i|
wi

. Then

‖∇f(x∗)−∇f(x)‖∞
γmax

≤ ‖∇f(x∗)−∇f(x)‖∞
maxi wi

≤ ‖v − v∗‖∞.

By optimality conditions v∗i < ‖v∗‖∞ ⇒ x∗i = 0. Thus, (18) implies

2ε > ‖∇f(x)‖∞ − |∇f(x)i|)
γmax

≥ ‖v‖∞ − vi

and therefore ‖v∗‖∞ − v∗i ≤ ‖v‖∞ − vi + 2ε < 0. J

I Proposition 11 (Residual bound on gradient error). Define D(x) =
∑d
i=1 γ(|xi|)− γ(|x∗i |)− γ′(|xi|)(|xi − x∗i |)

the linearization error at x. Denoting x∗ a stationary point of (3), then

‖∇f(x∗)−∇f(x)‖∞ ≤
LD(x)
2γmin

+

√
L2D(x)2

4γ2
min

+ Lres(x) + LD(x)‖∇f(x)‖∞
γmin

.

Note that if r(x) = ‖x‖1 then D(x) = 0. Since this proposition is a consequence of Proposition 34 in Section 4,
we leave the proof for then.

From these two properties, we immediately get a screening rule for (3):

I Theorem 12 (Screening rule). For any x, define

I(t)
ε =

{
i : ‖∇f(x)‖∞ − |∇f(x)i| ≥ ε+ 2

√
Lgap(x;x) + ε

}
. (19)

If

ε ≥ LD(x)
γmin

max
{

1
2 ,
LD(x)
4γmin

+ ‖∇f(x)‖∞
}
,

then x∗i = 0 for all i ∈ I(t)
ε , where x∗ any minimizer of (3).

Note that in the convex case (γ(|xi|) = |xi|) then D(x) = 0 and ε = 0 is a safe choice, for all x. In the general
case, since we do not know D(x), we cannot guarantee the safety of an intermediate iterate; however, since
D(x∗) = 0 by definition of stationary point, then x(t) → x∗ implies D(x(t))→ 0. Picking any decaying sequence
ε(t) → 0, therefore, forms a heuristic rule that converges to the true support.

2.6.1 Degeneracy and support recovery guarantee
Following the terminology introduced in [37], we say that x∗ is a degenerate solution if supp(x∗) 6= dsupp(x∗;x∗);
that is, there exists i where

x∗i = 0 and |∇f(x∗)i|
γ′(|x∗i |)

= max
j

|∇f(x∗)j |
γ′(|x∗j |)

.

To characterize nearly degenerate solutions, we define

δi(x) = max
j

|∇f(x)j |
γ′(|xj |)

− |∇f(x)i|
γ′(|xi|)

, δmin(x) = min
i:xi=0

δi(x),

and the quantity δmin(x∗) expresses the distance to degeneracy for this solution. This can be interpreted as a
complementary slackness-like condition in duality, where both the primal and dual variables are jointly active.
While we may reasonably believe that many real world problems with randomized data do not lead to degenerate
solutions, near-degenerate solutions do pose problems for screening and manifold identification [11, 37, 45].

I Corollary 13. If δmin > 0, then for a method x(t) → x∗, the screening rule (19) with ε = 0 identifies supp(x∗)
after a finite number of iterations t; that is, for all t ≥ t, I(t)

0 = supp(x∗). In the convex case (γ(|xi|) = |xi|),
this occurs when ‖∇f(x∗)−∇f(x)‖∞ ≤ δmin/3, which occurs at t = O(1/δ2

min).
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3 P-CGM for general convex sparse optimization

Our goal is to now extend the studies of the previous section to solve the generalized sparse optimization
problem (1). The key addition is the introduction of the “gauge-like” function rP(x), but which uses the
sparsifying properties of γ. In this section, we will focus on problem (32) when it is convex; namely, we assume
that γ(c) = c. Just as studying the convex LASSO brings to light many of the sparse recovery properties
illustrated from the nonconvex problem (3), we will first study the convex penalized version of (32) to gain
intuition, and present the full extension in the next section.

3.1 Gauge penalized problems
The penalized CGM (P-CGM) solves problems of the form

minimize
x∈Rd

f(x) + φ(κP(x)), (20)

where κP(x) is the gauge function [15, 30] defined by a set P at point x:

κP(x) := min
cp≥0

∑
p∈P0

cp :
∑
p∈P0

cpp = x

 . (21)

This function generalizes the 1-norm to more size-measuring functions that include norms, semi-norms, and convex
cone restrictions. It is useful to compare (21) with the definition usually given in convex analysis literature [8, 60],
where the gauge function over a closed convex set P is defined as

κP(x) := inf{µ ≥ 0 : x ∈ µP}. (22)

In fact, this is equivalent to (21). In particular, when P is the convex hull of a set of atoms, κP(x) can be used
to promote sparsity with respect to those atoms. The corresponding “dual gauge” is the support function

σP(z) = max
s∈P0

sT z

which is closely related to the generalized LMO

LMOP(z) = argmax
s∈P0

sT z.

If κP is a norm, then σP is the usual dual norm [8, 60]. A key feature of the CGM is that this LMO is often
cheap to compute in practice, and despite weaker convergence guarantees compared to higher order methods,
often converges quickly when x∗ is sparse with respect to structured P0. (See also Table 2.)

I Example 14 (`1 norm). We start with the usual sparsity case of the `1 norm. In this case, σP = ‖ · ‖∞ is
the dual norm of ‖ · ‖1. Then, by setting the optimality condition 0 ∈ ∂g(x∗) and decomposing by index, at
optimality{

(−∇f(x∗))i = ‖x∗‖1 sign(x∗i ) if x∗i 6= 0,
(−∇f(x∗))i ∈ ‖x∗‖1 · [−1, 1] if x∗i = 0.

In words, the gradient of f along a coordinate for which the optimal variable is nonsmooth with respect to κP is
allowed “wiggle room”; in contrast, if g(x) is smooth in the direction of xi then the gradient is fixed. In terms of
support recovery, maxi |∇f(x∗)i| = ‖x∗‖1 and additionally, if |∇f(x∗)i| < ‖x∗‖1 then it must be that x∗i = 0.

I Example 15 (Weighted `1 norm). The convex majorant in Section 2 specifically considered κP(x) =
∑
i wi|xi|,

for weights wi > 0. Here, P0 = {±w−1
1 e1, . . . ,±w−1

d ed}, with corresponding “dual gauge” σP(z) = maxi |zi||wi| ,
and the LMO follows exactly the steps for the bounded maximization computation in (5). Note also that the
optimality conditions of (20) for this choice of κP(x) is

|∇f(x∗)i|
|wi| = maxj

(
|∇f(x∗)j |
|wj |

)
sign(x∗i ) if x∗i 6= 0,

|∇f(x∗)i|
|wi| ∈ maxj

(
|∇f(x∗)j |
|wj |

)
· [−1, 1] if x∗i = 0.

It exactly characterizes the optimality conditions for (P-simple). Later, we will generalize this reweighting
technique for general atomic sets P0, to construct the convex majorant of the general nonconvex problem (1).
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I Example 16 (Latent group norm). For the task of selecting a sparse collection of overlapping subvectors,
such as in gene identification, the latent group norm was proposed in [55]. For x ∈ Rd, given a collection of
overlapping groups G = {G1, . . . ,GK} where Gk ⊂ {1, . . . , d}, this norm a gauge function,

κP(x) = ‖x‖G := min
sk∈Rd

{
K∑
k=1
‖sk‖2 : x =

K∑
k=1

sk, (sk)i = 0 ∀ i 6∈ Gk

}
. (23)

In particular, (23) is the solution to (21) when

P0 =
{

1√
|Gk|

eGk , k = 1, . . . ,K
}
, (eGk)i =

{
1, i ∈ Gk,
0, else.

Then σP(z) = maxk=1,...,K ‖zGk‖2. Now consider (20) for some smooth φ. Then at optimality, decomposing
x∗ =

∑
k s
∗
k, for each group k,{

‖z∗Gk‖2 = φ′(κP(x∗)), if ‖s∗k‖2 > 0,
‖z∗Gk‖2 ≤ φ

′(κP(x∗)), if ‖s∗k‖2 = 0.

Screening in this case refers to identifying the subvectors where, at optimality, ‖s∗k‖2 might be nonzero; however,
just as support identification in the 1-norm case does not imply that the values of x∗i are known, in a similar
vein here it does not imply that the values of s∗k are known.

Both P-CGM and RP-CGM can be efficiently implemented for the latent group norm. However, a key numerical
issue is that computing the group norm ‖x‖G when the groups overlap is computationally burdensome (requires
solving complex subproblems) and is needed in the gap computation. Nevertheless, since gap computations are
used only infrequently for monitoring progress and for screening, this overhead can be mitigated. (Note that
computing the dual norm, and thus the LMO, is comparatively computationally cheap / trivial.)

I Example 17 (Nuclear norm). For a matrix X ∈ Rm×n, the nuclear norm ‖X‖∗, defined as the sum of singular
values of matrix X, can be expressed as a gauge over the infinite set

P0 = {uvT : u ∈ Rm, v ∈ Rn}.

Because P0 is not a finite set, screening in this scenario will most likely not be very efficient, or even useful.
However, CGM is indeed frequently applied to this version of P0, in order to promote low-rank matrix solutions,
and applying P-CGM to spectral problems is a central application in [69]. In particular, while computing the
nuclear norm requires a full spectral calculation, computing the dual norm, the spectral norm, is often much
cheaper using fast spectral methods, and can often be compressible [70].

Table 2 summarizes these examples and key properties. Gauges and support functions for convex sets are
fundamental objects in convex analysis, and are discussed more by [8, 30, 32, 60].

I Example 18 (Total variation (TV) “norm”). We now investigate a case where P0 contains a direction of
recession, which introduces some ambiguity into our construct. Specifically, we investigate the TV norm, which
is often used in signal processing as a “smoothing regularizer”:

‖x‖TV =
n∑
i=2
|xi − xi−1|.

A common way to express this in matrix/vector notation is to introduce a difference matrix

D =
[
I 0

]
−
[
0 I

]
∈ Rd−1,d,

and ‖x‖TV = ‖Dx‖1. This norm can be viewed as a gauge over atoms P0 = {b1, . . . , bd−1} ∪ {c1 : c ∈ R} where
for 1 the all-ones vector,

bk = βk −
1
n
βTk 1, βk = (1, 1, . . . 1︸ ︷︷ ︸

k

, 0, 0, ..0︸ ︷︷ ︸
n−k

) ∈ Rn.
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Table 2 Common norms, their atoms, support functions, and their LMOs. In particular, computing
each LMO is computationally cheap, especially compared to computing the proximal operator of the
gauge, or even the gauge itself.

Gauge κP(x) Atoms P0 Support fn σP(z) LMO(z)

1-norm {±e1, . . . ,±ed} ‖z‖∞ sign(zk)ek,
‖x‖1 k = argmaxk |zk|

Mapped 1-norm {±p1, . . . ,±pd} ‖Pz‖∞ sign(pTk z)pk,
‖P−1x‖1 k = argmaxi |pTi z|

Group norm
{

1√
|G1|

eG1 , . . . ,
1√
|GK |

eGK

}
maxk ‖zGk‖2

1√
|Gk|

eGk ,∑K

i=1 ‖xGi‖2, k = argmaxk ‖zGk‖2

TV norm {bk}dk=1 ∪ {c1 : c ≥ 0} ‖D†z‖∞ if z ∈ range(DT ), bk,
‖Dx‖1 βk = (1k,0n−k) +∞ else. k = argmaxi |(D†z)i|

bk = βk − 1
n
βTk 1

In particular, for any constant vector x, ‖x‖TV = 0. This adds an unbounded direction for the support function;
specifically

σP(z) =
{
‖u‖∞ if z = DTu,

+∞ else,

and thus the LMO is not always defined. Note here that if z ∈ range(DT ), then u = D(DTD)−1z is uniquely
determined; this inspires an “effective band-aid” to deal with directions of recession.

3.1.1 Gauges with directions of recessions
The recession cone of P [8, 60] is defined as

rec(P) = {r : cr ∈ P ∀ c ≥ 0}.

Whenever P has a direction of recession, CGM struggles as the LMO can return an infinite atom. We offer to
isolate optimization over this set separately. In particular, suppose

P0 = P ′0 ∪ K, P ′0 ∩ K = ∅,

where P ′0 is a finite set, and thus defining P as the convex hull of P ′0 ensures that P is compact. Then we
rewrite (20) as

minimize
x∈cone(P),y∈K

f(x+ y) + φ(κP(x)) (24)

where cone(P) := {αx : α ∈ R+, x ∈ P} is the conic hull of P . At each iteration, x takes a conditional gradient
step, and y is updated through a full minimization. (In the case of the TV norm, this simply means that the
LMO is applied to a de-meaned x̂ = x− 1

dx
T1.) Since the portion of the solution in K is minimized exactly at

each step, from this point on we only consider the support recovery properties for recovering the atoms in P ′0.

B Assumption 4 (Atomic set conditions). P0 = P ′0 ∪ K where P ′0 is a finite set of atoms and K is the
recession cone; moreover, P ′0 ∩ K = ∅. We denote P = conv(P ′0).
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3.2 Generalized smoothness
To ensure the uniqueness of dsuppP(−∇f(x∗)) and to give a useful gap bound, we again need a notion of
smoothness on f . We again use our unusual twist on the gauge penalty.

I Definition 19. A function f : Rd → R is L-smooth with respect to P if for all x, y ∈ Rd:

f(x)− f(y) ≤ ∇f(y)T (x− y) + L

2 κP(x− y)2. (25)

The purpose of this generalized notion is that sometimes, given the data, tighter bounds can be computed [54].
It is similar in spirit to the notion of relative smoothness [3, 47] which facilitates the analysis of generalized
proximal gradient methods, where the 2-norm squared proximity measure is replaced by a Bregman divergence.
For CGM, it is more computationally efficient to consider generalized gauges as the penalty generalization,
which we incorporate to the generalized smoothness definition. Additionally, the subadditivity property of gauges
assists with bounding the iterates, a crucial step in the convergence proof.

B Assumption 5 (Generalized smoothness). The convex function f is L-smooth w.r.t. P̃ := P ∪ (−P).

I Example 20 (Quadratic function). Suppose that f(x) = 1
2‖Ax‖

2
2 + bTx. Then

L =


L1 := (maxi ‖A:,i‖2)2, κP = ‖ · ‖1,
L2 := ‖A‖22, κP = ‖ · ‖2,
L∞ := (

∑
i ‖A:,i‖2)2, κP = ‖ · ‖∞.

While norm bounds would give d2L1 ≥ dL2 ≥ L∞, the actual values in A might lead to tighter inequalities.

The relationship to usual smoothness is as follows. Suppose that f is L2-smooth in the usual sense (with
respect to ‖ · ‖2). Then since diam(P)κP(x) ≥ ‖x‖2, it follows that L ≤ diam(P)L2. In this way, we refine the
analysis of CGM by absorbing the usual “set size” term into L, which in certain cases may be smaller than
diam(P)L2.

I Proposition 21 (Uniqueness of gradient). If (25) holds and 0 ∈ int P, then ∇f(x∗) is unique at the optimum.

The same logical argument as before applies, as “smoothness” in the primal corresponds to “strong convexity”
(w.r.t. ‖ · ‖∞) in the dual.

3.3 Generalized support recovery
Given a solution to (21), define the decomposition of x with respect to P0 as tuples cp, p, extracted via the
mapping coeffP(x, p) = cp. The support of x with respect to P0 is

suppP(x) = {p : coeffP(x, p) > 0 in (21)}. (26)

For general P , neither the decomposition nor the support of x is unique. As before, we say the support recovery
is achieved if one such support suppP(x∗) of the limiting point x(t) → x∗ ∈ X ∗ is revealed. The reduction to
the support definition in the previous section occurs when P0 = {±e1, . . . ,±ed} the signed standard basis. Then
suppP(x) is unique, and explicitly suppP(x) = {sign(xi) ei : xi 6= 0}.

I Proposition 22 (Support optimality condition). Consider the general convex sparse optimization problem (20)
where φ : R+ → R+ is a monotonically nondecreasing function. Then for any x∗ a minimizer of (20),

−∇f(x∗)Tx∗ = κP(x∗)σP(−∇f(x∗)). (27)

and

p ∈ supp(x∗)⇒ −∇f(x∗)T p = σP(−∇f(x∗)). (28)
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This is the gauge equivalent of “nonzero primal gives maximal dual”, and is referred to in [27] as alignment.
We now generalize the definition of dual support from (17):

dsuppP(x) := {p : −∇f(x)T p = σP(−∇f(x))},

and Property 22 says that for any x, suppP(x) ⊆ dsuppP(x). Finally, as in the previous section, we express
this distance as δmin(x∗), where

δp(x) = σ(−∇f(x)) + pT∇f(x), δmin(x) = min
p∈P
{δp(x) : p 6∈ suppP(x)}

for any support of x. In particular, δmin(x∗) = 0 means the problem is degenerate.

3.4 Duality and gap
For φ monotonically nondecreasing, the convex function h(x) = φ(κP(x)) has conjugate h∗(z) = φ∗(σP(z)). This
gives the primal-dual pair

(P-convex) minx,y,w f(w) + φ∗(κP(x))
st w = x+ y, y ∈ K

(D-convex) maxz −f∗(−z)− φ∗(σP(z))
st z ∈ K◦

where K◦ is the polar cone of K. The duality gap between (P-convex) and (D-convex) can be written as

gap(x, y, z) = f(x+ y) + h(x) + f∗(−z)− h∗(z) + ιK◦(z)

where ιK◦(z) = +∞ if z is not dual-feasible, and 0 otherwise.

I Lemma 23 (Feasible gradient). Take z := −∇xf(x + y). Then z = −∇yf(x + y). Additionally, if y =
argminy′∈K f(x+ y′) then z ∈ K◦.

Proof. The first part is true from chain rule. Then by optimality condition, z is in the normal cone

zT (y − y′) ≤ 0, ∀ y′ ∈ K.

Since 0 ∈ K, this implies zT y ≤ 0, which means z ∈ K◦. J

From Lemma 23, the LMO step acquires s where for z := −∇xf(x+ y),

−zT s+ h(s) = min
s′
−zT s′ + h(s) = −h∗(z).

Additionally, by Fenchel–Young’s inequality, we know that f(x) + f∗(∇f(x)) = ∇f(x)Tx, and thus we can
simplify the gap to an online-computable quantity

gap(x, y,∇xf(x+ y)) = −∇xf(x+ y)T (s− x) + h(x)− h(s).

I Proposition 24 (Gap bounds gradient error). Given a primal feasible x and denote the optimum variable as

x∗ = argmin
x′

min
y∈K

f(x+ y) + h(x).

Furthermore, denote y = argminy′∈K f(x+ y′) and y∗ = argminy′∈K f(x∗ + y′). Then the duality gap bounds
the gradient error

gapP(x, y,−∇f(x+ y)) ≥ 1
2LσP̃(∇f(x+ y)−∇f(x∗ + y∗))2. (29)

Proof. Since the conjugate of h(x) = φ(κP(x)) is h∗(z) = φ∗(σP(z)), then

φ∗(σP(z)) = sup
x
xT z − φ(κP(x)) ≥ (x∗)T z − φ(κP(x∗)). (30)

Then denoting z = −∇f(x+ y),

gapP(x, y, z) = f(x+ y) + f∗(−z)︸ ︷︷ ︸
Fenchel Young

+ φ(κP(x)) + φ∗(σP(−∇f(x)))︸ ︷︷ ︸
(30)

,

≥ (x∗ − x)T z + yT∇f(x)︸ ︷︷ ︸
y∈K,∇f(x)∈K◦

+φ(κP(x))− φ(κP(x∗))︸ ︷︷ ︸
convexity of h

,

≥ (x− x∗)T z + φ(κP(x))− φ(κP(x∗))
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since K and K◦ are polar cones and thus yT∇f(x) ≤ 0. Next, recognizing that h(x) = φ(κP(x)) is convex, we
pick −∇f(x∗ + y∗) ∈ ∂h(x∗) and use convexity to further reduce to the result:

gapP(x, y, z) ≥ (x− x∗)T (z∗ − z) ≥ 1
2LσP̃(z∗ − z)2. J

I Theorem 25 (Support identification of screened P-CGM). Given Assumptions 1, 2, 4, 5, then the screening rule
for convex penalties

I(0) = P0, I(t) = I(t−1) \ {p ∈ P0 : p ∈ I0(x) for x = x(t)},

is safe and convergent:

I(t) ⊇ suppP(x∗), ∀ t, and I(t) = suppP(x∗)(x∗), t ≥ t′,

where t′ is such that√
Lmin
i≤t′

gap(x(i),−∇f(x(i));x(i)) < δmin/3, (31)

which happens at a rate t′ = O(1/(δ2
min)).

Proof. This is a direct consequence to Theorems 33 and 35. J

Note that Theorem 25 imposes no conditions on the sequence θ(k), or choice of φ, f , etc., except L-smoothness
of f . In other words, for any method where the gap is easily computable and its convergence rate known, then a
corresponding screening rule and support identification rate automatically follow. Additionally, computing L
may be challenging, depending on κP ; as shown previously, at the very least it may require a full pass over the
data. However, this is a one-time calculation per dataset, and can be estimated if data are assumed to be drawn
from specific distributions (as in sensing applications).

3.5 Invariance
One appealing feature of the CGM is that the iteration scheme and analysis can be done in a way that is
invariant to both linear scaling and translation. However when the gauge function is not used as an indicator,
this translation invariance vanishes; in general, κP(x) 6= κP+{b}(x + b). Therefore the generalized problem
formulation (32) is only linear (not translation) invariant.

I Example 26. Consider κP(x) = ‖x‖1 for x ∈ R2. Take specifically x = (−1,−1) and b = (1, 1). Then
κP(x) = 2, but κP+{b}(x+ b) = κP+{b}(0) = 0 6= 2.

I Proposition 27 (Invariance properties). Define Q = AP, and f(x) = g(Ax). Define w = Ax where A has full
column rank. Then, using (22) and chain rule, the following hold

f(x) = g(w) and ∇f(x) = AT∇g(w),
κP(x) = κQ(w) and σP(−∇f(x)) = σQ(−∇g(w)),
LMOQ(−∇g(w)) = A LMOP(−∇f(x)),
f(x) = g(Ax+ b) is L-smooth w.r.t. P iff g is L-smooth w.r.t. Q.

4 RP-CGM for general nonconvex sparse optimization

Finally, we consider the complete RP-CGM, which expands the method presented in Section 2 to generalized
gauge penalties. The fully generalized optimization problem is

min
x

f(x) + φ(rP(x))︸ ︷︷ ︸
h(x)

, rP(x) =

min
cp≥0

∑
p∈P0

γ(cp) :
∑
p∈P0

cpp = x

 . (32)

By imposing the concave transformation on cp, we effectively gain the same effect as the nonconvex regularizer
on the `1 norm in Section 2. For the most part, much of the analysis will seem very similar to that in Section 2,
especially in the proofs of key concepts, which we therefore put in the appendix to avoid repetitiveness. We also
use much of the same assumptions (1, 2, 3) and analyses for the scalar functions γ and φ.
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I Lemma 28 (Smoothness equivalences). Suppose that f is L-smooth with respect to P. Then the following also
holds:
1. Expansiveness

(∇f(x)−∇f(y))T (x− y) ≥ 1
2L (σP(∇f(x)−∇f(y))2 + σP(∇f(y)−∇f(x))2), (33)

2. Strongly convex conjugate

f(y)− f(x) ≥ ∇f(x)T (y − x) + 1
2LσP(∇f(y)−∇f(x))2. (34)

The proof is in Appendix A.

I Lemma 29 (Uniqueness of gradient). Suppose Assumption 4 holds. If (25) holds, then at the global optimum
x∗, −∇f(x∗) = z∗ + w∗ where z∗ ∈ K◦ is unique and zTw∗ ∈ K.

Proof. Assume that f(x) = f(x∗) for some x 6= x∗, x feasible. Then by optimality conditions,
∇f(x∗)T (x∗ − x) ≤ 0, and thus

f(x)− f(x∗)︸ ︷︷ ︸
=0

≥ ∇f(x∗)T (x− x∗)︸ ︷︷ ︸
≥0

+ 1
2LσP(∇f(x)−∇f(x∗))2,

which implies that σP(∇f(x)−∇f(x∗)) = 0. This means that the vector w = ∇f(x)−∇f(x∗) cannot have any
component in cone(K◦), e.g. it is orthogonal to any z ∈ K. J

4.1 Support recovery
As it was for κP , the domain of rP is cone(P). However, the support of κP(x) and rP(x) are often not equivalent.

I Example 30 (Different optimal support). Consider κP(x) = ‖x‖1 and rP(x) = 1√
2

∑
i

√
|xi|. The constrained

optimization problem

minimize
x

f(x) := −4x1 − 3x2 − 4x3 subject to κP(x) ≤ 1

has optimal solution x∗ = (1/2, 0, 1/2). We verify this from the normal cone condition, where

∇f(x∗)T (x− x∗) ≥ −‖∇f(x∗)‖∞‖x‖1︸ ︷︷ ︸
≤4

+4 ≥ 0.

Note that rP(x∗) = 1 as well. However, taking x = (0,
√

2, 0) also yields rP(x) = 1, and has a lower objective
value

f(x) = −3
√

2 ≈ −4.24 < −4 = f(x∗).

I Example 31 (Different gauge support). The problem can be made even worse, in that the support of x w.r.t.
rP may not even intersect with that w.r.t. κP . Suppose that

P0 =
{[

1
1

]
,

[
0
3

]
,

[
3
0

]}
,

and consider x = (6, 6). Then, taking γ(c) =
√
c, we have two options

x = (0, 3) + (3, 0), κP(x) = 2, rP(x) = 2
√

2 ≈ 2.8,

x = 6 · (1, 1), κP(x) = 6, rP(x) =
√

6 ≈ 2.4.

In other words, the support suppP(x) as defined in (26) may not be the support created by the nonconvex
gauge rP(x), which is often sparser. More generally, rP(x) does not act merely as a concave transformation on
the weights cp in κP , as even the atoms themselves may be selected differently. However, it is worth noting that
this scenario does not happen for the `1 norm or the TV norm, which have unique and consistent supports
across choices of monotonically increasing γ.

Overall, the question of nonunique support of a given vector x over atoms P0 is an interesting one, but not a
focus of this paper, which focuses on cases where the support is always unique.
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4.2 Stationary points
We can rewrite (32), as the combined optimization problem over cp, p ∈ P0:

minimize
cp≥0

f

( ∑
p∈P0

cpp

)
+ φ

( ∑
p∈P0

γ(cp)︸ ︷︷ ︸
=:ξ

)
. (35)

The stationary points of (35) are x satisfying

∀ p ∈ P0 : 0 ∈ ∇f(x)T p+ φ′(ξ) ∂γ(cp), at x =
∑
p∈P

cpp. (36)

Our goal is to find a support of such a stationary point x∗. Given γ smooth everywhere except at 0, note the
close similarity between this and the support optimality conditions for convex gauges:

cp > 0 ⇒ −pT∇f(x∗) = α γ′(cp) (no wiggle room),
cp = 0 ⇒ −pT∇f(x∗) ∈ α · [−∞, γmax] (wiggle room exists).

Here, the wiggle room condition looks asymmetric, but note that if p and −p is in P0, then cp = c−p = 0
implies −p∇f(x∗) ∈ α · [−γmax, γmax], recovering the symmetric condition from Section 2. As before, since γ′ is
a decreasing function, a nonzero coefficient for x∗ does not mean a maximal gradient inner product.

4.3 RP-CGM
In the case that P0 includes directions of recession, we treat them separately by writing P0 = P ′0 ∪ K where
P ′0 contains the important (finite-sized) atoms and K contains directions of recession. We define the reweighted
atomic set for a given reference point x as

P0(u) =
{

1
γ′(coeffP(u, p))p : p ∈ P ′0

}
, P(u) = conv(P0(u)).

Then rP(s;u) = κP(u)(s), with corresponding reweighted support function

σP(u)(z) = max
p∈P0

pT z

γ′(coeffP(u, p)) . (37)

At each iteration, we take a penalized conditional gradient step toward solving the reweighted gauge optimization
problem with dual

(P-general) minimize
x,y∈K

f(x+ y) + φ(r0 + κP(x)(x)),

(D-general) maximize
z∈K◦

−f∗(−z)− φ∗(σP(x)(z)) + r0 · σP(x)(z).

A description of the most generalized version of the reweighted method is given in Algorithm 2.

4.4 Convergence
I Proposition 32 (Residual). Denoting gapP(x;x) the gap at x with reference x, then

gapP(x;x) ≥ 0 ∀ x, gapP(x;x) = 0 ⇐⇒ x is a stationary point of (3).

The proof follows closely that of Proposition 8; see Appendix A for full details.
I Theorem 33 (Convergence). Consider G large enough such that for all t < 6B, ∆(t)t ≤ G and G > 24A.
Given Assumptions 1, 2, 4, 5, with iterates x(t) + y(t) from algorithm 2, using θ(t) = 2/(t+ 1), then

∆(t) ≤ G

t+ 1 and min
i≤t

res(x(i)) ≤ 3G
2 log(2)(t+ 1) .

The details of the proof closely mirror steps in previous works, and thus we give the explicit details in
Appendix B.

Let us compare Theorem 33 with the usual rates for CGM. In [39], the primal convergence rate for vanilla
CGM (with noiseless gradients) is given as ∆(t) ≤ 2Cf

t+2 where Cf is a curvature constant that depends on the
conditioning of f and the size of P . These players appear here in the form of the conditioning of f (quadratic in
L/µ), and implicitly σP̃ (which grows proportionally with diam P). The new players ν0, γmin, and γmax account
for the penalty and nonconvex generalizations.
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Algorithm 2 RP-CGM on general nonconvex sparse optimization
1: procedure RP-CGM(f , φ, γ, P0 = P ′0 ∪ K, max iter T )
2: Initialize with any x(0) ∈ cone(P) where P is the convex hull of P ′0, y(0) ∈ K.
3:
4: for t = 1, . . . , T do
5: Compute the projected negative gradient z = −∇f(x(t) + y(t)).
6: Compute the reweighted atomic set P(x).
7: Compute next atom s = ξp in two steps. . Pick next atom
8: 1. Compute direction p = LMOP(x)(z).
9: 2. Compute magnitude ξ = (φ∗)′(σP(z)).

10: Update x(t+1) = (1− θ(t))x(t) + θ(t)s where θ(t) = 2/(1 + t). . Merge
11: Update y(t+1) = argminy∈K f(x(t+1) + y). . Recession component

return x(T ) + y(T )

4.5 Invariance
Finally, we investigate the linear invariance properties of RP-CGM. Specifically, we consider Q = AP, f(x) =
g(Ax), w = Ax, w = Ax, where A has full column rank. We will have preserved linear invariance if RP-CGM
applied to

min
x
{f(x) : x ∈ P} and min

w
{g(w) : w ∈ Q}

are equivalent. Assume additionally that both x, x ∈ cone(P). Then the following hold.
Penalty. rP(x) = rQ(w). This follows from noting that

x =
∑
p∈P

cpp ⇐⇒ w =
∑
p∈P

cp(Ap) =
∑
q∈Q

c′qq

and in fact noting that the coefficients are equal (c′q = cAp).
Stationarity. We construct P with columns containing the atoms in P ′0, and c such that x = Pc, w = Ax =
APc.

PT∂rP(x) = ∂rP(c) rP(c)=rQ(c)= ∂rQ(c) = PTAT∂rQ(w).

Additionally, for any stationary point x∗, if ∇f(x∗) 6∈ cone(P) then there exists a descent direction that
is uneffected by the penalty rP(x), and thus it must be that ∇f(x∗) ∈ cone(P). By the same token,
AT∇g(w∗) ∈ cone(P). Therefore, the stationary conditions are equivalent: for x∗ = Aw∗,

0 ∈ ∇f(x∗) + PT∂rP(x∗) ⇐⇒ 0 ∈ AT∇g(w∗) +AT∂rQ(w∗).

Additionally, it can be shown through the chain rule that AP(x) = Q(w) and resP(x) = resQ(w). Overall, this
shows that the steps and analysis of RP-CGM are all invariant to linear transformations on x.

4.6 Screening
We now describe the gradient error measured in terms of this “dual gauge”, where the symmetrization P̃ := P∪−P
ensures that σP̃(z − z∗) = σP̃(z∗ − z), bounding errors in both directions.

I Proposition 34 (Gap bound on gradient error). Denote D(x) = rP(x) − rP(x∗) + rP(x;x) − rP(x∗;x) the
linearization error at x. Denoting x∗ a stationary point of (32) and y(x) = argminy′∈K f(x+ y′), then

σP̃(∇f(x+ y(x))−∇f(x∗ + y(x∗))) ≤ LD(x)
2γmin

+

√
L2D(x)2

4γ2
min

+ Lres(x) + LD(x)
σP̃(∇f(x+ y(x)))

γmin
.

The linearization error D(x) = 0 when the regularizer is convex. The proof is similar to that for Proposition 11,
and is detailed in Appendix C.
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I Theorem 35 (Dual screening). For any x and some choice of ε > 0, define the screened set as

Iε(x) = {p ∈ P0 : σP̃(∇f(x)) + pT∇f(x) > ε+ 2
√
Lres(x) + ε}. (38)

Then given Assumptions 1, 2, and 5, if

ε ≥ LD(x)
γmin

max
{

1
2 ,
LD(x)
4γmin

+ σP̃(∇f(x))
}

then p 6∈ suppP(x∗), where x∗ is the optimal variable in (20).

In the convex case, D(x) = 0, and thus we pick ε = 0 in our screening rule. In this scenario, not only does
this screening rule achieve finite-iteration support identification, but the finite time t depends directly on δmin.

5 Experiments

In this section, we explore the convergence behavior and screening ability of P-CGM and RP-CGM on compressed
sensing (with `1, group norm, and TV regularization), and on a sparse logistic regression task on a real world
dataset. The code for all the experiments is publicly available. 2

5.1 Sensing experiment
We first compare the various CGM variants on a simple simulated sparse sensing problem (Figures 2 and 3). We
solve a least squares problem

minimize
x

1
2m‖Ax− b‖

2
2 + φ(rP(x)), (39)

where A ∈ Rm×n as Aij ∼ N (0, 1/n) i.i.d. for i = 1, . . . ,m, j = 1, . . . , n, and for a given x0 with 10% nonzero
sparsity, b = Ax0. Specifically, we pick m = n = 100, where perfect sensing is possible, and either sweep or tune
all the hyperparameters to investigate each case.

An important modification needed to improve the stability of P-CGM and RP-CGM is to intensely diminish
the step size; in particular, using θ(t) = 2/(2 + t) is too aggressive, so instead we use θ(t) = 2/(2 + t+ t0), where
t0 is another tuned hyperparameter. Note that in performance, this does not slow down the convergence or
sensing abilities of the P-CGM and RP-CGM, suggesting that this is a more appropriate step size sequence in
these regimes (and is still O(1/t)). All hyperparamters (α, ρ, t0) were tuned to present the best results for each
individual method. These two collections of figures are presented to illustrate several points:

The gaps (left column) in all cases converges to 0 or machine precision at about a O(1/t) rate.
The screen error (right column), measured as the support difference between x(t) and x∗ the final converged
point, eventually goes to 0, at a speed somewhat correlated with the “aggressiveness” of the method (where
RP-CGM is often more aggressive than P-CGM, but all three variants also depend heavily on choice of
hyperparameter). Note that higher ρ, smaller θ, and smaller α all correspond to more aggressive methods.
In contrast, the support error, measured as the support difference between x(t) and x0 the ground truth,
seems to have better performance when the method is less aggressive. It is hard to make sweeping conclusions,
but suggests that both metrics are essential to evaluate the success of sparse recovery methods.

5.2 Other gauges
We now pursue the sensing problem for more creative choices of P0.

First, we consider the group norm in cases where when x0 has a “pulse-like” structure, in that the signal has
blocks of nonzero activity, separated by long spans of zero activity. This can be modeled as x0 =

∑
i s
i
0 where

si0 is a pulse signal across the ith overlapping window. Figure 4 shows the trajectory for such an experiment,
where the complementary characteristics between the primal variable and dual norms is visible, as over time, the
nonzero blocks of the primal correspond to the maximal blocks of the dual.

Next, we consider the total variation penalization, where κP(x) =
∑
i |xi − xi−1|, and what is plotted is the

cumulative sum of the demeaned z(t) = −∇f(x(t)). Note that at optimality, the peaks of this dual atom exactly
match the “flip points” of x(t).

2 Code link: https://github.com/yifan0sun/rpcgm

https://github.com/yifan0sun/rpcgm
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Figure 2 Small sensing experiment, CGM and P-CGM. The first row shows CGM, with
φ(s) = ιs<α. The next three rows show P-CGM where φ(s) = ρ

p
sp, for various values of p and

corresponding optimal ρ. For the P-CGM experiments, we also used an iteration offset of t0 = 1000.
Offset was not needed for CGM (t0 = 0).



Yifan Sun & Francis Bach 23

Figure 3 Small sensing experiment, RP-CGM. We again use φ(s) = ρ
p
sp, and use a piecewise

LSP function for RP-CGM (γ(w) = log(1 + |w|/θ) if |w| ≤ c, and γ(w) = γ′(c)(w − c) for |w| > c). In
addition to what is labeled in the figure, we use ρ = 0.5, 0.1, 0.01, 0.001 for p = 1.25, 2, 5, 10 respectively
(all tuned for best performance). Additionally, we have t0 = 1000.
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Figure 4 Trajectory of primal variable and dual group norms. Here we investigate RP-CGM
where θ = 1/2, ρ = 0.01, and p = 2. For stability, t0 = 100. The ground truth x0 contains 3 “pulses”,
e.g. areas where it is nonzero, and the goal is to fit x(t) to x0, using this group structure prior.
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RP-CGM where θ = 3/4, ρ = 0.25, and p = 2. For stability, t0 = 100. The ground truth x0 contains 3
flips, and is otherwise smooth. As before, the goal is to fit x(t) to x0, using this group structure prior.
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Figure 6 Dorothea classification experiment For CGM, α = 100. PCGM-1 and RPCGM-1 uses
p = 2, and PCGM-2 and RPCGM-2 uses p = 5. Additionally, RPCGM-1 and RPCGM-2 both use
θ = c = 1/2.

5.3 Dorothea experiment
Finally, we consider a “real world” experiment, in which we use these methods to classify the Dorothea
dataset [35]. Sparse optimization is essential in this application, which has only 1950 samples but 100000
attributes. Additionally, the dataset is heavily imbalanced, with very few positive labels. We run sparse logistic
regression over this dataset, and illustrate the performance of the different methods in Figure 6. Note that the
best implementation reaches an F1 score of about 0.3; without regularization, logistic regression achieves a test
F1 score of about 0.16, highlighting the importance of sparse regularization.3

3 Our F1 scores are not comparable to SOTA on this task, as we use a weak classifier (better models, like boosted decision trees,
do not have differentiable f) and do not account for label imbalance. It is possible that the score may be improved with more
involved data science techniques, which is not the focus of this work.
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6 Discussion

This work considers two variations of the conditional gradient method (CGM): the P-CGM, which accommodates
gauge-based penalties in place of constraints, and the RP-CGM, which allows concave transformations of the
gauges. The gauges may be induced by compact sets, but also accomodate “simple” directions of recession.
We give a convergence rate to a stationary point, and propose a gradient screening rule and support recovery
guarantee. Compared with proximal methods, these CGM-based methods often have a much cheaper per-iteration
cost; e.g. in the group norm, computing the LMO (without reweighting) is trivial compared to even computing
the gauge function itself. Additionally, the almost-for-free computation of the gap and residual quantity makes
screening a very small computational addition.

The key challenge in showing the convergence of these methods is controlling the size of each s(t). This was
trivial in the CGM case when s(t) was constrained in a compact set; when transformed to a penalty, we require
a minimum amount of curvature of φ at ξ → +∞, and we restrict γ to only having strict concavity over a finite
support. However, as shown in the numerical results, these restrictions do not greatly inhibit the sparsifying
effects of the penalty functions.

After determining convergence behavior, we then implement gap-based screening, which allows for knowledge
of the true solution’s sparsity pattern without completing optimization. This is a deliberate tool to reduce
computational cost, and can be used in a number of ways. For nonzero sparsity or group sparsity, we can simply
avoid computation over the “determined zeros”. For problems where the solution is significantly sparse, a 2-stage
solving technique can be used, where after enough zero components have been screened away, the problem can
be solved over the reduced support using a more powerful (e.g. 2nd order) method. And, for problems with a
very large number of atoms that need to be explicitly queried at each iteration (e.g. in submodular optimization)
we can significantly reduce the search space. Therefore we believe these techniques have many practical benefits
in a number of applications.

Finally, we do not incorporate away step [34, 42]. In implementation, they are somewhat orthogonal to
the extensions provided in this work; an away-step implementation of P-CGM and RP-CGM can be directly
implemented, and its analysis is a subject for future work.

A General lemmas

Proof of Lemma 2
Proof. Assume that φ0 is as large as possible; e.g., there exists some finite ξ0 where φ(ξ0) = µξ2

0 − φ0. By
convexity, for all ν ∈ ∂φ(ξ),

φ(ξ)− φ(ξ0) ≤ ν(ξ − ξ0).

Additionally, by the assumption,

µξ2 − φ0 ≤ φ(ξ), ∀ ξ.

Therefore,

µ(ξ2 − ξ2
0) ≤ φ(ξ)− φ(ξ0) ≤ ν(ξ − ξ0),

and therefore, for ξ ≥ ξ0,

ν ≥ µ (ξ + ξ0)(ξ − ξ0)
ξ − ξ0

= µξ + µξ0 ⇐⇒ ξ ≤ µ−1ν − ξ0.

Thus, for any ξ, ν ∈ ∂φ(ξ) must satisfy ξ ≤ max{ξ0, µ−1ν− ξ0} ≤ µ−1ν + ξ0. By Fenchel Young, this must apply
to all ξ ∈ ∂φ∗(ν). J

Proof of Lemma 28
Proof. The proof largely follows from [52], mildly adapted.
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First prove (25)⇒ (33). Construct g(x) = f(x)−xT∇f(y), which is convex, also L-smooth, and has minimum
at x = y. Then, for any w,

g(y) ≤ g(x+ w)
(a)
≤ g(x) +∇g(x)Tw + L

2 κP(w)2,

where (a) is since g is L smooth and convex.
Now pick

w ∈ 1
L
σP(−∇g(x))∂σP(−∇g(x)),

which implies

L

σP(−∇g(x))w ∈ argmax
κP(u)≤1

〈u,−∇g(x)〉 = ∂σP(−∇g(x)),

and thus

κP(w) = σP(−∇g(x))
L

,

and

〈w,−∇g(x)〉 = 1
L
σP(−∇g(x))2.

Then
L

2 κP(w)2 = 1
2LσP(−∇g(x))2,

and plugging in the construction for g gives

g(y)− g(x) ≤ ∇g(x)Tw + L

2 κP(w)2︸ ︷︷ ︸
− 1

2LσP(−∇g(x))2

⇐⇒ f(y)− f(x) ≤ (y − x)T∇f(y)− 1
2LσP(∇f(y)−∇f(x))2.

Applying the last inequality twice gives

(y − x)T (∇f(y)−∇f(x)) ≤ 1
2L ((σP(∇f(x)−∇f(y))2 + (σP(∇f(y)−∇f(x))2).

Now prove (25) ⇒ (34). Using the same g as before, consider

min
z

g(x) + 〈∇g(x), z − x〉+ L

2 κP(x− z)2 = min
w
〈∇g(x), w〉+ L

2 κP(w)2.

Using optimality conditions, picking w = z − y, we have

0 ∈ ∇g(x) + LκP(w)∂κP(w) ⇐⇒ − 1
LκP(w)∇g(x) = argmax

σP(u)≤1
〈u,w〉,

which implies

σP(−∇g(x)) = LκP(w), − 1
LκP(w) 〈w,∇g(x)〉 = κP(w).

so

〈w,−∇g(x)〉 = LκP(w)2 = 1
L
σP(−∇g(x))2,

and overall

g(y) ≥ min
z

g(x) + 〈∇g(x), z − x〉+ L

2 κP(x− z)2 = g(x)− 1
2LσP(−∇g(x))2.

Plugging in f gives

f(y)− f(x) ≥ (y − x)T∇f(y)− 1
2LσP(∇f(y)−∇f(x))2. J
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Proof of Proposition 22
Proof. Without loss of generality, we assume 0 ∈ P, since κP = κP∪{0}. Denote z∗ = −∇f(x∗). Then the
optimality condition for (20) is

z∗ ∈ ∂h(x∗) (?)= α∂κP(x∗), h(x) := φ(κP(x)) (40)

for some α ∈ ∂φ(ξ) at ξ = κP(x∗). Here, (?) is a result from [4, Corollary 16.72].
Since φ is monotonically nondecreasing over R+, α ≥ 0. If α = 0, then ∇f(x∗) = 0 and both results are

trivially true. Now consider α > 0. Noting that κP = σP◦ where P◦ is the polar set of P,

α−1z∗ = argmax
z∈P◦

(x∗)T z ⇐⇒ (z∗)Tx∗ = κP◦(z∗)σP◦(x∗) = κP(x∗)σP(z∗)

which proves (27). Now take the conic decomposition x∗ =
∑
p∈P0

cpp where cp ≥ 0, and

(x∗)T z∗ =
∑
p∈P0

cpp
T z∗ ≤

∑
p∈P0

cp


︸ ︷︷ ︸

=κP(x∗)

(pT z∗)︸ ︷︷ ︸
≤σP(z∗)

,

which is with equality if and only if pT z∗ = σP(z∗) whenever cp > 0, proving (28). J

Proof of Proposition 32
Proof. Denote y = argminy f(x+ y), and z = −∇f(x+ y), and plug in κP(x)(x) = rP(x;x). Then

resP(x) = f(x+ y) + f∗(−z) + φ(rP(x)) + φ∗(σP(x)(z)) + (κP(x)(x)− rP(x)) · σP(x)(z)
(a)= xT∇f(x+ y) + φ(rP(x)) + φ∗(σP(x)(z)) + (κP(x)(x)− rP(x)) · σP(x)(z)
(b)
≥ xT∇f(x+ y) + yT∇f(x+ y)︸ ︷︷ ︸

≥0

+rP(x)σP(x)(z) + (κP(x)(x)− rP(x)) · σP(x)(z)

(b)
≥ xT∇f(x+ y) + κP(x)(x) · σP(x)(z)
(c)
≥ xT∇f(x+ y)− xT∇f(x+ y) = 0

where
(a) uses the Fenchel–Young inequality on f and f∗,
(b) uses the Fenchel–Young inequality on φ and φ∗,
(c) follows since −∇f(x+ y) ∈ K◦ and y ∈ K, and thus yT z ≥ 0, and
(d) follows from the definition of σP(x).
Tightness of (b) occurs iff Fenchel–Young is satisfied with equality, e.g.

σP(x)(z) ∈ ∂φ(rP(x)) (41)

Tightness of (c) occurs iff

σP(x)(z) = −∇f(x)T p
γ′(coeffP(x; p)) , ∀ p, cp 6= 0. (42)

The “element-wise” optimality conditions for (32) are, for all p ∈ P0,

−∇f(x)T p
γ′(coeffP(x; p)) ∈ γ

′(cp) · ∂φ(rP(x)) if cp 6= 0

−∇f(x)T p
γ′(coeffP(x; p)) ≤ γ

′(cp) max
gφ∈∂φ(rP(x))

gφ if cp = 0

which is true iff (41), (42) hold. J
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B Convergence results from Section 4

I Lemma 36 (Iterate gauge control). Given Assumptions 1, 2,5, suppose additionally θ(t) = 2/(t+ 1). Then

κP(s(t) − x(t)) ≤ γmax

γminµ

(
2σP̃(∇f(x∗ + y∗)) +

√
2L∆(t) + 2

t(t− 1)

t−1∑
u=1

√
2L∆(u)

)
+ 2ν0γmax + κP(x(0)).

Proof.

κP(s(t) − x(t))
subadditive

gauge
≤ κP(s(t)) + κP(x(t))

convexity
≤ κP(s(t)) + θ(t−1)κP(s(t−1)) + (1− θ(t−1))κP(x(t−1))

recursion
≤ κP(s(t)) + κP(x(0)) +

t−1∑
u=1

θ(u)
t−1∏

u′=u+1
(1− θ(u′))︸ ︷︷ ︸

= (u+1)u
t(t−1)

κP(s(u))

≤ κP(s(t)) + κP(x(0)) + 2
t(t− 1)

t−1∑
u=1

uκP(s(u)).

In general, for any x, z, x,

κP(x) ≤ γmaxκP(x)(x), σP(z) ≥ 1
γmin

σP(x)(z).

Taking y(u) = argminy∈K f(x(u) + y), z(u) = −∇f(x(u) + y(u)), z∗ = −∇f(x∗ + y∗):

κP(x)(s(u)) = (φ∗)′
(
σP(x)(z(u))

) Asspt. 1
≤ µ−1 · σP(x)(z(u)) + ν0

Bound on γ′
≤ 1

µrmin
σP(z(u)) + ν0

∆-ineq +
Prop. 34
≤ 1

µrmin

(
σP̃(z∗) +

√
2L∆(u)

)
+ ν0.

Putting it all together gives the desired result. J

From Lemmas 37 and 36, we arrive at

∆(t+1) −∆(t) ≤ −θ(t)resP(x(t)) + (θ(t))2
(
B∆(t) +B∆(t−1) +A

)
for constants

A =
(

6Lγ2
max

µ2γ2
min

σP̃(−∇f(x∗ + y∗) + 6γmaxν0 + 3κP(x(0))
)2

, B = 3L2γ2
max

µ2γ2
min

and where ∆(t) is defined as an averaging over square roots, e.g.

√
∆(t) = 2

t(t+ 1)

t∑
u=1

u
√

∆(u).

I Lemma 37 (One step descent). Suppose f is L-smooth w.r.t. P (unweighted). Take

x+ = (1− θ)x+ θs, s = argmin
s̃

∇f(x+ y)T s̃+ h(s;x)

for some θ ∈ (0, 1). Define y = argminy∈K f(x+ y), y+ = argminy∈K f(x+ y). Then

f(x+ + y+) + h(x+)− f(x+ y)− h(x) ≤ −θres(x) + Lθ2

2 κP(s− x)2.
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Proof. From L-smoothness we have

f(x+ + y+)− f(x+ y) ≤ f(x+ + y)− f(x+ y)

≤ ∇f(x+ y)T (x+ − x) + L

2 κP(x+ − x)

= θ∇f(x+ y)T (s− x) + Lθ2

2 κP(s− x)2 (43)

Denote ν = σP̃(x)(−∇f(x+ y)). Since s = ξφ′(ν), then

∇f(x+ y)T s+ φ(r0 + rP(s;x)) = min
s̃
∇f(x+ y)T s̃︸ ︷︷ ︸

=−ξ·ν

+φ
(
r0 + rP(s;x)︸ ︷︷ ︸

=ξ

)
= νr0 − φ∗(ν). (44)

Also, by definition of residual,

resP(x) = f(x+ y) + f∗(∇f(x+ y)) + φ(rP(x+ y)) + φ∗(ν)− r0 · ν

= ∇f(x+ y)T (x+ y)︸ ︷︷ ︸
∇f(x+y)T y≥0

+φ(r(x)) + φ∗(ν)− r0 · ν

≥ ∇f(x+ y)Tx+ φ(r(x)) + φ∗(ν)− r0 · ν. (45)

Therefore taking F (x+ y) = f(x+ y) + φ(r(x)) and combining (43), (44), and (45),

F (x+ + y+)− F (x+ y) = −θres(x) + θ (φ(rP(x))− φ(r0 + rP(s;x)))

+ Lθ2

2 κP(s− x)2 + φ(rP(x+))− φ(rP(x))

Next, by convexity of φ,

(1− θ)φ(rP(x)) + θφ(r0 + rP(s;x)) ≥ φ(rP(x) + rP(x+;x)− rP(x;x))
majorant
≥ φ(rP(x+;x))

which leaves the desired result. J

I Proposition 38 (Linearized objective value bound). Given Assumptions 1, 2, 4, 5, then the objective error of
each linearized problem decreases as

∆(t) = O(1/t).

Proof. Define

A =
(

6Lγ2
max

µ2γ2
min

σP̃(−∇f(x∗ + y∗) + 6γmaxν0 + 3κP(x(0))
)2

, B = 3L2γ2
max

µ2γ2
min

.

Then putting together lemmas 37, 36 and using the relation (a+ b)2 ≤ 2a2 + 2b2 gives

∆(t+1) −∆(t) ≤ −θ(t)resP(x(t)) + (θ(t))2
(
B∆(t) +B∆(t−1) +A

)
.

where ∆(t) is defined as an averaging over square roots, e.g.√
∆(t) = 2

t(t+ 1)

t∑
u=1

u
√

∆(u).

Then picking t > 6B, we get that for all t ≥ t, B(θ(t))2 ≤ θ(t)/3, and therefore

∆(t+1) −∆(t) ≤ −θ(t) resP(x(t))︸ ︷︷ ︸
≥∆(t)

+(θ(t))2
(
B∆(t) +B∆(t−1) +A

)
≤ −θ(t)∆(t) + (θ(t))2

(
B∆(t) +B∆(t−1) +A

)
≤ −2θ(t)∆(t)

3 + (θ(t))2
(
B∆(t−1) +A

)
.
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We now pick G large enough such that for all t ≤ t, ∆(t) ≤ G/t, and G > 24A. Since ∆(t) is always a bounded
quantity (x(t) is always feasible), this is always possible. Then, for all t < t,

√
∆(t) ≤

√
G

t(t+ 1)

t∑
t′=1

√
t′

(a)
≤ 2

√
G

3t(t+ 1) t
3/2,

where (a) is by integral rule, and so

∆(t) ≤ 4Gt
9(t+ 1)2 ≤

G

2t .

Now we make an inductive step. Suppose that for some t, ∆(t′) < G/t′ for all t′ ≤ t. Then

∆(t+1) ≤ ∆(t) − 2
3θ

(t)∆(t) + (θ(t))2(A+B∆(t))

≤ G

t
− 2

3
2G
t+ 1

1
t

+ 4
(t+ 1)2

(
A+ GB

2t

)
= G

t+ 1

(
t+ 1
t
− 4

3t + 4A
(t+ 1)G + 2B

t(t+ 1)

)
≤ G

t+ 1

(
1− 1

3t + 4A
tG

+ 2B
t2

)

= G

t+ 1

1 + 1
t

−1
3 + 4A

G︸︷︷︸
<1/6

+ 2B
t︸︷︷︸

<1/6


 ≤ G

t+ 1 ,

which satisfies the inductive step. J

The following is a generalized and modified version of a proof segment from [39], which will be used for
proving O(1/t) gap convergence.

I Lemma 39. Pick some 0 < T2 < T1 and pick

k = dD(k +D)/(D + T1)e −D ⇒ D

D + T1
≤ k +D

k +D
≤ D

D + T2
.

Then if

C1(D + T1)
D

≤ C3 · log
(
D + T2

D

)
,

then for all k > T1, C1

D + k
+

k∑
i=k

C2

(D + i)2 −
C3

D + i
· 1
D + k

 < 0.

Proof. Using integral rule, we see that

k∑
i=k

1
(D + i)2 ≤

∫ k−1

z=k−1

1
(D + i)2 = 1

D − 1 + k
− 1
D − 1 + k

k∑
i=k

1
D + i

≥
∫ k

z=k

1
D + i

= log(D + k)− log(D + k).
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This yields

c(k) := C1

D + k
+

k∑
i=k

C2

(D + i)2 −
1

D + i
· C3

D + k

≤ C1

D + k
+ C2

D − 1 + k
− C2

D − 1 + k
+ C3

D + k
· (log(D + k)− log(D + k))

≤ C1(D + T1)
D(D + k) + C2

D − 1 + k
− C2

D − 1 + k︸ ︷︷ ︸
<0

+ C3

D + k
· log

(
D

D + T2

)

≤ C1(D + T1)
D(D + k) + C3

D + k
· log

(
D

D + T2

)
< 0. J

I Lemma 40 (Generalized non-monotonic gap bound). Given
∆(t) ≤ G1

t+D for some G1,
θ(t) = G2

t+D for some G2 and D, and
∆(t+1) −∆(t)(1 + αθ(t)) ≤ −θ(t)res(x(t)) + (θ(t))2G3 for some G3,

then for

G4 ≥
G1

G2

(D + 2)
D(log

(
D+1
D

)
)
,

we have

min
i≤t

res(x(i)) ≤ G4

t+D
.

Proof. We have

∆(t+1) −∆(t) ≤ αθ(t)∆(t) − θ(t)gap(t) +G3(θ(t))2.

Now assume that for all i ≤ t, gap(i) > G4
t+D . Then, telescoping from t to t gives

∆(t+1) ≤ ∆(t) +
t∑
i=t

(
αθ(i)∆(i) − θ(i)gap(i) +G3(θ(i))2

)

<
G1

t+D
+

t∑
i=t

(
α

G1G2

(i+D)2 −
G2

i+D

G4

t+D
+ G3G

2
2

(i+D)2

)
.

Picking C1 = G1, C2 = αG1G2 +G3G
2
2, C3 = G2G4, and invoking Lemma 39, this yields that ∆(t+1) < 0,

which is impossible. Therefore, the assumption must not be true. J

Piecing everything in this section together gives Theorem 33 (main convergence theorem.)

C Screening proofs from Section 4

Proof of Proposition 34
Proof. First, note that

φ∗(σP(x)(z)) + r0 · (σP(x)(z)) = sup
y

yT z − φ(r0 + κP(x)(y))

≥ zTx∗ − φ(r0 + κP(x)(x∗)). (46)

Define res(x) = (F (x;x) − FD(−∇f(x);x). Taking (x,−∇f(x)) as a feasible primal-dual pair and reference
point x = x, and denoting ε(x) = φ(r0 + κP(x)(x∗))− φ(x∗), z = −∇f(x+ y(x)), and z∗ = −∇f(x∗ + y(x∗)),
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then

res(x) = f(x) + f∗(z)︸ ︷︷ ︸
use Fenchel–Young

+φ(r(x))

+ φ∗(σP(x)(z)− r0 · (σP(x)(z))︸ ︷︷ ︸
use (46)

≥ −zT (x− x∗) + φ(rP(x))− φ
(
r0 + κP(x)(x∗)

)
+ε(x)−ε(x)
≥ −zT (x− x∗) + φ(rP(x))− φ(rP(x∗))︸ ︷︷ ︸

convex in x

−ε(x)

g∈∂h(x∗)
≥ −zT (x− x∗) + gT (x− x∗)− ε(x).

Picking in particular g = −∇f(x∗ + y(x∗)),

res(x) + ε(x) ≥ (x− x∗)T (z∗ − z)
(?)
≥ 1

L
σP̃(z − z∗)2

where (?) follows from Assumption 5.
Next, note that

ε(x) = φ(rP(x)− rP(x;x) + rP(x∗;x))− φ(rP(x∗))
convex φ
≤ gφ (rP(x)− rP(x;x) + rP(x∗;x)− rP(x∗))︸ ︷︷ ︸

=:D(x)

for all gφ ∈ ∂φ(rP(x∗)), where in general, D(x) ≤ (γmax − γmin)κP̃(x− x∗) and D(x) = 0 if γ(ξ) = ξ (convex
case). Noting that, at optimality,

∂φ(rP(x∗)) 3 σP(x∗)(z∗) ≤
σP̃(z∗)
γmin

,

then

γminφ
′(r(x∗)) ≤ σP̃(z∗) ≤ σP̃(z) + σP̃(z − z∗)

and overall,

σP̃(z∗ − z)2 ≤ Lres(x) + Lε(x)

≤ Lres(x) + LD(x)
σP̃(z) + σP̃(z∗ − z)

γmin
.

This inequality is quadratic in σP̃(z∗ − z), which leads to the bound

σP̃(z∗ − z) ≤ LD(x)
2γmin

+

√
L2D(x)2

4γ2
min

+ Lres(x) + LD(x)
σP̃(z)
γmin

. J
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