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Abstract
The concepts of risk aversion, chance-constrained optimization, and robust optimization have developed significantly over
the last decade. The statistical learning community has also witnessed a rapid theoretical and applied growth by relying
on these concepts. A modeling framework, called distributionally robust optimization (DRO), has recently received
significant attention in both the operations research and statistical learning communities. This paper surveys main
concepts and contributions to DRO, and relationships with robust optimization, risk aversion, chance-constrained
optimization, and function regularization. Various approaches to model the distributional ambiguity and their
calibrations are discussed. The paper also describes the main solution techniques used to the solve the resulting
optimization problems.

Digital Object Identifier 10.5802/ojmo.15

2020 Mathematics Subject Classification 90C15, 90C22, 90C25, 90C30, 90C34, 90C90, 68T37, 68T05.

Keywords Distributionally robust optimization; Robust optimization; Stochastic optimization; Risk-averse optimization;
Chance-constrained optimization; Statistical learning.

Contents

1 Introduction 1
2 Optimality Gap and Performance Guarantees 7
3 Relationship with Risk Aversion, Chance-Constrained Optimization, and Regularization 8
4 General Solution Techniques to Solve DRO Models 13
5 Cost Function of the Inner Problem 18
6 Ambiguity Sets of Probability Distributions 21
7 Calibration of the Ambiguity Set of Probability Distributions 58
8 Modeling Toolboxes 65
9 Conclusion and Future Research Directions 65
Appendix: Proofs and Further Discussions 66

1 Introduction

Many real-world decision problems arising in engineering and management have uncertain parameters. This
parameter uncertainty may be due to limited observability of data, noisy measurements, implementations and
prediction errors. Stochastic optimization (SO) and robust optimization (RO) frameworks have classically allowed
to model this uncertainty within a decision-making framework. SO assumes that the decision maker has complete
knowledge about the underlying uncertainty through a known probability distribution and minimizes a functional
of the cost, see, e.g., Birge and Louveaux [57], Shapiro et al. [374]. The probability distribution of the random
parameters can be inferred from prior beliefs, expert opinions, errors in predictions based on the historical data
(e.g., Kim and Mehrotra [220]), or a mixture of these. In RO, on the other hand, it is assumed that the decision
maker has no distributional knowledge about the underlying uncertainty, except for its support, and the model
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2 Frameworks and Results in Distributionally Robust Optimization

minimizes the worst-case cost over an uncertainty set, see, e.g., Ben-Tal et al. [30], Ben-Tal and Nemirovski
[22, 23], Bertsimas and Sim [43], El Ghaoui and Lebret [133], El Ghaoui et al. [134]1.

We often have partial knowledge on the statistical and/or structural properties of the underlying probability
distribution of the model parameter uncertainty, such as mean, symmetry, and unimodality. Specifically, the
probability distribution quantifying the model parameter uncertainty is known ambiguously2. A typical approach
to handle this ambiguity, from a statistical point of view, is to estimate the probability distribution using
statistical tools, such as the maximal likelihood estimator, minimum Hellinger distance estimator (Vidyashankar
and Xu [402]), or maximum entropy principle (Grünwald and Dawid [166]). The decision-making process can
then be performed with respect to the estimated distribution. Because such an estimation may be imprecise,
the impact of inaccuracy in estimation (and the subsequent ambiguity in the underlying distribution) is widely
studied in the literature through (1) the perturbation analysis of optimization problems, see, e.g., Bonnans and
Shapiro [69], (2) stability analysis of a SO model with respect to a change in the probability distribution, see,
e.g, Rachev [323], Römisch [341], or (3) input uncertainty analysis in stochastic simulation models, see, e.g.,
Lam [227] and references therein. The typical goals of these approaches are to quantify the sensitivity of the
optimal value/solution(s) to the probability distribution and provide continuity and/or large-deviation-type
results, see, e.g., Dupačová [128], Heitsch et al. [185], Pflug and Pichler [299], Rachev and Römisch [324], Schultz
[353]. While these approaches quantify the input uncertainty, they do not provide a systematic decision-making
framework to hedge against the ambiguity in the underlying probability distribution.

Ambiguous stochastic optimization is a systematic modeling approach that bridges the gap between data
and decision-making (statistics and optimization frameworks) to protect the decision-maker from the ambiguity
in the underlying probability distribution. The ambiguous stochastic optimization approach assumes that the
underlying probability distribution is unknown and lies in an ambiguity set of probability distributions. As in
robust optimization, this approach hedges against the ambiguity in the probability distribution by taking a
worst-case approach. Scarf [351] is arguably the first to consider such an approach to obtain an order quantity for
a newsvendor problem to maximize the worst-case expected profit, where the worst-case is taken with respect to
all product demand probability distributions with a known mean and variance. Since Scarf’s seminal work, and
particularly in the past few years, significant research has been done on the ambiguous stochastic optimization
model. This paper provides a review of the theoretical, modeling, and computational developments in this area.
This paper also puts the ambiguous stochastic optimization approach in the context of risk-averse optimization,
chance-constrained optimization, and robust optimization.

1.1 A General DRO Model
We now formally introduce the model formulation that we discuss in this paper. Let x ∈ X ⊆ Rn be the decision
vector. On a measurable space (Ξ,F), let us define a random vector ξ : Ξ 7→ Ω ⊆ Rd and random functions
hj(x, ξ) : X × Ξ 7→ R, j = 0, 1, . . . ,m. Given this setup, a general stochastic optimization problem has the form

inf
x∈X
{RP [h0(x, ξ)] |RP [hj(x, ξ)] ≤ 0, j = 1, . . . ,m} , (SO)

where P denotes a (known) probability measure on (Ξ,F) and RP : Z 7→ R denotes a real-valued functional under
P , where Z is a linear space of measurable functions on (Ξ,F). The functional RP accounts for quantifying the
uncertainty in the outcomes of the decision under P . This setup represents a broad range of problems in statistics,
optimization, and control, such as regression and classification models (Friedman et al. [144], James et al. [210]),
simulation-optimization (Fu [145], Pasupathy and Ghosh [295]), stochastic optimal control (Bertsekas [37]),
Markov decision processes (Puterman [321]), and stochastic programming (Birge and Louveaux [57], Shapiro
et al. [374]).

1 The concept of robustness in mathematical programming is developed independently in Mulvey et al. [270] and Ben-Tal and
Nemirovski [22]. Both papers share the same name, robust optimization, and pursue the same goal to address uncertainty, yet
in distinct ways. Mulvey et al. [270] propose robust optimization of large-scale systems to address the case that data takes
values from a discrete scenario set, by using a regularization of the objective function to control its sensitivity and a penalty
function to control constraint violation. On the other hand, Ben-Tal and Nemirovski [22] propose robust convex optimization
for problems with data uncertainty described by an ellipsoid, by taking a worst-case approach. In this paper, we deal with
uncertainty in the sense of Ben-Tal and Nemirovski [22], a worst-case approach.

2 The concept of ambiguity is defined in the sense of Knight Knight [222], where the probability distribution of the unknown
uncertain parameters is unknown/uncertain itself. This concept is different from the assumption in stochastic programming,
where the probability distribution of the random parameters is known.
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As a special case of (SO), we have the classical stochastic programming problems:

inf
x∈X

EP [h0(x, ξ)] , (1)

and

inf
x∈X
{h0(x) |EP [hj(x, ξ)] ≤ 0, j = 1, . . . ,m} , (2)

where RP [ · ] is taken as the expected-value functional EP [ · ]. Note that when

h0(x, ξ) = inf
y(ξ)

{
φ0(x,y(ξ), ξ)

∣∣φl(x,y(ξ), ξ) ≥ 0, l = 1, . . . , κ, y(ξ) ∈ Zq1 × Rq−q1
}
,

we have the class of two-stage stochastic programs with recourse. In particular,

h0(x, ξ) = inf
y(ξ)

c>x+ q>(ξ)y(ξ) s.t.
{
W (ξ)y(ξ) ≥ r(ξ)− T (ξ)x,
y(ξ) ∈ Zq1 × Rq−q1 ,

(3)

corresponds to the class of two-stage stochastic programs with a linear recourse with mixed integer variables in
the second stage.

Moreover, by taking h0(x, · ) := 1S0(x)( · ) in (1), where 1S0(x)( · ) denotes an indicator function for an
arbitrary set S0(x) ⊆ B(Rd) (we define the indicator function and B(Rd) precisely in Section 1.4), we obtain the
class of problems with a probabilistic objective function, see, e.g., Prékopa [317], as follows

inf
x∈X

P{ξ ∈ S0(x)}, (4)

The set S0(x) may be in the form of a single constraint3, e.g.,

S0(x) :=
{
ξ ∈ Ξ

∣∣a(x)>ξ ≤ b(x)
}

or S0(x) :=
{
ξ ∈ Ξ

∣∣a(ξ)>x ≤ b(ξ)
}
,

or several constraints, e.g.,

S0(x) := {ξ ∈ Ξ |A(x)ξ ≤ b(x)} or S0(x) := {ξ ∈ Ξ |A(ξ)x ≤ b(ξ)} .

Similarly, by taking hj(x, · ) := 1Sj(x)( · ), j = 1, . . . ,m, for suitable indicator functions 1Sj(x)( · ), j = 1, . . . ,m,
(2) is in the form of a chance-constrained program as follows (see, e.g., Charnes and Cooper [79], Charnes et al.
[81], Dentcheva [111], Prékopa [315, 316]):

inf
x∈X
{h0(x) |P{ξ ∈ Sj(x)} ≤ 0, j = 1, . . . ,m} . (5)

Note that the case where the set Sj(x) is formed via several constraints is called joint chance constraint as
compared to individual chance constraint, where the event Sj(x) is formed via one constraint, j = 1, . . . ,m4.

A robust optimization model is defined as

inf
x∈X

{
sup
ξ∈U

h0(x, ξ)

∣∣∣∣∣ sup
ξ∈U

hj(x, ξ) ≤ 0, j = 1, . . . ,m
}
, (RO)

where U ⊆ Rd denotes an uncertainty set for the parameters ξ. Similar to (SO),

inf
x∈X

sup
ξ∈U

h0(x, ξ) (6)

and

inf
x∈X

{
h0(x)

∣∣∣∣∣ sup
ξ∈U

hj(x, ξ) ≤ 0, j = 1, . . . ,m
}

(7)

3 We say a set of the form S0(x) =
{
ξ ∈ Ξ

∣∣a(x)>ξ ≤ b(x)
}

is bi-affine in x and ξ if a(x) and b(x) are both affine in x.
Similarly, we say a set of the form S0(x) =

{
ξ ∈ Ξ

∣∣a(ξ)>x ≤ b(ξ)
}
is bi-affine in x and ξ if a(ξ) and b(ξ) are both affine in ξ.

4 Observe that a bi-affine set of the form S0(x) =
{
ξ ∈ Ξ

∣∣a(x)>ξ ≤ b(x)
}

can be equivalently written as a bi-affine set of the
form S0(x) =

{
ξ ∈ Ξ

∣∣a(ξ)>x ≤ b(ξ)
}
, and vice versa. With a parallel reasoning, we can define hj( · , ξ) := 1Sj(ξ)( · ), where

1Sj(ξ)( · ) denotes an indicator function for an arbitrary set Sj(ξ) ⊆ Rn, j = 0, 1, . . . ,m. Hence, we obtain the probabilistic
objective function P{x ∈ S0(ξ)}, and the probabilistic constraints P{x ∈ Sj(ξ)} ≤ 0, j = 1, . . . ,m.
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are two special cases of (RO).
Problem (SO), as well as (1) and (2), require the knowledge of the underlying measure P , whereas (RO),

as well as (6) and (7), ignore all distributional knowledge of ξ, except for its support. An ambiguous version
of (SO) is formulated as

inf
x∈X

{
sup
P∈P
RP [h0(x, ξ)]

∣∣∣∣ sup
P∈P
RP [hj(x, ξ)] ≤ 0, j = 1, . . . ,m

}
. (DRO)

Here, P denotes an ambiguity set of probability measures, e.g., a family of measures consistent with the prior
knowledge about uncertainty. Note that if we consider the measurable space

(
Rd,B(Rd)

)
, as opposed to (Ξ,F),

then P can be viewed as an ambiguity set of probability distributions P induced by ξ5.
As discussed before, (DRO) finds a decision that minimizes the worst-case of the functional RP of the cost

h0 among all probability measures in the ambiguity set provided that the worst-case of the functional RP of the
function hj , j = 1, . . . ,m, is non-positive. The ambiguous versions of (1) and (2) are formulated as follows:

inf
x∈X

sup
P∈P

EP [h0(x, ξ)] , (8)

and

inf
x∈X

{
h0(x)

∣∣∣∣ sup
P∈P

EP [hj(x, ξ)] ≤ 0, j = 1, . . . ,m
}
. (9)

Models (8) and (9) are discussed in the context of minimax stochastic optimization models, in which optimal
solutions are evaluated under the worst-case expectation with respect to a family of probability distributions
of the uncertain parameters, see, e.g., Scarf [351]; Žáčková [437] (a.k.a. Dupačová); Breton and El Hachem
[71], Dupačová [127], Shapiro and Ahmed [369], Shapiro and Kleywegt [370]. Delage and Ye [105] refer to this
approach as distributionally robust optimization, in short DRO, and since then, this terminology has become
widely dominant in the research community. We adopt this terminology, and for the rest of the paper, we refer
to the ambiguous stochastic optimization of the form (DRO) as DRO.
I Remark 1. Problem (8) yields a pessimistic minimax criterion for decision-making under uncertainty, which
conservatively minimizes the worst-case expected cost. Alternatively, one may consider an optimistic minimin
criterion infx∈X infP∈P EP [h0(x, ξ)], which aggressively minimizes the best-case expected cost. A trade-off
between pessimistic and optimistic objectives, known as Hurwicz criterion, is formulated in Hurwicz [207] as

inf
x∈X

{
λ sup
P∈P

EP [h0(x, ξ)] + (1− λ) inf
P∈P

EP [h0(x, ξ)]
}
,

The minimin criterion, or the more general the Hurwicz criteria, typically leads to non-convex optimization
problems.

In this paper, we mostly focus on static and two-stage problems of the form (8) and (9), while we also mention
some results on their dynamic versions. For references, we introduce a dynamic version of (8), referred to as
multistage DRO, below. To formally define the problem, assume that the uncertain parameters are realized over
time and are represented by a stochastic process ξ := (ξ1, . . . , ξT ), where ξt : Ω 7→ Ξt ⊆ Rdt and is composed of
the random parameters in stage t. We assume that ξ1 is a degenerate random vector. Let ξ[t] := (ξ1, . . . , ξt)
denote the history of the stochastic process up to (and including) time t. A multistage DRO problem is formed
as

min
x1∈X1

h1(x1, ξ1) + max
P2∈P2|ξ[1]

EP2

[
min
x2∈X2

h2(x2, ξ2)

+ max
P3∈P3|ξ[2]

EP3

[
. . .+ max

PT∈PT |ξ[T−1]

EPT
[

min
xT∈XT

hT (xT , ξT )
]
. . .

]]
. (10)

Above, in stage t, t = 1, . . . , T , the set-valued mapping Xt := Xt(x[t−1], ξ[t]) ⊂ Rnt denotes a feasibility set and
ht : Rnt×Rdt 7→ R is a random function, given the decision xt and the realized uncertainty ξt. Moreover, Pt+1|ξ[t]

5 In this paper, we use P to denote both an ambiguity set of probability measures and an ambiguity set of distributions induced
by ξ. Whether P denotes an ambiguity set of probability measures or an ambiguity set of distributions induced by ξ should be
understood from the context and the distinction we make between the notation of a probability measure P and a probability
distribution P.
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is the conditional ambiguity set for the conditional distribution of ξt+1, conditioned on ξ[t], t = 1, . . . , T − 1.
Also, EPt+1 [ · ] denotes the conditional expectation with respect to Pt+1 ∈ Pt+1|ξ[t]

.
As mentioned before, (DRO) is a modeling approach that assumes only partial distributional information,

whereas (SO) assumes complete distributional information. In fact, if P contains only the true distribution of
the random vector ξ, (DRO) reduces to (SO). On the other hand, if P contains all probability distributions on
the support of the random vector ξ, supported on U , then, (DRO) reduces to (RO). Thus, a judicious choice of
P can put (DRO) between (SO) and (RO). Consequently, (DRO) may not be as conservative as (RO), which
ignores all distributional information, except for the support U of the uncertain parameters. (DRO) can be
viewed as a unifying framework for (SO) and (RO) (see Qian et al. [322]).

Below, we discuss two different perspectives on the relationship between DRO and RO.
I Remark 2. Suppose that Ξ has M atoms, Ξ = {s1, . . . , sM}. Then, for a fixed x ∈ X , h0(x, ξ) has M possible
outcomes {h0(x, ξ(s1)), . . . , h0(x, ξ(sM ))}. For short, let us write these outcomes as a vector h(x) ∈ RM , where
hm(x) := h0(x, ξ(sm)). In (8), P is a subset of all probability measures on ξ. So, one can think of P as a subset
of all discrete probability distributions P on Rd induced by ξ. That is, P can be identified with a vector p ∈ RM .
Consequently, P may be interpreted as a subset of RM . With this interpretation, (8) is written as

inf
x∈X

sup
p∈P

p>h(x). (11)

Setting f(x,p) := p>h(x), we can rewrite (11) as infx∈X supp∈P f(x,p). This problem has the form of (6),
where the probability vector p takes values in an “uncertainty set” P. For a through treatment of different
nonlinear functions f(x,p) and different uncertainty sets P , we refer to Ben-Tal et al. [33]. The other perspective
on the relationship between DRO and RO arises when type of the probability distribution is known but its
parameters are unknown. For example, the probability distribution may be assumed to be normal, but its mean
and variance are unknown, see, e.g., Goldfarb and Iyengar [161]. With the above-mentioned perspectives, it
can be said that problem-driven and statistical techniques that are applicable for specifying the uncertainty
set in a RO model may now be used to specify P in (11), see, e.g., Ben-Tal and Nemirovski [23, 25], Bertsimas
et al. [51, 46], Chen et al. [91], Long et al. [252] (see also Section 3.1.2). We also refer to Xu et al. [424] for a
distributional interpretation of RO. DRO has the richness that allows Ξ to be continuous without specifying the
type of the distribution a priori.

1.2 Motivation and Contributions
In this paper, we provide an overview of the main contributions to DRO within both operations research and
machine learning communities. This paper is an adaptation of authors’ unpublished manuscript Rahimian and
Mehrotra [326]. While there are separate review papers on RO, see, e.g., Bertsimas et al. [49], Gabrel et al.
[146], Gorissen et al. [163], to the best of our knowledge, there are only a few tutorials and survey papers on
DRO within these communities. A tutorial on DRO, its connection to risk-averse optimization, and the use of
φ-divergence to construct the ambiguity set is presented in Bayraksan and Love [17]. Kuhn et al. [224] study
DRO models with Wasserstein ambiguity sets and discuss their applications in machine learning. Shapiro [368]
provides a general tutorial on DRO and its connection to risk-averse optimization. Postek et al. [311] survey
different papers that address distributionally robust risk constraints, with a variety of risk functionals and
ambiguity sets. Similar to Bayraksan and Love [17], Postek et al. [311], Shapiro [368], in this paper, we show the
connection between DRO and risk aversion. However, the current review is different from those in the literature
from many different perspectives. We outline our contributions as follows:

We bring together the research done on DRO within the operations research and machine learning communities.
This motivation is materialized throughout the paper as we take a holistic view of DRO, from modeling, to
solution techniques and to machine learning applications.
We provide a detailed discussion on how DRO models are connected to different concepts such as game theory,
risk-averse optimization, chance-constrained optimization, robust optimization, and function regularization
in statistical learning.
From the algorithmic perspective, we review techniques to solve a DRO model.
From the modeling and theoretical perspectives, we categorize different approaches to model the distributional
ambiguity and discuss results for each of these ambiguity sets, by focusing on the structure of functions
hj(x, ξ), j = 0, 1, . . . ,m. Moreover, we discuss the calibration of different parameters used in these ambiguity
sets of distributions.
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1.3 Organization of this Paper

This paper is organized as follows. Section 2 discusses the notion of optimality gap and generalization bound in
optimization. Section 3 reviews the connection of DRO to different concepts: risk aversion and chance-constrained
optimization with its relationship to robust optimization in Section 3.1, and regularization in statistical learning
in Section 3.2. In Section 4, we review three main solution techniques to solve a DRO model by introducing tools
in semi-infinite programming and duality. In Section 5, we discuss different functionals that quantify uncertainty
in the outcomes of a fixed decision. This includes regret functions in Section 5.1, risk measures in Section 5.2,
and utility functions in Section 5.3. In Section 6, we discuss different models to construct the ambiguity set
of distributions. This includes discrepancy-based models in Section 6.1, moment-based models in Section 6.2,
shape-preserving-based models in Section 6.3, and kernel-based models in Section 6.4. In Section 7, we discuss
the calibration of different parameters used in the ambiguity set of distributions. In Section 8, we introduce
some modeling toolboxes for a DRO model. We end the paper in Section 9 with some conclusions and directions
of future research.

1.4 Notation and Basic Definitions

In this section, we introduce additional notation used throughout the paper. In order to keep the paper self-
contained, we also introduce all definitions used in this paper. For a given space Ξ and a σ-field F of that space,
we define an underlying measurable space (Ξ,F). In particular, let us define (Rd,B(Rd)), where B(Rd) is the
Borel σ-field on Rd. Let 1A : Ξ 7→ {0, 1} indicate the indicator function of set A ∈ F where 1A(s) = 1 if s ∈ A,
and 0 otherwise. Let M+ (Ξ,F) and M (Ξ,F) denote the set of all nonnegative measures and the set of all
probability measures Q : F 7→ [0, 1] defined on (Ξ,F), respectively. A measure ν2 is preferred over a measure ν1,
denoted as ν2 � ν1 if ν2(A) ≥ ν1(A) for all measurable sets A ∈ F . We denote by Q{A} the probability of event
A ∈ F , with respect to Q ∈M (Ξ,F). A random vector on the measurable space (Ξ,F) is defined as ξ : Ξ 7→ Rd.
We use the same notation to denote a realization of the random vector, and the distinction should be understood
from the context. For a probability measure Q ∈M (Ξ,F), we define a probability space (Ξ,F , Q). We denote by
Q := Q ◦ ξ−1 the probability distribution induced by a random vector ξ under Q, where ξ−1 denotes the inverse
image of ξ. That is, Q : B(Rd) 7→ [0, 1] is a probability distribution on (Rd,B(Rd)). Let P( · , · ) denote the set of
all such probability distributions. For example, P(Rd,B(Rd)) denotes the set of all probability distributions of ξ.
Note that in our notation, we make a distinction between a probability measure Q ∈M (Ξ,F) and a probability
distribution Q ∈ P(Rd,B(Rd)). Nevertheless, we have always an appropriate transformation, so we might use
the terminology of probability measure and probability distribution interchangeably. Given this, for a function
f : Rd 7→ R, we may write

∫
Ξ f(ξ(s))Q(ds) equivalently as

∫
Rd f(s)Q(ds) with a change of measure. As we shall

see later, we may denote f(ξ(s)) with f(s) in this transformation. For two random variables Z,Z ′ : Ξ 7→ R,
we use Z ≥ Z ′ to denote Z(s) ≥ Z ′(s) almost everywhere (a.e.) on Ξ. A random variable Z is Q-integrable if
‖Z‖1 :=

∫
Ξ |Z|dQ is finite. Two random variables Z,Z ′ are distributionally equivalent, denoted by Z d∼ Z ′, if

they induce the same distribution, i.e., Q{Z ≤ z} = Q{Z ′ ≤ z}. We also denote by S(Ξ,F) the collection of all
F-measurable functions Z : (Ξ,F) 7→ (R,B(R)), where R denotes the extended real line R ∪ {−∞,+∞}.

For Ξ with M atoms Ξ = {s1, . . . , sM} and F = 2Ξ, let {q(s1), . . . , q(sM )} be the probabilities of the
corresponding elementary events under probability measure Q ∈ M (Ξ,F). As a shorthand notation, we use
q = [q1, . . . , qM ]T ∈ RM , where qi := q(si), i ∈ {1, . . . ,M}. An F-measurable function Z : Ξ 7→ R has M
outcomes {Z(s1), . . . , Z(sM )} with probabilities {q1, . . . , qM}. For short, we identify Z as a vector in RM , i.e.,
z = [z1, . . . , zM ]T with zi := Z(si), i ∈ {1, . . . ,M}.

Consider a linear space V, paired with a dual linear space V∗, in the sense that a (real-valued) bilinear
form 〈 · , · 〉 : V × V∗ 7→ R is defined. That is, for any v ∈ V and v∗ ∈ V∗, we have that 〈 · , v∗〉 : V 7→ R
and 〈v, · 〉 : V∗ 7→ R are linear functionals on V and V∗, respectively. Similarly, we define W and W∗. For
a linear mapping A : V 7→ W, we define the adjoint mapping A∗ : W∗ 7→ V∗ by means of the equation
〈w∗,Av〉 = 〈A∗w∗, v〉, ∀ v ∈ V. For two linear mappings, defined by finite dimensional matrices A and B,
A • B = Tr(A>B) denotes the Frobenius inner product between matrices. Moreover, A � B denotes the
Hadamard (i.e., componentwise) product between matrices.

For a function f : V 7→ R, the (convex) conjugate f∗ : V∗ 7→ R is defined as f∗(v∗) = supv∈V{〈v∗, v〉 − f(v)}.
Similarly, the biconjugate f∗∗ : V 7→ R is defined as f∗∗(v) = supv∗∈V∗{〈v∗, v〉 − f∗(v∗)}. The characteristic
function δ( · |A) of a nonempty set A ∈ V is defined as δ(v|A) = 0 if v ∈ A, and +∞ otherwise. The support
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function of a nonempty set A ∈ V is defined as the convex conjugate of the characteristic function δ(·|A):
δ∗(v∗|V) = supv∈V{〈v∗, v〉 − δ(v|A)} = supv∈V〈v∗, v〉.

For Q ∈M (Ξ,F), let L∞ (Ξ,F , Q) be the linear space of all essentially bounded F -measurable functions Z.
A function Z is essentially bounded if ‖Z‖∞ := ess sups∈Ω |Z(s)| is finite, where

ess sup
s∈Ξ

|Z(s)| := inf
{

sup
s∈Ξ
|Z ′(s)|

∣∣∣∣∣ Z(s) = Z ′(s)a.e.s ∈ Ξ
}
.

We denote by ‖ · ‖p : Rd 7→ R the `p-norm on Rd. That is, for a vector u ∈ Rd, ‖u‖p =
(∑d

i=1 |ui|p
) 1
p . We

use ∆d to denote the simplex in Rd, i.e., ∆d =
{
u ∈ Rd

∣∣ e>u = 1, u ≥ 0
}
, where e is a vector of ones in Rd.

For a proper cone K, the relation x 4K y indicates that y−x ∈ K. For simplicity, we drop K from the notation,
when K is the positive semidefinite cone. Let Sn+ denote the cone of symmetric positive semidefinite matrices in the
n×n matrix spaces Rn×n. For a cone K ⊂ V , we define its dual cone as K′ := {v∗ ∈ V∗ | 〈v∗, v〉 ≥ 0, ∀ v ∈ K}. The
negative of the dual cone is called polar cone and is denoted by Ko. The K-epigraph of a function f : RN 7→ RM
and a proper cone K is conic-representable if the set

{
(x,y) ∈ RN × RM

∣∣f(x) 4K y
}
can be expressed via

conic inequalities, possibly involving a cone different from K and additional auxiliary variables.
For a set K, we use conv(K) and int (K) to denote the convex hull and the interior of K, respectively. We let

[d] denote the index set {1, . . . , d}. We also let ( · )+ denote max{0, · }.

Acknowledgement
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2 Optimality Gap and Performance Guarantees

In this section, we first discuss the optimality gap and performance guarantees in solving (1) using a data-driven
approach. Then, we discuss these concepts in solving (8) using a data-drive approach.

For every approach that uses a set of (training) samples to prescribe a solution or to predict an outcome, it
is important to assess the out-of-sample quality of the prescriber/predictor under a new set of (test) samples,
independent from the training samples {ξi}Ni=1. Let P̂N be a nominal probability distribution estimated based on
{ξi}Ni=1. Because P̂N is a function of {ξi}Ni=1, hence, it is random itself. Suppose that PN denotes the sampling
distribution of P̂N , or N training samples. Also, let Ptrue be the unknown true distribution. Let us consider
a data-driven solution (or, in-sample solution) xN that is constructed using {ξi}Ni=1. The in-sample risk of
xN is defined as RP̂N

[h0(xN , ξ)]. Additionally, The out-of-sample risk of xN is defined as RPtrue [h0(xN , ξ)],
which is the risk of xN given a new (test) sample that is independent of {ξi}Ni=1, drawn from the unknown true
distribution Ptrue.

I Proposition 3. Suppose that P̂N is a nominal probability distribution estimated based on {ξi}Ni=1, governed by the
distribution PN . For any data-driven solution xN , suppose that the in-sample risk RP̂N

[h0(xN , ξ)] underestimates
the out-of-sample performance RPtrue [h0(xN , ξ)] on average, i.e., EPN

[
RP̂N

[h0(xN , ξ)]
]
≤ RPtrue [h0(xN , ξ)].

Then, any minimizer x∗N of infx∈X RP̂N
[h0(x, ξ)] yields an optimistically biased risk on average.

Proof. See Appendix A. J

Having a negative optimality gap on average is a known result in SO, see, e.g., Bayraksan and Morton
[18, 19], Homem-de-Mello and Bayraksan [192]. A data-driven solution x∗N for a problem of the form (1) can be
obtained by solving a sample average approximation (SAA) of that problem, where the underlying distribution
is chosen to be P̂N Shapiro et al. [374]. It is well-known that SAA yields an optimistically biased optimal value
on average even if P̂N is an unbiased estimator of Ptrue.

Nonetheless, as Ptrue is unknown, one need to establish performance guarantees. One such guarantee, referred
to as finite-sample performance guarantee is defined for any fixed N and δ > 0 as

P
N
{
RPtrue [h0(x∗N , ξ)] ≤ V̂ N + δ

}
≥ 1− α, (12)

which guarantees that an (in-sample) certificate V̂ N provides a (1−α) confidence (with respect to the probability
distribution PN ) on the out-of-sample performance of x∗N , and of course, infx∈X RPtrue [h0(x, ξ)]. The certificate
V̂ N can be chosen as RP̂N

[h0(x∗N , ξ)] = infx∈X RP̂N
[h0(x, ξ)]. The other guarantee, referred to as asymptotic
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consistency, guarantees that as N increases, the certificate V̂ N and the data-driven solution x∗N converges (in
some sense) to the optimal value and an optimal solution of the true problem infx∈X RPtrue [h0(x, ξ)].

Now, we introduce the analog of such performance guarantees that are used to assess the quality of a
solution in the context of a DRO model. For the ease of exposition, let us focus on a DRO problem of the form
infx∈X supP∈P RP [h0(x, ξ)]. As before consider a data-driven solution x∗N ∈ X . Such a solution may be obtained
by solving a data-driven version of the DRO model, where the ambiguity set P is constructed using data, namely
PN . The finite-sample and asymptotic performance guarantees are defined in similar manners as before except for
that now the certificate V̂ N may be chosen as the optimal value of the inner problem in DRO, where the worst-case
is taken within PN , evaluated at x∗N , i.e., V̂ N = supP∈PN RP [h0(x∗N , ξ)] = infx∈X supP∈PN RP [h0(x, ξ)].

3 Relationship with Risk Aversion, Chance-Constrained Optimization, and
Regularization

The modeling approach DRO is closely related to other concepts in operations research and statistical learning,
such as robust optimization, risk aversion, chance-constrained optimization, and function regularization. The
connection to risk aversion, chance-constrained optimization, and robust optimization is discussed in Section 3.1,
and regularization in statistical learning is discussed in Section 3.2.

3.1 Relationship with Risk Aversion
In this section, we discuss the relationship of DRO with risk aversion in operations research. In Section 3.1.1,
we discuss the connection between DRO and coherent risk measures. In Section 3.1.2, we explain how DRO
connects with chance-constrained optimization through their relationship with robust optimization.

3.1.1 Relationship between DRO and Coherent and Law Invariant Risk Measures
Under mild conditions (e.g., real-valued cost functions, a convex and compact ambiguity set), the worst-case
expectations given in (8) or (9) are equivalent to a coherent risk measure (Artzner et al. [10], Rockafellar
[337], Ruszczyński and Shapiro [348]). Furthermore, under mild conditions, the worst-case expectations given
in (8) or (9) are equivalent to a law invariant risk measure (Shapiro [367]). These results imply that a DRO
model may have an equivalent risk-averse optimization problem. In order to explain the relationship between (8)
and (9) and risk-averse optimization more precisely, we present some definitions and fundamental results, all
with respect to measuring losses and a reference probability space (Ξ,F , Q).

I Definition 4 (Artzner et al. [10, Definition 2.4], Shapiro et al. [374, Definition 6.4]). A (real-valued) risk measure
ρ : Z 7→ R is called coherent if it satisfies the following axioms:

Translation Equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a.
Positive Homogeneity: If t ≥ 0 and Z ∈ Z, then ρ(tZ) = tρ(Z).
Monotonicity: If Z,Z ′ ∈ Z and Z ≥ Z ′, then ρ(Z) ≥ ρ(Z ′).
Convexity: ρ (tZ + (1− t)Z ′) ≤ tρ(Z) + (1− t)ρ(Z ′), for all Z,Z ′ ∈ Z and all t ∈ [0, 1].

A risk measure ρ is called convex if it satisfies all the above axioms besides the positive homogeneity condition.

I Remark 5. In Definition 4, the convexity axiom can be replaced with the subadditivity axiom: ρ (Z + Z ′) ≤
ρ(Z) + ρ(Z ′), for all Z,Z ′ ∈ Z. This is true because the convexity and positive homogeneity axioms imply the
subadditivity axiom, and conversely, the positive homogeneity and subadditivity axioms imply the convexity axiom.
Artzner et al. [10, Definition 2.4] defines a coherent risk measure with the subadditivity axiom, whereas Shapiro
et al. [374, Definition 6.4] defines a coherent risk measure with the convexity axiom.

I Definition 6 (Shapiro [367, Definition 2.1]). A (real-valued) risk measure ρ : Z 7→ R is called law invariant
(with respect to the reference probability measure Q) if for all Z,Z ′ ∈ Z, Z d∼ Z ′ implies that ρ(Z) = ρ(Z ′).

I Definition 7 (Shapiro [367, Definition 2.2]). A set M is called law invariant (with respect to the reference
probability measure Q) if ζ ∈M and ζ d∼ ζ ′ implies that ζ ′ ∈M.

To relate the worst-case expectation with respect to a set of probability distributions induced by ξ to coherent
risk measures, we adopt the following result from Shapiro et al. [374, Theorem 6.7], Shapiro [364, Theorem 3.1].
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I Theorem 8. Let Z be the linear space of all essentially bounded F-measurable functions Z : Ξ 7→ R that are
P -integrable for all P ∈M (Ξ,F). Let Z∗ be the space of all signed measures P on (Ξ,F) such that

∫
Ξ |dP | <∞.

Suppose that Z is paired with Z∗ such that the bilinear form EP [Z] is well-defined. Moreover, suppose that Z
and Z∗ are equipped with the sup norm ‖ · ‖∞ and variation norm ‖ · ‖1, respectively6. Let M (Ξ,F) denotes the
space of all probability measures on (Ξ,F): M (Ξ,F) =

{
P ∈ Z∗

∣∣ ∫
Ξ dP = 1, P < 0

}
. Let ρ : Z 7→ R. Then, ρ

is a real-valued coherent risk measure if and only if there exists a convex compact set M ⊆ M (Ξ,F) (in the
weakly* topology of Z∗) such that

ρ(Z) = sup
P∈M

EP [Z] , ∀ Z ∈ Z. (13)

Moreover, given a real-valued coherent risk measure, the setM in (13) can be written in the form

M = {P ∈M (Ξ,F) |EP [Z] ≤ ρ(Z), ∀ Z ∈ Z} .

Proof. See Appendix A. J

Before we proceed, let us characterize the setM, as described in Theorem 8, for three well-studied coherent
risk measures, namely conditional Value-at-Risk (CVaR), see, e.g., Rockafellar [337], Rockafellar and Uryasev
[339, 340], convex combination of expectation and CVaR, see, e.g., Zhang et al. [438], and mean-upper-absolute
semideviation, see, e.g., Shapiro et al. [374]. CVaR at level β, 0 < β < 1, denoted by CVaRQ

β [ · ], is defined as
CVaRQ

β [Z] := 1
1−β

∫ 1
β

VaRQ
α [Z] dα, where VaRQ

α [Z] := inf {u |Q{Z ≤ u} ≥ α} is the (left-side) α-quantile or
Value-at-Risk (VaR) at level α. The mean-upper-absolute semideviation is defined as EQ [Z]+cEQ [(Z − EP [Z])+],
where c ∈ [0, 1].

I Example 9. Consider a probability space (Ξ,F , Q) and Z = L∞ (Ξ,F , Q). Suppose that Ξ is a finite space
with M atoms. For a coherent risk measure ρ, we have ρ(Z) = supp∈M

∑M
m=1 zmpm, ∀ Z ∈ Z, where M is

closed convex subset of

D :=
{
p ∈ RM

∣∣p>e = 1, p ≥ 0
}
,

and e is a vector of ones.
When ρ(Z) = CVaRQ

β [Z]7, we have

M =
{
p ∈ D

∣∣∣∣ pm ∈ [0, qm
1− β

]
, m ∈ [M ]

}
.

When ρ(Z) = EQ [Z] + infτ∈R EQ [(1− γ1)(τ − Z)+ + (γ2 − 1)(Z − τ)+], with γ1 ∈ [0, 1) and γ2 > 1, we
have

M = {p ∈ D | pm ∈ [qmγ1, qmγ2], m ∈ [M ]} .

The above risk measure is also equivalent to γ1EQ [Z] + (1− γ1)CVaRQ
β [Z], where β := 1−γ1

γ2−γ1
.

When ρ(Z) = EQ [Z] + cEQ [(Z − EP [Z])+], we have

M =
{
p′ ∈ D

∣∣∣p′ = q + ζ � q − (ζ>q)� q, ‖ζ‖∞ ≤ c
}
,

where a� b denotes the componentwise product of two vectors a and b. J

Theorem 8 relates problems (8) and (9) to risk-averse optimization problems, involving the coherent risk-
measure ρ. Consider a fixed x ∈ X . With an appropriate transformation of measure P = P ◦ ξ−1, we can
write the inner problem supP∈P EP [h0(x, ξ)] in (8) as supP∈P EP [h0(x, s)], where in the former, P is a set of
probability distributions induced by ξ, while in the latter, P is a set of probability measures on (Ξ,F). Then,
by applying Theorem 8 and setting Z = h0(x, ξ), supP∈P EP [h0(x, s)] evaluates a (real-valued) coherent risk
measure ρ [h0(x, s)], provided that P ⊂M (Ξ,F) is a convex compact set. It is easy to verify that such a function
ρ is coherent:

6 Recall that for a function Z ∈ Z, ‖Z‖∞ = ess sups∈Ω |Z(s)|, where ess sups∈Ξ |Z(s)| = inf{sups∈Ξ |Z′(s)| | Z(s) =
Z′(s) a.e. s ∈ Ξ}. Also, for a measure P ∈ Z∗, ‖P‖1 =

∫
Ξ |dP |.

7 It is known that ρ(Z) = CVaRQβ [Z] can be written equivalently as CVaRQβ [Z] = min
{
η + 1

1−βEQ [(Z − η)+]
∣∣ η ∈ R

}
Rock-

afellar and Uryasev [339, 340]. In particular, when Ξ is a finite set with M atoms, CVaRQβ [Z] can be equivalently written as a
linear program: CVaRQβ [Z] = min

{
η + 1

1−β
∑M

m=1 qmvm
∣∣ η ∈ R, vm ≥ zm − η, vm ≥ 0, m = 1, . . . ,M

}
.
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Translation Equivariance. Consider x ∈ X and a ∈ R. Then, ρ [h0(x, s) + a] = supP∈P EP [h0(x, s) + a] =
supP∈P EP [h0(x, s)] + a = ρ [h0(x, s)] + a.
Positive Homogeneity. Consider x ∈ X and t ≥ 0. Then, ρ [th0(x, s)] = supP∈P EP [th0(x, s)] =
t supP∈P EP [h0(x, s)] = tρ [h0(x, s)].
Monotonicity. Consider x,x′ ∈ X such that h0(x, s) ≥ h0(x′, s). Thus, EP [h0(x, s)] ≥ EP [h0(x′, s)] for any
P ∈ P, which implies ρ [h0(x, s)] = supP∈P EP [h0(x, s)] ≥ supP∈P EP [h0(x′, s)] = ρ [h0(x′, s)].
Convexity. Consider x,x′ ∈ X and t ∈ [0, 1]. Then, we have

ρ [th0(x, s) + (1− t)h0(x′, s)] = sup
P∈P

EP [th0(x, s) + (1− t)h0(x′, s)]

≤ sup
P∈P

EP [th0(x, s)] + sup
P∈P

EP [(1− t)h0(x′, s)]

= t sup
P∈P

EP [h0(x, s)] + (1− t) sup
P∈P

EP [h0(x′, s)]

= tρ [h0(x, s)] + (1− t)ρ [h0(x′, s)] .

Consequently, (8) is equivalent to minimizing a coherent risk measure. Similarly, (9) is equivalent to a
risk-averse optimization problem, subject to coherent risk constraints. Thus, a convex and compact ambiguity set
of distributions gives rise to a coherent risk measure. Conversely, Theorem 8 implies that given a risk preference
that can be expressed in the form of a coherent risk measure as a primitive, we can construct a corresponding
convex and compact ambiguity set P of probability distributions in a DRO framework. Thus, the ambiguity set
becomes a consequence of the particular risk measure the decision maker selects.

It is worth noting that if h0 is a convex random function in (8), i.e., h0( · , ξ) is convex in x for almost
every ξ, then, ρ [h0( · , ξ)] is convex in x. Convexity of hj , j = 1, . . . ,m, in (9) also implies the convexity of the
region induced by the risk constraints ρ [hj( · , ξ)] ≤ 0, j = 1, . . . ,m. In our setup, neither h( · , ξ) nor hj( · , ξ),
j = 1, . . . ,m, need to be convex as for example in the case where they are indicator functions.

We now state the connection between the worst-case expectation with respect to a set of probability
distributions induced by ξ to law invariant risk measures.

I Theorem 10 (Shapiro [367, Theorem 2.3]). Consider Z and Z∗ as defined in Theorem 8. Also, consider
ρ : Z 7→ R, defined as ρ(Z) = supP∈P EP [Z] , ∀ Z ∈ Z. If the set P is law invariant, then the corresponding
risk measure ρ is law invariant. Conversely, if the risk measure ρ is law invariant, and the set P is convex and
weakly* closed, then the set P is law invariant.

For the connection between a general multistage DRO model, risk-averse multistage programming with
conditional coherent risk mappings, and the concept of time consistency of the problem and policies, we refer
to Shapiro [364, 366, 368].
I Remark 11. Recall that DRO is related to RO in a finite sample space. Thus, it is no surprise to conclude
that the analogous of the relationship between DRO and coherent risk measures holds for RO and coherent
risk measures when the sample space is finite. More precisely, one can apply Theorem 8 to the setting that the
sample space is finite to conclude the result. On one hand, given a coherent risk measure as a primitive, we can
construct a corresponding convex uncertainty set U in a RO framework (Bertsimas and Brown [38]). A converse
implication also holds; a convex uncertainty set induces a coherent risk measure (Natarajan et al. [275]).

3.1.2 Relationship with Chance-Constrained Optimization
In the previous section, we discussed how DRO is connected to risk-averse optimization. In this section, we
present another perspective that connects DRO to risk-averse optimization through a proper choice of the
uncertainty set of the random variables ξ, as in RO.

Many approaches in RO construct the uncertainty set for the parameters ξ such that the uncertainty set
implies a probabilistic guarantee with respect to the true unknown distribution. To explain how this construction
is related to risk and DRO, consider the uncertain constraints g(x, ξ) ≤ 0 for a fixed x. Suppose that ξ belongs
to a bounded uncertainty set U ⊆ Rd, i.e., U is the support of ξ. The RO counterpart of this constraint then can
be formulated as

g(x, ξ) ≤ 0, ∀ ξ ∈ U . (14)

Two criticisms of (14) are that: (1) it treats the constraints for all parameters ξ ∈ U with equal importance
and (2) all the parameterized constraints are hard, i.e., no violation is accepted. An alternative framework to
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reduce the conservatism caused by this approach is to use a chance constraint framework that allows a small
probability of violation (with respect to the probability distribution of ξ) instead of enforcing the constraint to
be satisfied almost everywhere. Under the assumption that ξ is defined on a probability space (Ξ,F , P true), the
chance constraint framework can be represented as follows:

P true{g(x, ξ) ≤ 0} ≥ 1− ε, (15)

for some 0 < ε < 1. The parameter ε controls the risk of violating the uncertain constraint g(x, ξ) ≤ 0. In fact,
as ε goes to zero, the set

Xε :=
{
x ∈ X

∣∣P true{g(x, ξ) ≤ 0} ≥ 1− ε
}

decreases to

X (U) := {x ∈ X | g(x, ξ) ≤ 0, ∀ ξ ∈ U} .

Motivated by the chance constraint framework (15), many approaches in RO construct an uncertainty set Uε
such that a feasible solution to a problem of the form (14) will also be feasible with probability at least 1− ε with
respect to P true. More precisely, for any fixed x, these constructions guarantee that the following implication
holds:

If g(x, ξ) ≤ 0, ∀ ξ ∈ Uε, then, P true{g(x, ξ) ≤ 0} ≥ 1− ε. (C1)

However, as we argued before, the probability measure P true cannot be known with certainty. As far as it is
relevant to the scope and interest of this paper, there are two streams of research in order to handle the ambiguity
about the true probability distribution and obtain a safe (or, conservative) approximation8 to (15)9: (1) scenario
approximation scheme of (14) based on Monte Carlo sampling, see, e.g., Ben-Tal and Nemirovski [24], Calafiore
and Campi [73], Campi and Calafiore [75], Campi and Garatti [76], Luedtke and Ahmed [258], Nemirovski and
Shapiro [280], and (2) DRO approach to (15), see, e.g., Erdoğan and Iyengar [138], Nemirovski and Shapiro
[279]. Research on scenario approximation of (14) focuses on providing probabilistic guarantee (with respect to
the sample probability measure) that a solution to the sampled problem of (14) is feasible to (15) with a high
probability.

The DRO approach, on the other hand, forms a version of (15) as follows:

P{g(x, ξ) ≤ 0} ≥ 1− ε, ∀ P ∈ P ≡ inf
P∈P

P{g(x, ξ) ≤ 0} ≥ 1− ε. (16)

Let X̄ε denote the feasibility set induced by (16):

X̄ε :=
{
x ∈ X

∣∣∣∣ inf
P∈P

P{g(x, ξ) ≤ 0} ≥ 1− ε
}
.

If P true ∈ P, then, x ∈ X̄ε implies x ∈ Xε. That is, X̄ε provides a conservative approximation to Xε10. By
leveraging a goodness-of-fit test, Bertsimas et al. [51] construct a (1− α)-confidence region P(α) for P true. Such
a construction leads to an uncertainty set Uε(α) that guarantees the implication (C1) with probability at least
(1− α) with respect to the sample probability measure.
I Theorem 12 (Bertsimas et al. [51, Theorem 2]). Suppose that for any fixed x, g(x, ξ) is concave in ξ. Consider
a set of data {ξi}Ni=1, drawn independently and identically distributed (i.i.d.) according to P true. Let Pε(α) be a
(1−α)-confidence region for P true, constructed from a goodness-of-fit test on data. Moreover, for any y ∈ Rd, let
lε(y;α) be a closed, convex, finite-valued, and positively homogeneous (in y) upper bound to the worst-case VaR
of y>ξ at level 1− ε over Pε(α), i.e., supP∈Pε(α) VaRP

1−ε
[
y>ξ

]
≤ lε(y;α), y ∈ Rd. Then, the closed, convex set

Uε(α) for which δ∗
(
y|Uε(α)

)
= lε(y;α) guarantees the implication (C1) with probability at least (1− α) (with

respect to the sample probability measure).
As a byproduct of Theorem 12, δ∗

(
y|Uε(α)

)
≤ b provides a safe approximation to supP∈Pε(α) P{y>ξ ≤

b} ≥ 1− ε. That is, there is a correspondence between the uncertainty set Uε(α) that satisfies the probabilistic
guarantee (C1) and safe approximations to supP∈Pε(α) P{y>ξ ≤ b} ≥ 1− ε.

8 A set of constraints is called a safe or conservative approximation of the chance constraint if the feasible region induced by the
approximation is a subset of the feasible region induced by the chance constraint.

9 There is another stream of research that approximates (15) by CVaR or its approximations, see, e.g., Chen and Sim [87], Chen
et al. [88, 91] and references there in.

10One can in turns seek a safe approximation to (16). For example, one stream of such approximations includes using Chebyshev’s
inequality, see, e.g., Bertsimas and Popescu [42], Popescu [309], Bernstein’s inequality, see, e.g., Nemirovski and Shapiro [279],
or Hoeffding’s inequality. We review such safe approximations to (16) in Section 6.
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3.2 Relationship with Function Regularization
The goal of this section is to discuss the relationship of DRO/RO with the function regularization commonly
used in machine learning.

Some papers have shown that DRO problems via the optimal transport discrepancy and φ-divergences are
connected to regularization. When the optimal transport discrepancy is used, as shown in Blanchet et al. [64], Gao
and Kleywegt [148], Shafieezadeh-Abadeh et al. [355], many mainstream machine learning classification and
regression models, including support vector machine (SVM), regularized logistic regression, and Least Absolute
Shrinkage and Selection Operator (LASSO), have a direct distributionally robust interpretation that connects
regularization to the protection from the disturbance in data. To state this result, we first present a duality
theorem, due to Blanchet and Murthy [62], and we relegate the technical details and assumptions to Section 6.
On the other hand, when φ-divergences are used, the DRO problem is connected to variance regularization, see,
e.g., Duchi et al. [123], Namkoong and Duchi [273].

Let us begin by defining the optimal transport discrepancy. Consider two probability measures P1, P2 ∈
M (Ξ,F). Let Π(P1, P2) denote the set of all probability measures on (Ξ× Ξ,F × F) whose marginals are P1
and P2:

Π(P1, P2) =
{
π ∈M (Ξ× Ξ,F × F)

∣∣∣∣∣π(A× Ξ) = P1(A), ∀ A ∈ F ,
π(Ξ×A) = P2(A), ∀ A ∈ F

}
.

An element of the above set is called a coupling or transport plan. Furthermore, suppose that there is a lower
semicontinuous function c : Ξ × Ξ 7→ R+ ∪ {∞} with c(s1, s2) = 0 if s1 = s2. Then, the optimal transport
discrepancy between P1 and P2 is defined as11:

dW
c (P1, P2) := inf

π∈Π(P1,P2)

∫
Ξ×Ξ

c(s1, s2)π(ds1 × ds2).

I Theorem 13 (Blanchet and Murthy [62, Remark 1]). Consider an ambiguity set of probability measures as

PW(P0; ε) :=
{
P ∈M (Ξ,F)

∣∣ dW
c (P, P0) ≤ ε

}
,

formed via the optimal transport discrepancy dW
c (P, P0), where c is the transportation cost function, ε is the size

of the ambiguity set (i.e., level of robustness), and P0 is a nominal probability measure. Then, for a fixed x ∈ X ,
we have

sup
P∈PW(P0;ε)

EP [h0(x, ξ)] = inf
λ≥0

{
λε+ EP0

[
sup
s′∈Ξ
{h0(x, s′)− λc(s, s′)}

]}
.

We can use Theorem 13 to explicitly state the connection between DRO and regularization. We adopt the
following two theorems from Blanchet and Murthy [62], due to their generality. However, similar results are
obtained in other papers, see, e.g., Gao and Kleywegt [148], Shafieezadeh-Abadeh et al. [355].

I Theorem 14 (Blanchet et al. [64, Theorems 2–3]). Consider a dataset {ξi := (ui, yi)}Ni=1, where ui ∈ Rn is a
vector of covariates and yi ∈ R is the response variable. Suppose that P̂N is the empirical probability distribution
on {ξi}Ni=1, c(ξ

1, ξ2) := ‖u1 − u2‖2q if y1 = y2, and c(ξ1, ξ2) =∞, otherwise. Let 1
p + 1

q = 1. Then,
For a linear regression model with a square loss function h0(x, ξ) := (y − x>u)2, we have

inf
x∈Rn

sup
P∈PW(P̂N ;ε)

EP [h0(x, ξ)] = inf
x∈Rn

{
ε

1
2 ‖x‖p +

(
EP̂N

[h0(x, ξ)]
) 1

2
}2

,

For a logistic regression model with cost function h0(x, ξ) := log(1 + e−yx
>u), we have

inf
x∈Rn

sup
P∈PW(P̂N ;ε)

EP [h0(x, ξ)] = inf
x∈Rn

{
ε‖x‖p + EP̂N

[h0(x, ξ)]
}
,

For a SVM with Hinge loss h0(x, ξ) := (1− yx>u)+, we have

inf
x∈Rn

sup
P∈PW(P̂N ;ε)

EP [h0(x, ξ)] = inf
x∈Rn

{
ε‖x‖p + EP̂N

[h0(x, ξ)]
}
.

11One can similarly define the optimal transport discrepancy between two probability distributions P1 and P2 induced by ξ.
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As stated in Theorem 14, we can rewrite an unconstrained DRO model with the optimal transport discrepancy
as a minimization problem, in which the objective function, in one hand, includes an expected-cost term with
respect to the empirical distribution, and on the other hand, includes a regularization term. Two other interesting
results can be inferred from Theorem 14 about the connection between DRO and regularization: (i) the shape of
the transportation cost function c in the definition of the optimal transport discrepancy directly implies the type
of regularization, and (ii) the size of the ambiguity set is related to the regularization parameter. An important
implication of these results is that one can judiciously choose an appropriate regularization parameter for the
problem in hand by using the equivalent DRO reformulation. We review the papers that draw this conclusion in
Section 6.1.

Now, let us focus on DRO problems formulated via φ-divergences. For two probability measures P1, P2 ∈
M (Ξ,F), the φ-divergence between P1 and P2 is defined as dφ(P1, P2) :=

∫
Ξ φ
(

dP1
dP2

)
dP2, where the φ-divergence

function φ : R+ → R+ ∪ {+∞} is convex, and it satisfies the following properties: φ(1) = 0, 0φ
( 0

0
)

:= 0, and
aφ
(
a
0
)

:= a limt→∞
φ(t)
t if a > 012.

I Theorem 15 (Duchi et al. [123, Theorem 2]). Consider an ambiguity set of probability distributions as

Pφ(P̂N ; ε) :=
{
P ∈ P(Rd,B(Rd))

∣∣ dφ(P, P̂N ) ≤ ε
}
,

formed via the φ-divergence dφ(P, P̂N ), where ε is the size of the ambiguity set and P̂N is the empirical proba-
bility distribution on a set of independently and identically distributed (i.i.d) data {ξi}Ni=1, according to Ptrue.
Furthermore, suppose that X is compact, there exists a measurable function M : Ω 7→ R+ such that for all ξ ∈ Ω,
h( · , ξ) is M(ξ)-Lipschitz with respect to some norm ‖ · ‖ on X , EPtrue

[
M(ξ)2] <∞, and EPtrue [|h0(x0, ξ)|] <∞

for some x0 ∈ X . Then,

sup
P∈Pφ(P̂N ; εN )

EP [h0(x, ξ)] = EP̂N
[h0(x, ξ)] +

( ε
N

VarP̂N [h0(x, ξ)]
) 1

2 + γN (x),

where γN (x) is such that supx∈X
√
N |γN (x)| → 0 in probability.

According to Theorem 15, we can rewrite the inner problem of a model of the form (8) with φ-divergences as
the expected cost plus a regularization term that accounts for the standard deviation of the cost, under the
empirical distribution. This type of trade-off between the bias (approximation error) and standard deviation
(estimation error) in a DRO model via φ-divergences is obtained in Gotoh et al. [164]. Additionally, similar results
to Theorem 15 are obtained in Dupuis et al. [130], Lam [228, 229] in the context of robust sensitivity analysis of
stochastic systems, where the square root of the divergence, ε, is the correct scaling of the standard deviation to
capture the misspecification effect of the true probability distribution. For an ambiguity set constructed via
Kullback–Leibler divergence and around any nominal distribution P0, Lam [228] derives an asymptotic expansion
on the worst-case objective value as the divergence shrinks to zero. Such an expansion contains terms involving
up to the third-order cumulant of h0(x, ξ) under P0. A similar expansion is derived in Lam [229] for an ambiguity
set constructed via χ2-distance.

4 General Solution Techniques to Solve DRO Models

In this section, we discuss four solution approaches to handle (DRO). In Section 4.1 and 4.2, we discuss the
cutting-surface and dualization methods, respectively. Then, in Section 4.3, we explain numerical methods to
solve (DRO). Finally, in Section 4.4, we describe approximation based on decision rules as a widely used method.

In order to explain the first two approaches, let us first reformulate (DRO) as follows:

inf
x∈X ,θ

θ s.t.
{
θ ≥ RP [h0(x, ξ)] , ∀ P ∈ P
RP [hj(x, ξ)] ≤ 0, ∀ P ∈ P, j ∈ [m].

(17)

Reformulation (17) is a semi-infinite program (SIP), and at a first glance, obtaining an optimal solution to
this problem looks difficult13. It is well-known that even convex SIPs cannot be solved directly with numerical

12One can similarly define the φ-divergence between two probability distributions P1 and P2 induced by ξ.
13The study of SIPs is pioneered by Haar [170], and followed up in Charnes et al. [82, 83, 84], which focus on linear SIP s. The

first- and second-order optimality conditions of a general SIP are also obtained in Hettich and Jongen [186, 187], Hettich and
Still [189], Nürnberger [289, 290], Still [386]. For reviews of the theory and methods for SIP s, we refer the readers to Hettich
and Kortanek [188], López and Still [253], Reemtsen and Görner [333].
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methods, and in particular are not amenable to the use of methods such as interior point method. Therefore,
a key step of the solution techniques to handle the semi-infinite qualifier (i.e., ∀ P ∈ P) is to reformulate (17)
as an optimization problem that is amenable to the use of available optimization techniques and off-the-shelf
solvers. Of course, the complexity and tractability of such SIPs and their reformulations depend on the geometry
and properties of both the ambiguity set P and the functions hj(x, ξ), j ∈ {0} ∪ [m]. As we shall see in details
in Section 6, proper assumptions on P and these functions are important in most studies on DRO in order to
obtain a solvable reformulation or approximation of (17).

In the context of DRO, there are two main approaches to handle the semi-infinite quantifier ∀ P and to
numerically solve (17): cutting-surface method and dual method. Both approaches have their roots in the SIP
literature, and they both aim at getting rid of the quantifier ∀ P , but in different ways. It is worth noting that
numerical methods to solve a SIP, such as penalty methods, see, e.g., Lin et al. [246], Yang et al. [430], smooth
approximation and projection methods, see, e.g., Xu et al. [426], and primal methods, see, e.g., Wang and Yuan
[405], have not been popular to solve (17).

4.1 Cutting-Surface Method
The first approach replaces the quantifier ∀ P by for some finite atomic subset of P. The idea is to successively
solve a relaxed problem of (17) over a finitely generated inner approximations of the ambiguity set P. To be
precise, this approach approximates the semi-infinite constraints for all P ∈ P by finitely many ones over a finite
set of probability distributions. In each iteration of this approach, a new probability distribution is added to this
finite set until optimality criteria are met. We refer to this as a cutting-surface method (also known as exchange
method, following the terminology in the SIP literature, see, e.g., Hettich and Kortanek [188], Mehrotra and
Papp [262]. We refer to Bansal et al. [15], Pflug and Wozabal [302], Rahimian et al. [327] as examples of this
approach in the context of DRO.

The key requirements in order to use the cutting-surface method are the abilities to (i) solve a relaxation
of (17) with a finite number of probability distributions to optimality and (ii) generate an ε-optimal solution14

to a distribution separation subproblem Luo and Mehrotra [259].

I Theorem 16 (Luo and Mehrotra [259, Theorem 3.2]). Suppose that X × P is a compact set, and RP [hj(x, ξ)],
j ∈ {0} ∪ [m], are continuous on X × P. Moreover, suppose that we have an oracle that generates an optimal
solution (xk, θk) to a relaxation of problem (17) for any finite set Pk ⊆ P, and an oracle that generates an
ε-optimal solution of the distribution generation subproblem

sup
P∈P

max
{
RP [h0(x, ξ)]− θk, max

j∈[m]
RP [hj(x, ξ)]

}
for any x ∈ X and ε > 0. Suppose that iteratively the relaxed master problem is solved to optimally and yields the
solution (xk, θk), and the distribution separation subproblem is solved to ε

2 -optimality and yields the solution Pk.
Then, the stopping criteria RPk [h0(xk, ξ)] ≤ θk+ ε

2 and RPk [hj(xk, ξ)] ≤ ε
2 , j ∈ [m], guarantee that an ε-feasible

solution15 to problem (17), yielding an objective function value lower bounding the optimal value of (17), can be
obtained in a finite number of iterations.

It is worth noting that the distribution separation subproblem in the cutting-surface method may be a
nonconvex optimization problem. One may efficiently solve (DRO) through the cutting-surface method if the
ambiguity set P can be convexified without causing a change to the optimal value. In this case, the distribution
separation subproblem may be solved through interior point methods. The following lemma states that if RP [ · ]
is convex in P on M (Ξ,F), then, it can be assumed without loss of generality that P is convex.

I Lemma 17. Consider (DRO). For a fixed x ∈ X , suppose that RP [ · ] is convex in P on M (Ξ,F). Then,
x∗ ∈ X is an optimal solution to (DRO) if and only if it is an optimal solution to the following problem:

inf
x∈X

sup
P∈conv(P)

{
RP [h0(x, ξ)]

∣∣∣∣∣ sup
P∈conv(P)

RP [hj(x, ξ)] ≤ 0, j ∈ [m]
}
. (18)

Proof. See Appendix A. J

14For an optimization problem of the form z∗ = min {α(x) |β(x) ≤ 0}, a point x0 is an ε-optimal solution if β(x0) ≤ 0 and
α(x0) ≤ z∗ + ε.

15For an optimization problem of the form z∗ = min {α(x) |β(x) ≤ 0}, a point x0 is an ε-feasible solution if β(x0) ≤ ε.
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4.2 Dual Method
The second approach to solve (DRO) handles the quantifier ∀ P through the dualization of supP∈P RP [hj(x, ξ)],
j ∈ {0} ∪ [m]. Under suitable regularity conditions, there is no duality gap between the primal problem and
its dual, i.e., strong duality holds. Hence, the supremum can be replaced by an infimum which should hold for
at least one corresponding solution in the dual space. We refer to this approach as a dual method. Most of the
existing papers in the DRO literature are focused on the dual method, see, e.g., Ben-Tal et al. [32], Bertsimas
et al. [48], Delage and Ye [105], Wiesemann et al. [409]. A situation where one benefits from the application of
the dual method to solve (DRO) arises when the ambiguity set of probability distribution depends on decision x
as formulated below, see, e.g., Luo and Mehrotra [260], Noyan et al. [288]:

inf
x∈X

sup
P∈P(x)

{
RP [h0(x, ξ)]

∣∣∣∣∣ sup
P∈P(x)

RP [hj(x, ξ)] ≤ 0, j ∈ [m]
}
, (19)

where, P(x) denotes a decision-dependent ambiguity set of the probability distributions.
The papers that rely on the dual method exploit linear duality, Lagrangian duality, convex analysis (e.g.,

support function, conjugate duality, Fenchel duality), and conic duality. A fundamental question is then under
what conditions the strong duality holds. One such condition is the existence of a probability measure that lies in
the interior of the ambiguity set, i.e., the ambiguity set satisfies a Slater-type condition. We refer the readers to
the optimization textbooks for results on linear and Lagrangian duality, see, e.g., Bazaraa et al. [20], Bertsekas
[36], Rockafellar [335], Ruszczyński [347]. For detailed discussions of the duality theory in infinite-dimensional
convex problems, we refer to Rockafellar [335], and we refer to Isii [209] and Shapiro [363] for duality theory in
conic LPs. Below, we briefly present the results from conic duality that are widely used in the dualization of
DRO models.

I Theorem 18 (Shapiro [363, Proposition 2.1]). For a linear mapping A : V 7→ W, recall the definition of the
adjoint mapping A∗ : W∗ 7→ V∗, where 〈w∗, Av〉 = 〈A∗w∗, v〉, ∀ v ∈ V. Consider a conic linear optimization
problem of the form

min
v∈C
〈c, v〉 s.t. Av <K b, (20)

where, C and K are convex cones and subsets of linear spaces V and W, respectively, such that for any w∗ ∈ W∗,
there exists a unique v∗ ∈ V∗ with 〈w∗, Av〉 = 〈v∗, v〉, with v∗ = A∗w∗, for all v ∈ V. Then, the dual problem
to (20) is written as

max
w∗∈K′

〈w∗, b〉 s.t. A∗w∗ 4C′ c. (21)

Moreover, there is no duality gap between (20) and (21) and both problems have optimal solutions if and only if
there exists a feasible pair (v, w∗) such that 〈w∗, Av − b〉 = 0 and 〈c−A∗w∗, v〉 = 0.

Note that the dual method can turn the DRO model into a convex minimization problem in special cases
(e.g., linear objective function in P for the inner maximization problem subject to linear constraints on x). In
these cases, variants of the stochastic descent algorithm or stochastic approximation (see, e.g., Newton et al.
[282]) may be used to solve the resulting reformulation.

A closely related subject to the dual method that motivates the use of convex duality is a game-theoretic
interpretation of DRO. For the ease of exposition, let us consider a problem of the form (8). The decision
maker, the first player in this setup, makes a decision x ∈ X whose consequences (i.e., cost h0) depends on the
outcome of the random vector ξ. The decision maker assumes that ξ follows some distribution P ∈ P. However,
he/she does not know which distribution the nature, the second player in this setup, will choose to represent the
uncertainty in ξ. Thus, in one hand, the decision maker is looking for a decision that minimizes the maximum
expected cost with respect to P ; while on the other hand, the nature is seeking a distribution that maximizes the
minimum expected cost with respect to X . Under suitable conditions, it can be shown that these two problems
are the dual of each other and the solution to one problem provides the solution to the other problem. Such
a solution (x∗, P∗) is called an equilibrium or saddle point. In other words, at this point, the decision maker
would not change its decision x∗, knowing that the nature chose P∗. Similarly, the nature would not change its
distribution P∗, knowing that the decision maker chose x∗. We state this result in the following theorem, which
generalizes John von Neumann’s minimax theorem.
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I Theorem 19 (Sion [378, Theorem 3.4]). Suppose that
1. X and P are convex and compact spaces,
2. x 7→ RP [h0(x, ξ)] is upper semicontinuous and quasiconcave on P for all x ∈ X , and
3. P 7→ RP [h0(x, ξ)] is lower semicontinuous and quasiconvex on X for all P ∈ P.
Then,

inf
x∈X

sup
P∈P
RP [h0(x, ξ)] = sup

P∈P
inf
x∈X

rriskPh0(x, ξ).

According to Theorem 19, under appropriate conditions, exchanging the order of infimum and supremum
will not change the optimal value to infx∈X supP∈P EP [h0(x, ξ)]. We refer to Grünwald and Dawid [166] for a
variety of alternative regularity conditions for this to hold. The exchange of the order between inf and sup
can be interpreted as follows Grünwald and Dawid [166]: a probability distribution P∗ that maximizes the
generalized entropy infx∈X RP [h0(x, ξ)] over P has an associated decision x∗, achieving infx∈X RP∗ [h0(x, ξ)],
and it achieves infx∈X supP∈P RP [h0(x, ξ)]. We note that the assumption that X is convex may not hold in
many models (for example, when the decision variables are integer). Nevertheless, this theorem may be useful
when constructing reformulations and developing algorithms, see, e.g., Gao et al. [151].

4.3 Numerical Methods
Some researchers have used numerical methods to solve (DRO). To explain the ideas, let us consider problem (8).
Assuming that Ξ is a finite sample space with M atoms, i.e., Ξ = {s1, . . . , sM}, and similar to the setup in
Remark 2, we can write (8) as

inf
x∈X

sup
p∈P

∑
k∈[M ]

pkh0
(
x, ξ(sk)

)
. (22)

We further assume that X is a convex set, h0 is continuous (not necessarily smooth), and h0( · , ξ) is convex for
each ξ ∈ Ξ. The resulting DRO model (22) is then a convex-concave saddle-point problem, i.e., a two-player
game between the x player and the P player.

Numerical algorithms to solve a convex-concave saddle-point problem alternate between a variant of mirror
descent and ascent algorithms (Ben-Tal and Nemirovski [25], Nemirovski et al. [281]). When the minimax
formulation is constrained, variants of the stochastic approximation may project the candidate solution onto the
corresponding feasible region to derive the next iterate. Another possibility is to search for a feasible direction
along which the next iterate is guaranteed to belong to the feasible region. Hence, when solving the inner
maximization problem for a DRO problem, it is necessary to not only guarantee the ascent step provides valid
probability distribution but also the iterate satisfies other constraints in the ambiguity set.

The literature on numerical methods for DRO is small. Liu et al. [249] propose to turn (22) into a bilinear
saddle-point problem as follows:

inf
(x,θ)∈G

sup
p∈P

∑
k∈[M ]

pkθk, (23)

where

G :=
{

(x,θ) ∈ Rn+M ∣∣x ∈ X , θk ≥ h0
(
x, ξ(sk)

)
, k ∈ [M ]

}
.

They propose to solve (23) with a primal-dual hybrid algorithm, proposed in Chambolle and Pock [78]. This
algorithm obtains an O(1/ε) iteration complexity bound, and it involves projecting into G and P to obtain the
iterates. They showcase this method for cases where the ambiguity set is formed via the moment constraints as
in (55) or the Wasserstein metric. Motivated by the decomposition scheme of the progressive hedging algorithm,
Chen et al. [93] propose to reformulate (23) as the bilinear saddle-point problem

inf
x0∈X ,(xk,θk)∈Gk

sup
p∈P

sup
λk

∑
k∈[M ]

pkθk +
∑
k∈[M ]

λ>k (x0 − xk), (24)

where

Gk :=
{

(xk, θk) ∈ Rn+1 ∣∣xk ∈ X , θk ≥ h0
(
x, ξ(sk)

)}
.



Hamed Rahimian & Sanjay Mehrotra 17

Hence, the primal-dual hybrid algorithm Chambolle and Pock [78] can still be applied to (24), where now the
projections on Gk can be done in parallel, although still cumbersome. This algorithm obtains an O(M/ε) iteration
complexity bound. Chen et al. [93] showcase their proposed algorithm for DRO problems with the moment
constraints as in (55), Wasserstein metric, and φ-divergences. Zhang et al. [440] propose to use biconjugation of
h0(x, · ) to reformulate (22) as

inf
x∈X

sup
p∈P

∑
k∈[M ]

sup
πk∈Πk

pk
(
π>k x− h∗0

(
πk, ξ(sk)

))
, (25)

where Πk denotes the domain of the conjugate function h∗0
(
· , ξ(sk)

)
. Note that the objective function in (25) is

no longer jointly concave in p and π := [π1, . . . ,πM ]. Nevertheless, given that p ≥ 0, the inner maximization
problem in (25) can be solved sequentially in π and p, in order. Taking advantage of this property and by
exploiting the geometry of P, Zhang et al. [440] propose two algorithms to solve (25). The first algorithm,
referred to as sequential dual (SD), relies on a decomposition of the primal-dual gap into individual optimality
gaps of π, p, and x blocks in the form of simple convex functions. Hence, standard first-order methods can be
applied by iterative proximal updates. The second algorithm, referred to as sequential smoothing level (SSL),
builds an adaptively smoothed approximation of the objective function of (25) based on the π and p blocks.
Then, it applies a bundle-level type method to the approximation. In both SD and SSL, proximal updates for
the x and π are done via the Euclidean distance, while both the Euclidean and entropy distances are explored
for the p updates. Zhang et al. [440] show that both the SD and SSL algorithms attain the iteration complexity
bounds O(

√
M/ε) and O(

√
logM/ε) when the Euclidean and entropy distances are used for the p updates,

respectively. Zhang et al. [440] adapt their proposed algorithms for the case that the ambiguity set is formed via
the Wasserstein metric, where they apply a proximal update of the transportation plan instead of the proximal
update of p to avoid the expensive projection onto P.

Namkoong and Duchi [272] propose a variant of mirror descent SA algorithm, proposed in Nemirovski
et al. [281], for ambiguity sets formed via the Cressie–Read divergences over discrete probability distributions
(Cressie–Read divergences belongs to the class of φ-divergences. See Section 6.1.2 for more information). The
proposed algorithm is shown to require almost the same computational cost as the stochastic gradient descent
algorithm, and it involves proper projections to obtain the iterates of x and P . Alternatively, as mentioned before,
Namkoong and Duchi [272] could have solved the minimization problem resulted from the dualization of the inner
maximization over the divergence-based set using a variant of the stochastic gradient descent algorithm. However,
a motivation to directly handle the minimax formulation is that the stochastic gradient descent becomes unstable
as one of the dual variables goes to zero (see Theorem 24). This observation is also made in Namkoong and
Duchi [271], where they also observe that focusing on the entire data points make the method computationally
cumbersome. They propose a primal subgradient descent algorithm to solve the DRO model, where they obtain
the solution to the inner problem via a bisection method. However, at each step the inner maximization problem
is solved over a geometrically increasing subset of the data points, obtained from sampling without replacement.
The step on updating x then involves a subgradient of the approximated inner objective function value.

4.4 Approximation Schemes with Decision Rules
Decision-making problems under uncertainty, particularly those in a dynamic setting, typically suffer from the
curse of dimensionality and are computationally intractable (Shapiro and Nemirovski [371]). This is partly
because (recourse) decisions depend on the realizations of the random vector ξ and one need to optimize over
the space of all functions (adapted to ξ). To overcome these challenges, a common approximation scheme is to
restrict (recourse) decisions to a space that leads to a computationally more tractable problem.

Decision rules, proposed in Charnes and Cooper [79, 80], Charnes et al. [81] in the context of chance-
constrained programming, and popularized in Ben-Tal et al. [28] in the context of adjustable robust optimization,
is a common approximation scheme in the DRO literature, see, e.g., Bertsimas et al. [53], Goh and Sim [159].
Thus, rather than optimizing over the space of all functions, one can optimize over a finite collection of decision
variables to achieve a conservative approximation. One may apply decision rules to the dual problem as well Kuhn
et al. [223]. Decision rules in RO are inspired by linear feedbacks in controlled dynamical systems Ben-Tal et al.
[28], and we refer the readers to Georghiou et al. [152], Yanıkoğlu et al. [432] for an overview of decision rules in
optimization under uncertainty.

Approximation schemes based on decision rules are typically achieved via linear and nonlinear rules. As
its name suggests, linear decision rules (LDR) are those that linearly depend on ξ, see, e.g., Bertsimas et al.
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[55], Peng and Delage [296]. Bertsimas et al. [53] propose a linear approximation by incorporating auxiliary
variables associated with the lifted ambiguity set in the decision rule (Wiesemann et al. [409]).

Nonlinear decision rules, on the other hand, do not linearly depend on ξ. Hence, by allowing a richer class of
functions, nonlinear decision rules may lead to a less conservative approximation than LDR, albeit at the price
of a typically more computationally demanding problem. Approximations based on piece-wise linear decision
rules are proposed in Goh and Sim [159]. These approximations, termed as bideflected LDR, generalize the
deflected and segregated LDR of Chen et al. [92], Chen and Zhang [90] and truncated LDR of See and Sim [354].
Finite adaptability is another special case of nonlinear decision rules and allows for constant or linear decisions
over a finite partition of the support set, see, e.g., Bertsimas et al. [55], Peng and Delage [296]. This method is
widely used when recourse decisions are discrete, see, e.g., Bertsimas and Caramanis [39], Hanasusanto et al.
[176], Subramanyam et al. [387].

A criticism of decision rules is that, in general, they are not optimal. Hence, quantifying the suboptimality
of decision rules becomes essential. Despite this, decisions rules appear to perform reasonably well for some
applications, see, e.g., Bertsimas et al. [53], Peng and Delage [296]. We also note that while decision rules
provides a conservative approximation, they do not eliminate the quantifier ∀ P , explained at the beginning
of Section 4. Hence, one would still need to rely on the techniques described in Section 4.1–4.3 to address the
resulting approximate problem.

5 Cost Function of the Inner Problem

Recall formulation (DRO) and the functional RP : Z 7→ R. This functional accounts for quantifying the
uncertainty in the outcomes of a fixed decision x ∈ X and for a given fixed probability measure P ∈M (Ξ,F). As
pointed out before in Section 1.1 for (1) and (2), one choice for this functional is the expectation operator. Other
functionals, such as regret function, risk measure, and utility function have also been used in the DRO literature.
These functionals are closely related concepts and we refer to Ben-Tal and Teboulle [27] and Rockafellar and
Royset [338] for a comprehensive treatment and how one can induce one from the other. In this section, we
review some notable works, where regret function, risk measure, and utility function are used to capture the
uncertainty in the outcomes of the decision.

5.1 Regret Function
As an alternative to the worst-case expected criteria, the modeling approach DRO allows for a decision criterion
that optimizes the disappointment or regret of finding out that another decision would have achieved a better
cost under the realized uncertainty. This decision criteria for decision-making under uncertainty is introduced
in Savage [350] and we refer to Blackwell and Girshick [58] for general information.

Given a decision x ∈ X and a probability measure P ∈M (Ξ,F), a regret functional VP may quantify the
expected displeasure or disappointment of the current decision with respect to a possible mix of future outcomes
as follows:

VP [h0(x, ξ)] := EP
[
h0(x, ξ)− min

x′∈X
h0(x′, ξ)

]
. (26)

In other words, VP [h0(x, ξ)], defined in (26), calculates the expected additional loss that could have been avoided
by acting optimally. Definition (26) of regret function is used in Natarajan et al. [278] and Hu et al. [196] in the
context of combinatorial optimization and multicriteria decision-making, respectively. Another, and perhaps
more popular, way for formulating a regret function may be as

VP [h0(x, ξ)] := EP [h0(x, ξ)]− min
x′∈X

EP [h0(x′, ξ)] , (27)

which quantifies the (absolute) difference between the cost of decision x and the optimal decision (e.g., of
a clairvoyant) under distribution P . The regret function (27) can be interpreted as the expected value of
additional information or the value that the decision maker is willing to pay to acquire information about the
underlying distribution. The worst-case regret resulting from the distributional ambiguity can be stated as
maxP∈P VP [h0(x, ξ)], and one may consider the minimax regret criterion

min
x∈X

max
P∈P

{
EP [h0(x, ξ)]− min

x′∈X
EP [h0(x′, ξ)]

}
.
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It can be shown that the minimax regret criterion leads to an optimal value not greater than the difference
between those of optimistic and pessimistic criteria (recall Remark 1). Hence, the minimax regret criterion can
lead to decisions that are neither too conservative nor aggressive. This type of regret function is used in Chen
and Xie [94], Perakis and Roels [297], Yue et al. [436] in the context of the newsvendor problem. Yue et al.
[436] extend the work of Scarf [351] with a minimax regret criteria. Perakis and Roels [297] obtain closed form
solutions to distributionally robust single-item newsvendor problems that minimize the worst-case regret, where
only (1) support, (2) mean, (3) mean and median, and (4) mean and variance information is available. This
information can be captured with the ambiguity set PMM, to be defined in 6.2.3. Perakis and Roels [297] also
study the ambiguity sets that preserve the shape of the distribution, including information on (1) mean and
symmetry, (2) support and unimodality with a given mode, (3) median and unimodality with a given mode, and
(4) mean, symmtery, and unimodality with a given mode. Chen and Xie [94] study a newsvendor problem with
minimax regret criteria, where the distributional ambiguity is modeled via Wassrstein distance, to be reviewed
in Section 6.1.1. For general information on regret-based DRO models, we refer to Lim et al. [245]. Absolute and
relative regret functions are also studied in RO, see, e.g., Bertsimas and Dunning [40], Poursoltani and Delage
[314].

5.2 Risk Measure
As introduced in Section 3.1.1, a functional that quantifies the uncertainty in the outcomes of a decision is a risk
measure (Acerbi [1], Artzner et al. [10], Kusuoka [225], Shapiro [365]). A risk measure ρP usually satisfies some
averseness property, i.e., ρP [·] > EP [·], and imposes a preference order on random variables, i.e., if Z,Z ′ ∈ Z
and Z ≥ Z ′, then ρP [Z] ≥ ρP [Z ′]. Explicit incorporation of a risk measure into a DRO model has also received
attention in the literature. We refer to Pflug et al. [303], Pichler [305], Pichler and Xu [307], Wozabal [412] for
spectral and distortion risk measures, Calafiore [72] for variance, Calafiore [72] for mean absolute-deviation,
Hanasusanto et al. [178], Wiesemann et al. [410] for optimized certainty equivalent, Hanasusanto et al. [175]
for CVaR, and Postek et al. [311] for a variety of risk measures. Delage and Li [103] study a risk minimization
problem, where there is ambiguity on the underlying risk measure. However, the decision maker can state her risk
preferences using a set of properties such as monotonicity, convexity, translation invariance, positive homogeneity,
law invariance, and partial ordering.

5.3 Utility Function
An alternative to using risk measures to compare random variables is to evaluate their expected utility Gilboa
and Schmeidler [154]. As before, let us consider a probability space (Ξ,F , P ). A random variable Z ∈ Z is
preferred over a random variable Z ′ ∈ Z if EP [u(Z)] ≥ EP [u(Z ′)] for a given univariate utility function u16. A
bounded utility function u can be normalized to take values between 0 and 1, and hence, it can be interpreted as
a cdf of a random variable ζ independent of Z, i.e., u(t) = P{ζ ≤ t} for t ∈ R. Under this interpretation, Z is
preferred over Z ′ if P{Z ≥ ζ} ≥ P{Z ′ ≥ ζ} because

EP [u(Z)] = EP [P{ζ ≤ Z|Z}] = EP
[
EP
[
1{ζ≤Z}|Z

]]
= EP

[
1{ζ≤Z}

]
= P{ζ ≤ Z}.

However, as in decision theory, it is difficult to have a complete knowledge of a decision maker’s preference (i.e.,
utility function), it is also difficult to have a complete knowledge of the cdf of ζ. The notion of (second-order)
stochastic dominance handles this issue by comparing the expected utility of random variables, for a given family
U of utility functions, or equivalently, compare the probability of exceeding the target random variable ζ for
a given family of cdfs Dentcheva and Ruszczynski [112], Dentcheva and Ruszczyński [113]. Consequently, to
address the problem of ambiguity in decision maker’s utility or equivalently, cdf of the random variable ζ, one
can study

min
x∈X

max
ζ∈U

P{h0(x, ξ) ≥ ζ}, (28)

and

min
x∈X

{
h0(x)

∣∣∣∣max
ζ∈U

P{hj(x, ξ) ≥ ζ} ≤ 0, j ∈ [m]
}
, (29)

16For definitions in a multivariate case, we refer to Hu et al. [197, 198].
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where U denotes a given family of normalized and nondecreasing utility functions, or equivalently, a given family
of cdfs. Note that problems (28) and (29) have the form of problems (8) and (9), respectively. Robust preference
optimization with respect to utility function is studied in several papers. Hu and Mehrotra [195] study problem
of the form (28), where U is further restricted to include concave utility functions or equivalently, cdf, and satisfy
functional bounds on the utility and marginal utility functions (cdf and pdf of ζ) as in (54). They provide a
linear programming formulation of a particular case where the bounds on the utility function are piecewise-linear
increasing concave functions, and the bounds on all other functions are step functions. For the general continuous
case, they study an approximation problem by discretisizing the continuous functions, and analyze the convergence
properties of the approximated problem. They apply their results to a portfolio optimization problem. Unlike Hu
and Mehrotra [195], in Hu et al. [200], no shape restrictions on the utility function is assumed and only functional
bounds on the utility function are enforced. Hu et al. [200] show that an SAA approach to the Lagrangian dual
of the resulting problem can be used while solving a mixed-integer linear program. Bertsimas et al. [48] study a
DRO model of the form (8), where a convex nondecreasing disutility function is used to quantify the uncertainty
in decision. A utility function is closely related to risk measures (Hu and Mehrotra [195]). For instance, for
a given probability measure, the expected utility might have the form of a combination of expectation and
expected excess beyond a target, or an optimized certainty equivalent risk measure. As shown in Ben-Tal and
Teboulle [27], under appropriate choices of utility functions, an optimized certainty equivalent risk measure can
be reduced to the mean-variance and the mean-CVaR formulations. Wiesemann et al. [410] study a DRO model
via a cross-moment or nested moment ambiguity set, to be reviewed in Section 6.2.5, where the decision maker is
risk-averse via a nondecreasing convex piecewise-affine disutility function. In particular, they investigate shortfall
risk and optimized certainty equivalent risk measures. Armbruster and Delage [7] assume that the nondecreasing
utility function is ambiguous but satisfies certain properties. In particular, they consider the case that the utility
function is concave to capture risk aversion or it is S-shaped (convex on loses and concave on gains) to capture
risk aversion and risk receptiveness. Armbruster and Delage [7] also consider the case that the derivative of the
utility function exists and is convex to capture risk prudence, i.e., the decision maker is more risk tolerant when
the cost is lower. For an ambiguous risk minimization problem and given certain properties such as coherence
and convexity on the risk measure, Delage et al. [107] derive an equivalent shortfall risk minimization problem
where the utility function lies in an ambiguity set.

As we mentioned earlier, the notion of stochastic dominance handles the ambiguity in decision maker’s
preference by comparing the expected utility of random variables for a given family U of utility functions. However,
the underlying probability distribution itself might be ambiguous. This naturally leads to a distributionally
robust stochastic dominance constraint, first introduced in Dentcheva and Ruszczyński [115]. An axiomatic
definition of a distributionally robust stochastic dominance constraint is presented in Peng and Delage [296].
Peng and Delage [296] and Mei et al. [264] study stochastic programs with a distributionally robust stochastic
dominance constraint when the distributional ambiguity is modeled via Wasserstein distance, to be reviewed
in Section 6.1.1. Mei et al. [264] study lower and upper approximations to this problem and establish their
convergence analysis. Finite-sample and asymptotic guarantees as well as a tractable conservative approximation
and solution algorithms are also studied in Peng and Delage [296].

Unlike the above discussion, many decision-making problems involve comparing random vectors. One can
generalize the notion of utility-based comparison to random vectors by using multivariate utility functions Arm-
bruster and Luedtke [8]. Another approach to compare random vectors is based on the idea of the weighted
scalarization of random vectors. For the case that the weights are deterministic and take value in an arbitrary
set, we refer to Dentcheva and Ruszczyński [114] for unrestricted sets, Homem-de-Mello and Mehrotra [193], Hu
et al. [196], Hu and Mehrotra [194] for polyhedral sets, and Hu et al. [197] for convex sets. For instance, Hu et al.
[196] study a weighted sum approach to a multiobjective budget allocation problem under uncertain performance
indicators of projects. They assume that the weights take value in the convex hull of the weights suggested
by experts and study a minimax approach to the expected weighted sum problem, where the expectation is
taken with respect to the uncertainty in the performance indicators and the worst-case is taken with respect
to the weights. Note that the problem studied in Hu et al. [196] is in the framework of RO as the weights are
deterministic.

The idea of using stochastic weights, governed by a probability measure that determines the relative importance
of each vector of weights, is also introduced in Hu and Mehrotra [194] and Hu et al. [198]. For instance, Hu and
Mehrotra [194] study a DRO approach to stochastically weighted multiobjective deterministic and stochastic
optimization problems, where the weights are perturbed along different rays from a reference weight vector.
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They study the reformulations of the deterministic problem for the cases where the weights take values in (1) a
polyhedral set, including those induced by a simplex, `1-norm, and `∞-norm, and (2) a conic-representable set,
including those induced by a single cone (e.g., `p-norm, ellipsoids), intersection of multiple cones, and union
of multiple cones. They further study the stochastic optimization problem. For the case that the weights and
random parameters are independent, and the ambiguity in the probability distribution of weights is modeled via
ellipsoid and matrix inequality ambiguity set, introduced in Delage and Ye [105], they obtain a reformulation of
the problem. For the case that the weights and random parameters are dependent, they also obtain reformulations
of the resulting problem by utilizing the result from the deterministic case.

6 Ambiguity Sets of Probability Distributions

The ambiguity set of distributions in a DRO model provides a flexible framework to model uncertainty by
allowing the modelers to incorporate partial information about the uncertainty, obtained from historical data
or domain-specific knowledge. This information includes, but it is not limited to, support of the uncertainty,
discrepancy from a reference distribution, descriptive statistics, and structural properties, such as symmetry
and unimodality. Early DRO models considered ambiguity sets based on the support and moment information,
for which techniques in global optimization for polynomial optimization problems and problem of moments
are applied to obtain reformulations, see, e.g., Bertsimas et al. [47], Bertsimas and Popescu [42], Gilboa and
Schmeidler [154], Lasserre [236], Popescu [309, 310]. Since then, many researchers have incorporated information
such as descriptive statistics as well as the structural properties of the underlying unknown true distribution
into the ambiguity set.

There are usually two principles to model the ambiguity set P:
1. P should be chosen as small as possible,
2. P should be chosen so that the prescribed solution provides good out-of-sample statistical performances.

It is worth noting that high quality solutions with good out-of-sample performances may be obtained by
enforcing the ambiguity set P to contain the unknown true distribution with certainty (or at least, with a high
confidence). While this holds for most research papers, it is also known that P does not necessarily need to
contain the unknown true distribution with high confidence to provide high quality solutions. In fact, even if
P contains the true distribution with exactly zero confidence, the prescribed solution may still provide good
statistical performances, see, e.g., Blanchet et al. [64], Duchi et al. [123], Lam [230], Lam and Zhou [232, 233].
The principle in attaining statistical guarantees, without enforcing P to be a confidence region, is to use the
empirical likelihood or the profile likelihood; see Section 7 for more details.

Abiding by the above two principles not only reduces the conservatism of the problem but it also robustifies
the problem against the unknown true distribution. These two principles, in turns, give rise to three questions:
1. what distributional information should the ambiguity set contain?
2. what are the nominal values of the included distributional information?
3. what should be the size of the ambiguity set?
We discuss the last two questions in Section 7, and focus on the information that is incorporated into the
ambiguity set in this section.

With a few exceptions, the common practice in constructing the ambiguity set is that first, the type of
information that should be incorporated into the ambiguity set is determined by decision makers/modelers.
In this step, data does not directly affect the choice of information. Then, the nominal values of the included
distributional information are chosen based on available data or belief. Finally, the parameters that control
the size of the ambiguity set are chosen in a data-driven fashion. We emphasize that albeit being a common
practice, the type of information in the ambiguity set, their nominal values, and the size of the ambiguity set
might be chosen neither separately nor in a data-driven fashion. To make the transition between Section 6 and 7
somewhat smoother, we devote Section 6.4 to review those papers that address these three questions somewhat
concurrently.

When dealing with the question of what distributional information should the ambiguity set contain, most
researchers, on one hand, have focused on the ambiguity sets that facilitate a tractable (exact or conservative
approximate) formulation, such as linear program (LP), second-order cone program (SOCP), or to a lesser
degree, semidefinite program (SDP), so that efficient computational techniques can be developed. On the other
hand, many researchers have focused on the expressiveness of the ambiguity set by incorporating information
such as descriptive statistics as well as the structural properties of the underlying unknown true distribution.
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In what follows in this section, we review different approaches to model the distributional ambiguity. We
acknowledge that the ambiguity sets in the literature are typically categorized in two groups: discrepancy-based
and moment-based ambiguity sets. In short, discrepancy-based ambiguity sets contain distributions that are close
to a nominal distribution in the sense of some discrepancy measure, while moment-based ambiguity sets contain
distributions whose moments satisfy certain properties. Within these two groups, some specific ambiguity sets
have been given names, see, e.g., Hanasusanto et al. [177]. For example,

Markov ambiguity set contains all distributions with known mean and support,
Chebyshev ambiguity set contains all distributions with bounds on the first- and second-order moments,
Gauss ambiguity set contains all unimodal distributions from within the Chebyshev ambiguity set,
Median-absolute deviation ambiguity set contains all symmetric distributions with known median and mean
absolute deviation,
Huber ambiguity set contains all distributions with known upper bound on the expected Huber loss function,
Hoeffdingambiguity set contains all componentwise independent distributions with a box support,
Bernstein ambiguity set contains all distributions from within the Hoeffding ambiguity set subject to marginal
moment bounds,
Choquet ambiguity set contains all distributions that can be expressed as an infinite convex combination of
extremal distributions of the set,
Mixture ambiguity set contains all distributions that can be expressed as a mixture of a parametric family of
distributions.

While we use the above terminology in this paper, we categorize DRO papers into four groups:
Discrepancy-based ambiguity sets (Section 6.1),
Moment-based ambiguity sets (Section 6.2),
Shape-preserving ambiguity sets (Section 6.3),
Kernel-based ambiguity sets (Section 6.4).

We briefly mentioned what is meant by discrepancy-based and moment-based ambiguity sets. In short, shape-
preserving ambiguity sets contain distributions with similar structural properties (e.g., unimodality, symmetry).
Kernel-based ambiguity sets contain distributions that are formed via a kernel function in a functional space.
The above groups are not necessarily disjoint from a modeling perspective and there are some overlaps between
them. However, we assign papers to these categories as close as possible to what the authors might explicitly or
implicitly have stated in their work. We review these four groups of ambiguity sets in Sections 6.1–6.4.

Besides these four groups, they are papers that provide a unified modeling approach. A unified scenario-wise
format for ambiguity sets to contain both the moment-based and discrepancy-based distributional information
about the ambiguous distribution is proposed in Chen et al. [98]. It is shown that the ambiguity sets formed via
generalized moments, mixture distribution, Wasserstein metric, φ-divergence, k-means clustering, among other,
all can be represented under this unified ambiguity set. The key feature of this scenario-wise ambiguity set is the
introduction of a discrete random variable, which represents a finite number of scenarios that would affect the
distributional ambiguity of the underlying nominal random variable. This ambiguity set can be characterized by
a finite number of (conditional) expectation constraints based on generalized moments (Wiesemann et al. [410]).
For practical purposes, they restrict the ambiguity set to be second-order conic representable. Based on the
scenario-wise ambiguity set, they introduce an adaptive robust optimization format that unifies the classical SP
and (distributionally) RO models with recourse. They also introduce a scenario-wise affine recourse approximation
to provide tractable solutions to the adaptive robust optimization model. Besides Chen et al. [98], there are
some proposals for unified models in the context of discrepancy-based, moment-based, and shape-preserving
models. As mentioned before, a broad class of moment-based ambiguity sets with conic-representable expectation
constraints and a collection of nested conic-representable confidence sets is proposed in Wiesemann et al. [410],
and a broad class of shape-preserving ambiguity sets is proposed in Hanasusanto et al. [177].

6.1 Discrepancy-Based Ambiguity Sets
In many situations, such as financial risk measurements (Glasserman and Xu [156]) or in the control of stochastic
uncertain systems (Petersen et al. [298]), we have a nominal or baseline estimate of the underlying probability
distribution. A natural way to hedge against the distributional ambiguity is then to consider a neighborhood
of the nominal probability distribution by allowing some perturbations around it. So, the ambiguity set can
be formed with all probability distributions whose discrepancy or dissimilarity to the nominal probability
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distribution is sufficiently small. More precisely, such an ambiguity set has the following generic form:

Pd(P0; ε) = {P ∈M (Ξ,F) | d(P, P0) ≤ ε} , (30)

where P0 denotes the nominal probability measure, and d : M (Ξ,F)×M (Ξ,F) 7→ R+ ∪ {∞} is a functional
that measures the discrepancy between two probability measure P, P0 ∈M (Ξ,F), dictating the shape of the
ambiguity set. Moreover, parameter ε ∈ [0,∞) controls the size of the ambiguity set, and it can be interpreted as
the decision maker’s belief in P0. Parameter ε is also referred to as the level of robustness.

A generic ambiguity set of the form (30) has been widely studied in the DRO literature. We relegate the
discussion about P0 and ε to Section 7. In this section, we review different discrepancy functionals d( · , · ) that
are used in the literature. These include (i) optimal transport discrepancy, (ii) φ-divergences, (iii) total variation
metric, (iv) goodness-of-fit test, (v) Prohorov metric, (vi) `p-norm, (vii) ζ-structure metric, (viii) Levy metric,
and (ix) contamination neighborhood.

We emphasize that although all studied functionals d can quantify the discrepancy between two probability
measures, they may or may not be a metric. For example, Prohorov and total variation are probability metrics,
see, e.g., Gibbs and Su [153], while Kullback–Leibler and χ2-distance from the family of φ-divergences are not a
probability metric. Thus, we refer to the models of the form (30) collectively as discrepancy-based ambiguity
sets, as opposed to distance-based or metric-based terminologies, which are prevailed in the literature.

6.1.1 Optimal Transport Discrepancy
We begin this section by providing more details on the optimal transport discrepancy. Consider two probability
measures P1, P2 ∈M (Ξ,F). Let Π(P1, P2) denote the set of all probability measures on (Ξ× Ξ,F × F) whose
marginals are P1 and P2:

Π(P1, P2) =
{
π ∈M (Ξ× Ξ,F × F)

∣∣∣∣∣π(A× Ξ) = P1(A), ∀ A ∈ F ,
π(Ξ×A) = P2(A), ∀ A ∈ F

}
.

Furthermore, suppose that there is a lower semicontinuous function c : Ξ× Ξ 7→ R+ ∪ {∞} with c(s1, s2) = 0 if
s1 = s2. Then, the optimal transport discrepancy between P1 and P2 is defined as:

dW
c (P1, P2) := inf

π∈Π(P1,P2)

∫
Ξ×Ξ

c(s1, s2)π(ds1 × ds2). (31)

If, in addition, function c is symmetric (i.e., c(s1, s2) = c(s2, s1)) and c
1
p ( · ) satisfies a triangle inequality for

some 1 ≤ p <∞ (i.e., c
1
p (s1, s2) ≤ c

1
p (s1, s3) + c

1
p (s3, s2)), then, dW

c
1
p

(P1, P2) metricizes the weak convergence
in M (Ξ,F), see, e.g., Villani [403, Theorem 6.9]. If Ξ is equipped with a metric d and c( · ) = dp( · ), then
dW
c (P1, P2) is called Wasserstein metric of order p or p-Wasserstein metric, for short17.

The optimal transport discrepancy (31) can be interpreted as the minimum cost of transporting one pile of
dirt from a source, represented by P1, to a sinkhole, represented by P2. The cost of transporting a unit mass
from s1 ∈ Ξ to s2 ∈ Ξ is captured by c(s1, s2). The optimal transportation plan π(A1 ×A2) is then the amount
of mass that is moved from the source A1 to the sink A2, where A1, A2 ∈ F . When P1 and P2 are two discrete
distributions, then finding the optimal transport discrepancy can be translated as solving a LP, that may be
solved in polynomial time. Otherwise, if at least one of the probability measures P1 and P2 is continuous, then
finding the optimal transport discrepancy might become computationally very challenging.

The optimal transport discrepancy (31) can be used to form an ambiguity set of probability measures as
follows:

PW(P0; ε) :=
{
P ∈M (Ξ,F)

∣∣ dW
c (P, P0) ≤ ε

}
. (32)

In general, there are two types of ambiguity sets of the form (32): (1) discrete ambiguity set, where there is only
ambiguity in the probability distribution of ξ, while the realizations are fixed, and (2) continuous ambiguity set,
where there is ambiguity in both the probability distribution of ξ and its realizations. The discrete ambiguity set
translates to the case that P0 and any P ∈ PW(P0; ε) are discrete. On the other hand, the continuous ambiguity

17Wasserstein metric of order 1 is sometimes referred to as Kantorovich metric. Wasserstein metric of order ∞ is de-
fined as infπ∈Π(P1,P2) π- ess sup c(s1, s2), where π- ess supΞ×Ξ[ · ] is the essential supremum with respect to measure π:
π- ess supΞ×Ξ c(s1, s2) = inf{a ∈ R : π(s1 × s2 ∈ Ξ× Ξ : c(s1, s2) > a) = 0}.
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set translates to the case that either P0 or any P ∈ PW(P0; ε), or both, are continuous. As we shall shortly see
below, most of the literature focuses on the discrete ambiguity set and the continuous ambiguity set for the case
that P0 is discrete.

Pioneered by the work of Pflug and Wozabal [302], most of the literature on DRO has focused on the
Wasserstein metric. Over the past few years, there has been a significant growth in the popularity of the optimal
transport discrepancy to model the distributional ambiguity in DRO, in both operations research and machine
learning communities, see, e.g., Blanchet et al. [67], Chen et al. [96], Gao and Kleywegt [148], Lee and Mehrotra
[238], Lee and Raginsky [239], Luo and Mehrotra [259], Mehrotra and Zhang [263], Mohajerin Esfahani and
Kuhn [266], Shafieezadeh-Abadeh et al. [355, 356], Singh and Póczos [376], Sinha et al. [377]. Wasserstein metric
of order p, for p = 1, 2, are more popular due to their theoretical and empirical aspects. A DRO model via
1-Wasserstein metric is usually used when the function h0(x, ξ) is bounded or has linear growth, leading to LP
reformulation when `1-norm or `∞-norm is utilized. A DRO model via 2-Wasserstein metric may be used for a
larger class of functions such as quadratic forms. Before we review these papers, we present a duality result on
supP∈PW(P0;ε) EP [h0(x, ξ)], proved in a general form in Blanchet and Murthy [62].

Because the infimum in the defintion of (31) is attained for a lower semicontinuous function c Rachev and
Rüschendorf [325], Villani [403], we can rewrite supP∈PW(P0;ε) EP [h0(x, ξ)] as follows:

sup
π∈ΦP0,ε

∫
Ξ
h0(x, s)π(Ξ× ds), (33)

where

ΦP0,ε :=

π ∈M (Ξ× Ξ,F × F)

∣∣∣∣∣∣
π ∈ ∪P∈M(Ξ,F)Π(P0, P ),∫

Ξ×Ξ
c(s1, s2)π(ds1 × ds2) ≤ ε

 .

Recall that S (Ξ,F) is the collection of all F-measurable functions φ : (Ξ,F) 7→ (R,B(R)). With the primal
problem (33), we have a dual problem

inf
(λ,φ)∈Λc,h0(x,· )

{
λε+

∫
Ξ
φ(s)P0(ds)

}
, (34)

where

Λc,h0(x,· ) := {(λ, φ) |λ ≥ 0, φ ∈ S (Ξ,F) , φ(s1) + λc(s1, s2) ≥ h0(x, s2),∀ s1, s2 ∈ Ξ} .

I Theorem 20 (Blanchet and Murthy [62, Theorem 1]). For a fixed x ∈ X , suppose that h0(x, · ) is upper
semicontinuous and P0-integrable, i.e.,

∫
Ξ |h0(x, ξ(s))|P0(ds) <∞. Let ΦP0,ε and Λc,h0(x,· ) be defined as in (33)

and (34), respectively. Then,

sup
π∈ΦP0,ε

∫
Ξ
h0(x, s)π(Ξ× ds) = inf

(λ,φ)∈Λc,g(x,· )

{
λε+

∫
Ξ
φ(s)P0(ds)

}
.

Moreover, there exists a dual optimal solution of the form (λ, φλ), for some λ ≥ 0, where φλ(s1) :=
sups2∈Ξ{h0(x, s2) − λc(s1, s2)}. In addition, any feasible π∗ ∈ ΦP0,ε and (λ∗, φλ∗) ∈ Λc,h0(x, · ) are primal
and dual optimizers, satisfying∫

Ξ
h0(x, s)π∗(Ξ× ds) = λ∗ε+

∫
Ξ
φλ∗(s)P0(ds),

if and only if

h0(x, s2)− λ∗c(s1, s2) = sup
s3∈Ξ
{h0(x, s3)− λ∗c(s1, s3)}, π∗-almost surely, (35a)

λ∗
(∫

Ξ×Ξ
c(s1, s2)π(ds1 × ds2)− ε

)
= 0. (35b)

I Corollary 21. Suppose that h0(x, · ) is upper semicontinuous and P0-integrable. Then,

sup
P∈PW(P0;ε)

EP [h0(x, ξ)] = inf
λ≥0

{
λε+ EP0

[
sup
s′∈Ξ
{h0(x, s′)− λc(s, s′)}

]}
. (36)



Hamed Rahimian & Sanjay Mehrotra 25

The importance of Theorem 20 and Corollary 21 is that (1) the transportation cost c( · , · ) is only known to
be lower semicontinuous, (2) function h0(x, · ) is assumed to be upper semicontinuous and integrable, and (3) Ξ
is a general Polish space. In fact, there are only mild conditions on h0(x, · ) and function c, and P0 can be any
probability measure. Moreover, supP∈PW(P0;ε) EP [h0(x, ξ)] can be obtained by solving a univariate reformulation
of the dual problem (34), where it involves an expectation with respect to P0 and a linear term in the level of
robustness ε. We shall shortly comment on similar results in the literature but under stronger assumptions. As
shown in Section 3.2, by using Theorem 20 or its weaker forms, researchers have shown that many mainstream
machine learning algorithms, such as regularized logistic regression and LASSO, have a DRO representation, see,
e.g., Blanchet and Kang [59, 60], Blanchet et al. [64], Gao et al. [150], Shafieezadeh-Abadeh et al. [355, 357].

While a strong duality result for DRO formed via the optimal transport discrepancy is provided in Blanchet
and Murthy [62] under mild assumptions by utilizing Fenchel duality, Gao and Kleywegt [148], Kuhn et al.
[224], Luo and Mehrotra [259], Mohajerin Esfahani and Kuhn [266], Zhao and Guan [443] are also among notable
papers in this area. Below, we first highlight the main differences of these papers with Blanchet and Murthy [62]
and comment on their main contributions for the specific functions h0(x, ξ) under study. A summary of main
duality contributions and assumptions for optimal transport discrepancy-based DRO models is presented in
Table 1.

Table 1 Duality and reformulation contributions for p-Wasserstein-based ambiguity sets. “usc” stands
for upper semicontinuous and “2SLP” stands for a two-stage stochastic LP, i.e., (3) with q1 = 0. Note
that a 2SLP with stochasticity on the right-hand side or objective is a special case of function h0(x, ξ)
that is convex or concave in ξ, respectively.
Note: (a) Blanchet et al. [64]; (b): Gao and Kleywegt [148]; (c): Kuhn et al. [224]; (d): Luo and Mehrotra
[259]; (e): Mohajerin Esfahani and Kuhn [266]; (f): Zhao and Guan [443].

Function h0(x, ξ)
Ω p 2SLP concave and usc in ξ usc in ξ convex in ξ convex in x and ξ

Convex 1 (f) (d), (e) (a), (b) - (d)
≥ 1 - (c) (a), (b) - -

Rd
1 (f) (d), (e) (a), (b) (d), (e) (d)
≥ 1 - (c) (a), (b) (c) -
2 - (c) (a), (b) (c) -

Polish ≥ 1 - - (a), (b) - -

Zhao and Guan [443] reformulate the studied problem as a semi-infinite linear two-stage robust optimization
problem. In addition, they derive a closed-form expression of the worst-case distribution whose parameters can
be obtained by solving a traditional two-stage robust optimization model. Using conic linear duality, Luo and
Mehrotra [259] reformulate the studied problem as a SIP. In order to solve the resulting SIP, they propose a
finitely convergent exchange method when the cost function h0( · , ξ) is a general nonlinear function in x, and a
central cutting-surface method with a linear rate of convergence when the cost function h0( · , ξ) is convex in x
and X is convex. By utilizing Lagrangian duality, Gao and Kleywegt [148] prove a strong duality result for the
studied DRO problems. They also show data-driven DRO problems can be approximated by robust optimization
problems. The key to this is approximating the worst-case distributions (or obtaining a worst-case distribution,
if it exists) via the first-order optimality conditions of the dual reformulation. Mohajerin Esfahani and Kuhn
[266] study data-driven DRO problems formed via 1-Wasserstein metric. They reformulate the problem as a
finite-dimensional convex program for different cost functions. This contribution is of importance as most of the
previous research on DRO formed via Wasserstein ambiguity sets reformulates the problem as a finite-dimensional
nonconvex program and relies on global optimization techniques, such as difference of convex programming, to
solve the problem, see, e.g., Wozabal [411, Theorem 6]. Kuhn et al. [224] extend these results to the case that
p ≥ 1. We present their duality result for the case that function h0(x, ξ) is concave in ξ and Ω is a convex set.

I Theorem 22 (Kuhn et al. [224, Theorem 8]). Suppose that the uncertainty set Ω is convex and closed, and
h0(x, ξ) := maxj∈[J] lj(ξ), where −lj is a proper, convex, and lower semicontinuous function for all j ∈ [J ].
Moreover, suppose that P̂N is the empirical distribution with N data points {ξi}Ni=1. Suppose that the transportation
cost c( · , · ) in the definition of PW(P̂N ; ε) is ‖·‖p. Then, we can rewrite supP∈PW(P̂N ;ε) EP [h0(x, ξ)] as the optimal
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value of a finite convex minimization problem

inf
γ,ti,uij ,vij

γε+ 1
N

N∑
i=1

ti

s.t.

γ ≥ 0, ti ∈ R, uij ,vij ∈ Rd, i ∈ [N ], j ∈ [J ],
[−lj ]∗(uij − vij) + δ∗(vij |Ω)− u>ijξ

i + φ(q)γ
∥∥∥uijγ ∥∥∥q∗ ≤ ti, i ∈ [N ], j ∈ [J ],

(37)

where 1
p + 1

q = 1, φ(q) = (q−1)q−1

qq for q > 1, and φ(1) = 1. For γ = 0, the expression 0‖uij0 ‖
q
∗ is interpreted as

limγ→0 γ
∥∥∥uijγ ∥∥∥q∗.

As can be seen from Theorem 22, conjugate function of −lj , support function of the set Ω, as well as dual-norm
used in the definition of PW(P̂N ; ε) play important roles in the equivalent finite convex minimization problem.
Special cases of Theorem 22 can be obtained for the case that (1) Ω is a polytope and h0(x, ξ) := maxj∈[J] lj(ξ),
where lj(ξ) is affine in ξ, (2) Ω is a polytope and h0(x, ξ) := minj∈[J] lj(ξ), where lj(ξ) is affine in ξ, (3) h0(x, ξ)
is the second stage of a two-stage stochastic program with objective uncertainty, (4) h0(x, ξ) is the second stage
of a two-stage stochastic program with right-hand side uncertainty, and (5) h0(x, ξ) is the indicator function of
a set, e.g., in uncertainty quantification and chance constraints.

In addition to Blanchet and Murthy [62], Gao and Kleywegt [148], Mohajerin Esfahani and Kuhn [266], Zhao
and Guan [443], there are other research on DRO problems formed via the optimal transport discrepancy, but
under more restricted assumptions, that move the frontier of research in this area. Kuhn et al. [224] develop
duality results for the case that P0 is an elliptical probability distribution and present SDP reformulation
under some conditions. Hanasusanto and Kuhn [174] study (8), where h0(x, ξ) is defined as (3) with q1 = 0
and with stochasticity on the right-hand side T (ξ) and r(ξ), and objective coefficients q(ξ). They model the
distributional ambiguity via 2-Wasserstein metric utilizing `2-norm. By relying on the strong duality result
from Mohajerin Esfahani and Kuhn [266] and Gao and Kleywegt [148], Hanasusanto and Kuhn [174] show that
when the ambiguity set is formed around a discrete distribution, the resulting model is equivalent to a copositive
program of polynomial size (if the problem has complete recourse) or it can be approximated by a sequence of
copositive programs of polynomial size (if for any fixed x and ξ, the dual of the second-stage problem is feasible).
Moreover, by using nested hierarchies of semidefinite approximations of the (intractable) copositive cones from
the inside, they obtain sequences of tractable conservative approximations to the problem. They also show if the
stochasticity is only on the right-hand side, the ambiguity set is formed via the 1-Wasserstein metric around a
discrete distribution utilizing `1-norm, and Ξ = Rd, then the DRO model is equivalent to a LP.

Wozabal [411] study a DRO approach to single-stage stochastic programs, where the distributional ambiguity
in the constraints and objective function is modeled via 1-Wasserstein metric utilizing `1-norm around the
empirical distribution. Because such a model has a higher complexity than that of those with fixed atoms (see,
e.g., Mehrotra and Zhang [263], Pflug and Pichler [300]), Wozabal [411] propose to reformulate the problem into
an equivalent finite-dimensional, nonconvex saddle-point optimization problem, under appropriate conditions.
The key ideas in Wozabal [411] to obtain such a reformulation are that (i) at any level of precision and in
the sense of Kantorovich distance, every distribution in the ambiguity set can be represented via a discrete
probability distribution supported on at most (N + 3) atoms, and (ii) considering only the extremal distributions
in the ambiguity set suffices to obtain the equivalent reformulation. This considerable reduction of complexity,
without sacrificing optimality, motivates designing numerical methods to solve the problem. Hence, they propose
to solve such a finite-dimensional reformulated problem via the exchange method, proposed in Pflug and Wozabal
[302].

Pflug and Pichler [300] and Mehrotra and Zhang [263] allow varying the probabilities on atoms identical to
those of the nominal distribution. Hence, the ambiguity set can be represented as a subset of a finite-dimensional
space. Pflug and Pichler [300] study a DRO approach to single- and two-stage stochastic programs formed via the
p-Wasserstein metric utilizing an arbitrary norm. To solve the resulting problem, they apply the exchange method,
proposed in Pflug and Wozabal [302]. Mehrotra and Zhang [263] study a distributionally robust ordinary least
squares problem, where the ambiguity set of probability distribution is formed via 1-Wasserstein metric utilizing
`1-norm. They show that the resulting problem can be solved by using an equivalent SOCP reformulation.

Motivated by the drawback of moment-based DRO problems, Gao and Kleywegt [149] study DRO models
formed via various ambiguity sets of probability distributions that incorporate the dependence structure between
the uncertain parameters. In the case that there exists a linear dependence structure, they consider probability
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distributions around a nominal distribution, in the sense of p-Wasserstein metric utilizing an arbitrary norm,
satisfying a second-order moment constraint. They also study cases with different rank dependencies between
the uncertain parameters, and obtain tractable reformulations of these models. Along the same lines as Gao and
Kleywegt [149], Pflug and Pohl [301] study a DRO approach to portfolio optimization via the 1-Wasserstein
metric utilizing an arbitrary norm. They address the case where the dependence structure between the assets
is uncertain while the marginal distributions of the assets are known. Noyan et al. [288] study DRO model
with decision-dependent ambiguity set, where the ambiguity set is formed via the p-Wasserstein metric utilizing
`p-norm. Rujeerapaiboon et al. [346] study continuous and discrete scenario reduction (Arpón et al. [9], Dupačová
et al. [129], Heitsch and Römisch [182, 183, 184]), where p-Wasserstein metric utilizing `p-norm is used as a
measure of discrepancy between distributions.

While most of the literature with optimal transport discrepancy is focused on p-Wasserstein with p ∈ [1,∞),
a few papers study DRO problems with ∞-Wassersterin ambiguity, see, e.g., Chen and Xie [94], Gao et al.
[150], Gao and Kleywegt [149]. Bertsimas et al. [55] shows that a distribution P in a∞-Wassersterin ball, centered
around the empirical probability distribution P̂N of N data points, is characterized as a mixture probability
distribution P = 1

N

∑N
i=1 Pi. In this representation, Pi, i ∈ [N ], is a probability distribution with a support in an

ε-ball, centered around ξi. Using this observation, Bertsimas et al. [55] study a data-driven approach, referred to
as sample robust optimization, to multistage stochastic linear optimization that consists of constructing multiple
uncertainty sets around data points. It is shown that this approach can be interpreted as a DRO problem with
∞-Wasserstein when uncertainty sets are formed via the norm used in the description of the Wasserstein distance.
We refer to Bertsimas et al. [55] for asymptotic optimality and feasibility guarantees for DRO problems with
∞-Wasserstein ambiguity. Bertsimas et al. [56] study a two-stage version of the problem studied in Bertsimas
et al. [55]. Xie [413] derive tractable reformulations for two-stage LPs.

6.1.1.1 Finite-Sample and Asymptotic Guarantees

In this section, we discuss how the choice of the size of the ambiguity set results in finite-sample and asymptotic
performance guarantees. A sufficient condition to achieve such performances is to ensure that the true unknown
distribution is contained in the constructed Wasserstein ball with a high confidence.

When the ambiguity set contains all discrete distributions around the empirical distribution in the sense of the
Wasserstein metric, Pflug and Wozabal [302] and Pflug et al. [303] propose to choose the level of robustness based
on a probabilistic statement on the Wasserstein metric between the empirical and true distributions, due to Dudley
[124], as ε = CN

− 1
d

α . This choice of ε guarantees that PN{dW
c (P, P̂N ) ≥ ε} ≤ α, and consequently, a finite-sample

guarantee with confidence 1− α can be achieved. To achieve a finite-sample guarantee, Mohajerin Esfahani and
Kuhn [266], Zhao and Guan [442] for p = 1 and Kuhn et al. [224] for p ≥ 1 propose to use a modern convergence
result for light-tail distributions, established in Fournier and Guillin [143]. This modern convergence result
implies that to guarantee that the true unknown distribution is contained in the Wassesrtein ball with confidence
1− α, and consequently, achieving a finite-sample guarantee, the radius ε should decay as O(N−

p
d ), where d

is the dimension of ξ. That is, to reduce the radius by a factor of 2, the sample size N must increase by 2
d
p .

Nevertheless, such data-independent theoretical results usually lead to an overly conservative ambiguity set with
size ε, i.e., PN{dW

c (P, P̂N ) ≥ ε} ≤ β, where β � α. Moreover, even if the unknown true probability distribution
does not belong to the ambiguity set, the optimal value to the resulting DRO model may still provide an upper
bound on the true optimal value. Thus, it is more practical to calibrate the size of the ambiguity set randomly
and perhaps through cross-validation and bootstrapping. To alleviate these issues and choosing the size of the
ambiguity set judiciously, Blanchet et al. [64] propose a mechanism based on robust Wasserstein profile (RWP)
function that take advantage of the optimization framework and data. Their proposed size for the ambiguity
set is such that it does not necessarily contain the unknown true distribution and decays faster than O(N−

p
d ),

while achieving the desired finite-sample guarantee. Asymptotic performance guarantees under appropriate
condition such as upper semicontinuity of h0(x, ξ) in ξ and its linear growth rate, as well as lower semicontinuity
of h0(x, ξ) in ξ and closedness of X is shown in Kuhn et al. [224], Mohajerin Esfahani and Kuhn [266].

6.1.1.2 Worst-Case Distribution

In this section, we discuss a worst-case distribution that may attain the optimal value supP∈PW(P̂N ;ε) EP [h0(x, ξ)].
As we mentioned, for p = 1, Wozabal [411] shows that any extremal distribution of the Wasserstein ball around
the empirical measure is a discrete measure supported on at most (N + 3) atoms for a continuous bounded
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function h0(x, ξ). This results is further improved to (N + 1) atoms in Gao and Kleywegt [148] for an upper
semicontinuous function h0(x, ξ) and N atoms in Kuhn et al. [224], Mohajerin Esfahani and Kuhn [266] for an
upper semicontinuous and concave function h0(x, ξ). A characterization of the worst-case probability distribution
for the optimal transport-based ambiguity sets around an N -atom empirical measure is listed in Table 2. In
order to obtain a worst-case distribution that attains the optimal value of supP∈PW(P̂N ;ε) EP [h0(x, ξ)], one may
dualize the dual equivalent reformulation.

I Theorem 23 (Kuhn et al. [224, Theorem 9], Mohajerin Esfahani and Kuhn [266, Theorem 4.4]). Suppose that
assumptions in Theorem 22 hold. Then, supP∈PW(P̂N ;ε) EP [h0(x, ξ)] is equivalent to the optimal value of the finite
convex program

sup
αij ,qij

1
N

∑
i∈[N ]

∑
j∈[J]

αij lj

(
ξi +

qij
αij

)
s.t.


αij ∈ R+, qij ∈ Rd, ∀ i ∈ [N ], j ∈ [J ],
ξi + qij

αij
∈ Ω, ∀ i ∈ [N ], j ∈ [J ],∑

j∈[J] αij = 1, ∀ i ∈ [N ],
1
N

∑
i∈[N ]

∑
j∈[J] αij

∥∥∥ qijαij ∥∥∥p ≤ ε,
(38)

where 0lj
(
ξi + qij

0
)
is defined as the value that makes the function αij lj

(
ξi + qij

αij

)
upper semicontinuous at

(qij , αij) = (qij , 0). Similarly, the constraint ξi + qij
0 ∈ Ω means that qij belongs to the recession cone of Ω, and

0
∥∥∥qij0 ∥∥∥p is interpreted as limαij↓0 αij

∥∥∥ qijαij ∥∥∥p. Moreover, let {(αrij , qrij)}r∈N be a sequence of feasible decisions
whose objective values converge to supP∈PW(P̂N ;ε) EP [h0(x, ξ)]. Then, the discrete probability distributions

Q
r := 1

N

∑
i∈[N ]

∑
j∈[J]

αrijδξrij ,

with ξrij := ξi + qrij
αr
ij

and δξr
ij

denoting the Dirac point mass on ξrij, belong to PW(P̂N ; ε) and attains
supP∈PW(P̂N ;ε) EP [h0(x, ξ)] asymptotically, i.e.,

sup
P∈PW(P̂N ;ε)

EP [h0(x, ξ)] = lim
r→∞

EQr [h0(x, ξ)] = lim
r→∞

1
N

∑
i∈[N ]

∑
j∈[J]

αrij l(ξ
r
ij).

As Theorem 23 reveals, a DRO model with a Wasserstein ambiguity set may result in future protection
against unobserved realizations in Ω Gao and Kleywegt [148]. For the case that p > 1, it can be verified that
the last constraint in (38) enforces that qij = 0 when αij = 0. Hence, it can be shown that the optimal
value of (38) is attained at (α∗ij , q∗ij), with the worst-case distribution Q∗ := 1

N

∑
(i,j)∈S+

α∗ijδ
ξi+

q∗
ij
α∗
ij

, where

S+ := {(i, j) ∈ [N ]× [J ] |αij > 0}.
Thus, if (i, j) ∈ S∞, it is possible to transport that atom to infinity along with a recession direction q∗ij of Ω

with a decaying probability, i.e., 1
r .

Table 2 Construction of a worst-case probability distribution for optimal transport-based ambiguity
sets around an N -atom empirical measure.
Note: (a): Gao and Kleywegt [148]; (b): Mohajerin Esfahani and Kuhn [266]; (c): Kuhn et al. [224]; (d)
Wozabal [411].

Function h0(x, ξ)
Ω p continuous and bounded in ξ concave and usc in ξ usc in ξ

Convex
1 (d)- (N + 3)-atoms (b)- N atoms (a)- (N + 1) atoms
≥ 1 - (c)- N atoms (a)- (N + 1) atoms

Polish ≥ 1 - (a)- (N + 1) atoms (a)- (N + 1) atoms

6.1.1.3 Choice of the Transportation Cost

When forming a Wasserstein ambiguity set, the transportation cost function c( · , · ) should be chosen in addition
to the nominal probability measure P0 and the size of the ambiguity set ε. Blanchet et al. [65] propose a
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comprehensive approach for designing the ambiguity set in a data-driven way, using the role of the transportation
cost c( · , · ) in the definition of the p-Wasserstein metric. They apply various metric-learning procedures to
estimate c( · , · ) from the training data, where they associate a relatively high transportation cost to two locations
if transporting mass between these locations substantially impacts performance. This mechanism induces
enhanced out-of-sample performance by focusing on regions of relevance, while improving the generalization error.
Moreover, this approach connects the metric-learning procedure to estimate the parameters of adaptive regularized
estimators. Blanchet et al. [63] propose a data-driven robust optimization approach to optimally inform the
transportation cost in the definition of the p-Wasserstein metric. This additional layer of robustification within
a suitable parametric family of transportation costs does not exist in the metric-learning approach, proposed
in Blanchet et al. [65], and it allows to enhance the generalization properties of regularized estimators while
reducing the variability in the out-of-sample performance error.

6.1.1.4 Discrete Problems

We now review DRO models over Wasserstein ambiguity sets where there are discrete decisions. Bansal et al.
[15] study a two-stage integer program, i.e., (8) with h0(x, ξ) defined as (3), with pure binary first-stage and
mixed-binary second-stage variables on a finite set of scenarios as follows:

min
x

{
c>x+ max

P∈P
EP [h0(x, ξ)]

∣∣∣∣Ax ≥ b, x ∈ {0, 1}n} ,
where

h0(x, ξ) = min
y

{
q>(ξ)y(ξ)

∣∣W (ξ)y(ξ) ≥ r(ξ)− T (ξ)x, y(ξ) ∈ {0, 1}q1 × Rq−q1
}
.

For the case that the ambiguity set of distributions is formed via 1-Wasserstein metric utilizing an arbitrary norm,
they propose a finitely convergent decomposition-based L-shaped algorithm and a cutting surface algorithm to
solve the resulting model. The results in Bansal et al. [15] are extended in Bansal and Zhang [14] to the case
that the second-stage problem have p-order conic constraints as well as integer variables, and in Bansal and
Mehrotra [13] to the case with disjunctive constraints in both stages. Xu and Burer [420] study a mixed-binary
LP, where the coefficients of the objective functions are affinely dependent on the random vector ξ. They seek a
bound on the worst-case expected optimal value to this problem, where the worst-case is taken with respect
to an ambiguity set of discrete distributions formed via 2-Wasserstein metric utilizing `2-norm around the
empirical distribution of data. Under mild assumptions, they reformulate the problem into a copositive program,
which leads to a tractable semidefinite-based approximation. Wang et al. [406] study a distributionally robust
chance-constrained bin-packing problem with a finite number of scenarios, where the safe region of the chance
constraint is bi-affine in x and ξ, with a random technology matrix. They present a binary bilinear reformulation
of the problem, where the feasible region is modeled as the intersection of multiple binary bilinear knapsack
constraints, a cardinality constraint, and a general (probability) knapcksack constraint. They propose lifted
cover valid inequalities for the binary bilinear knapsack substructure induced by a given bin and scenario, and
they further obtain lifted cover inequalities that are valid for the substructure induced by each bin. They obtain
valid probability cuts and incorporate them with the lifted cover inequalities in a branch-and-cut framework
to solve the model. They show that the proposed algorithm is finitely convergent if a distribution separation
subproblem can be solved in a finite number of iterations.

Recently, there has been interest in randomized policies, as opposed to deterministic policies, in SO and
DRO problems (Delage et al. [106]). For a mixed-integer DRO problem, Delage and Saif [104] study the value
of using a randomized policy. They show that the value of randomization for such DRO models with a convex
cost function h0( · , ξ) and a convex risk measure is bounded by the difference between the optimal values of the
nominal DRO problem and that of its convex relaxation. They show that when the risk measure is an expectation
and the cost function is affine in the decision vector, this bound is tight.

6.1.1.5 Risk and Chance Constraints

For a portfolio selection problem complemented via a broad class of convex risk measures appearing in the con-
straints, Wozabal [411] obtain an equivalent finite-dimensional, nonconvex, semidefinite saddle-point optimization
problem. Pichler and Xu [307] study a DRO model with a distortion risk measure and form the ambiguity set of
distributions via p-Wasserstein metric utilizing an arbitrary norm. They quantitatively investigate the effect of
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the variation of the ambiguity set on the optimal value and the optimal solution in the resulting optimization
problem, as the number of data points increases. They illustrate their results in the context of (8) with h0(x, ξ)
defined as (3).

A class of distributionally robust fractional optimization problems with a finite sample space, representing a
reward-risk ratio, is studied in Ji and Lejeune [211] as follows:

inf
x∈X

sup
P∈P

R1
P [h0(x, ξ)]
R2
P [h0(x, ξ)] . (39)

Above, R1
P : Z 7→ R is a reward measure and R2

P : Z 7→ R+ is a nonnegative risk measure. They focus on the
cases that (1) the reward measure is linear and the risk measure is concave in the probability vector (e.g., Sharpe
ratio) and (2) both reward and risk measures are linear in the probability vector (e.g., Omega ratio). They
model the ambiguity about discrete distributions using the 1-Wasserstein metric utilizing `1-norm, and provide a
nonconvex reformulation for the resulting model by relying on the support function of the ambiguity set and the
convex conjugate of the ratio function Postek et al. [311].

Ji and Lejeune [212] study a distributionally robust individual chance constraint, where the ambiguity set of
distributions is formed via 1-Wasserstein metric utilizing `1-norm, and hj(x, ξ), j ∈ [m], in (9) is defined as

hj(x, ξ) := 1[a(ξ)>x≤b(ξ)](ξ).

For the case that the underlying distribution is supported on the same atoms as those of the empirical
distribution, they provide mixed-integer LP reformulations for the linear random right-hand side case, i.e.,
hj(x, ξ) := 1[a>x≤ξ](ξ), and the linear random technology matrix case, i.e., hj(x, ξ) := 1[ξ>x≤b](ξ). For the case
that the underlying distribution is infinitely supported, they propose an exact mixed-integer SOCP reformulation
for models with random right-hand side, while a relaxation is proposed for constraints with a random technology
matrix. They show that this mixed-integer SOCP relaxation is exact when the decision variables are binary or
bounded general integer.

Chen et al. [96] study data-driven distributionally robust chance constrained programs, where the ambiguity
set of distributions is formed via p-Wasserstein metric utilizing an arbitrary norm. For individual linear chance
constraints with affine dependency on the uncertainty, and for joint chance constraints with right-hand side affine
uncertainty, they provide an exact deterministic reformulation as a mixed-integer conic program. When `1-norm
or `∞-norm are used as the transportation cost in the definition of Wasserstein metric, the chance-constrained
program can be reformulated as a mixed-integer LP. They leverage the structural insights into the worst-case
distributions, and show that both the CVaR and the Bonferroni approximation may give solutions that are
inferior to the optimal solution of their proposed reformulation. For other studies, we refer to Chen et al.
[96], Ho-Nguyen et al. [190, 191], Jiang and Guan [213], Xie [414], Yang [428].

6.1.1.6 Statistical Learning

DRO problems formed via the optimal transport discrepancy has been widely studied in the context of statistical
learning. Below, we review the latest developments of DRO in the context of statistical learning. Problems in
this section are generally modeled as (8), where h(x, ξ) is interpreted as the loss function. Moreover, a set of
data {ξi := (ui, yi)}Ni=1 is available, where ui ∈ Rn is a vector of covariates and yi ∈ R is the response variable.
Given this setup, for example, for a linear regression model with a squared loss we have h0(x, ξ) := (y − x>u)2,
for a logistic regression model we have h0(x, ξ) := log(1 + e−yx

>u), and for a SVM with Hinge loss we have
h0(x, ξ) := (1− yx>u)+. Under the assumption that the nominal measure P0 is the empirical distribution on
{ξi}Ni=1, (36) can be written as the following semi-infinite program:

min
λ,θ

λε+ 1
N

N∑
i=1

θi s.t.θi ≥ h0(x, s)− λc(ξi, s), i ∈ [N ], s ∈ Ξ.

A data-driven distributionally robust maximum likelihood estimation model to infer the inverse of the
covariance matrix of a normal random vector is proposed in Nguyen et al. [284]. They form the ambiguity set of
distributions with all normal distributions close enough to a nominal distribution characterized by the sample
mean and sample covariance matrix, in the sense of the 2-Wasserstein metric utilizing `1-norm. By leveraging an
analytical formula for the Wasserstein distance between two normal distributions, they obtain an equivalent SDP
reformulation of the problem. When there is no prior sparsity information on the inverse covariance matrix, they
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propose a closed-form expression for the estimator that can be interpreted as a nonlinear shrinkage estimator.
Otherwise, they propose a sequential quadratic approximation algorithm to obtain the estimator by solving the
equivalent SDP.

Lee and Mehrotra [238] study a distributionally robust framework for finding support vector machines via
the 1-Wasserstein metric. They provide a SIP formulation of the resulting model and propose a cutting-plane
algorithm to solve the problem. Lee and Raginsky [239] study a distributionally robust statistical learning
problem formed via the p-Wasserstein metric utilizing `p-norm, motivated by a domain (i.e., measure) adaption
problem. This problem arises when training data are generated according to an unknown source domain P, but
the learned hypothesis is evaluated on another unknown but related target domain Q. In this problem, it is
assumed that a set of labeled data (covariates and responses) is drawn from P and a set of unlabeled covariates is
drawn from Q. It is further assumed that the domain drift is due to an unknown deterministic transformation on
the covariates space that preserves the distribution of the response conditioned on the covariates. Under these
assumptions and some further regularity conditions, they prove generalization bound and generalization error
guarantees for the problem.

Gao et al. [151] develop a novel distributionally robust framework for hypothesis testing where the ambiguity
set of distribution is constructed by 1-Wasserstein metric utilizing an arbitrary norm, around the empirical
distribution. The goal is to obtain the optimal decision rule as well the least favorable distribution by minimizing
the maximum of the worst-case type-I and type-II errors. They develop a convex safe approximation of the
resulting problem and show that such an approximation renders a nearly optimal decision rule among the
family of all possible tests. By exploiting the structure of the least favorable distribution, they also develop a
finite-dimensional convex programming reformulation of the safe approximation.

We now turn our attention to the connection between DRO and regularization in statistical learning. Pflug
et al. [303], Pichler [305], Wozabal [412] draw the connection between robustification and regularization, where as
in Theorem 14, the shape of the transportation cost in the definition of the optimal transport discrepancy directly
implies the type of regularization, and (ii) the size of the ambiguity set dictates the regularization parameter.
Pichler [305] studies worst-case values of lower semicontinuous and law-invariant risk measures, including spectral
and distortion risk measures, over an ambiguity set of distributions formed via the p-Wasserstein metric utilizing
an arbitrary norm around the empirical distribution. They show that when the function h0(x, ξ) is linear in ξ, the
worst-case value is the sum of the risk of h0(x, ξ) under the nominal distribution and a regularization term. Pflug
et al. [303] and Wozabal [412] show the worst-case value of a convex law-invariant risk measure over an ambiguity
set of distributions, formed via the p-Wasserstein metric utilizing `p-norm around the empirical distribution,
reduces to the sum of the nominal risk and a regularization term whenever the function h0(x, ξ) is affine in ξ.
They provide closed-form expressions for risk measures such as expectation, sum of expectation and standard
deviation, CVaR, distortion risk measure, Wang transform, proportional hazards transform, the Gini measure,
and sum of expectation and mean absolute deviation from the median. Important parts of the derivation of
results in Pflug et al. [303], Pichler [305], Wozabal [412] are Kusuoka’s representation of risk measures (Kusuoka
[225], Shapiro [365]) and Fenchel–Moreau theorem (Rockafellar [336], Ruszczyński and Shapiro [348]).

In the context of statistical learning, the connection between DRO and regularization was first made
in Shafieezadeh-Abadeh et al. [355], to the best of our knowledge. In fact, they study a distributionally robust
logistic regression, where an ambiguity set of probability distributions, supported on an open set, is formed
around the empirical distribution of data and via the 1-Wasserstein metric utilizing an arbitrary norm. They
show that the resulting problem admits an equivalent reformulation as a tractable convex program. As stated in
Theorem 14, this problem can be interpreted as a standard regularized logistic regression, where the size of the
ambiguity set dictates the regularization parameter. They further propose a distributionally robust approach
based on Wasserstein metric to compute upper and lower confidence bounds on the misclassification probability
of the resulting classifier, based on the optimal values of two LPs.

Shafieezadeh-Abadeh et al. [357] extend the work of Shafieezadeh-Abadeh et al. [355] and study distributionally
robust supervised learning (regression and classification) models. They introduce a new generalization technique
using ideas from DRO, whose ambiguity set contains all infinite-dimensional distributions in the Wasserstein
neighborhood of the empirical distribution. They show that the classical robust and the distributionally robust
learning models are equivalent if the data satisfies a dispersion condition (for regression) or a separability
condition (for classification). By imposing bound on the decision (i.e., hypothesis) space, they improve the
upper confidence bound on the out-of-sample performance proposed in Mohajerin Esfahani and Kuhn [266]
and prove a generalization bound that does not rely on the complexity of the hypothesis space. This is unlike
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the traditional generalization bounds that are derived by controlling the complexity of the hypothesis space,
in terms of Vapnik–Chervonenkis (VC)-dimension, covering numbers, or Rademacher complexities (Bartlett
and Mendelson [16], Shalev-Shwartz and Ben-David [358]), which are usually difficult to calculate and interpret
in practice. They extend their results to the case that the unknown hypothesis is searched from the space of
nonlinear functionals. Given a symmetric and positive definite kernel function, such a setting gives rise to a
lifted DRO problem that searches for a linear hypothesis over a reproducing kernel Hilbert space (RKHS). We
refer to Section 6.4 for more details.

Gao et al. [150] study DRO problems formed via the p-Wasserstein metric utilizing an arbitrary norm, around
the empirical distribution. They identify a broad class of cost functions, for which such a DRO is asymptotically
equivalent to a regularization problem with a gradient-norm penalty under the nominal distribution. For linear
function class, this equivalence is exact and results in a new interpretation for discrete choice models, including
multinomial logit, nested logit, and generalized extreme value choice models. They also obtain lower and upper
bounds on the worst-case expected cost in terms of regularization.

Mohajerin Esfahani et al. [267] study a data-driven inverse optimization problem to learn the objective
function of the decision maker, given the historical data on uncertain parameters and decisions. In an environment
with imperfect information, they propose a DRO model formed via the p-Wasserstein metric utilizing an arbitrary
norm to minimize the worst-case risk of the predicted error. Such a model can be interpreted as a regularization
of the corresponding empirical risk minimization problem. They present exact (or safe approximation) tractable
convex programming reformulation for different combinations of risk measures and error functions.

Blanchet and Kang [59] study group-square-root LASSO (group LASSO focuses on variable selection in
settings where some predictive variables, if selected, must be chosen as a group). They model this problem as a
DRO problem formed via the p-Wasserstein metric utilizing an arbitrary norm. A method for (semi-) supervised
learning based on data-driven DRO via p-Wasserstein metric utilizing an arbitrary norm, is proposed in Blanchet
and Kang [60]. This method enhances the generalization error by using the unlabeled data to restrict the support
of the worst-case distribution in the resulting DRO. They select the level of robustness using cross-validation,
and they discuss the nonparametric behavior of an optimal selection of the level of robustness.

Chen and Paschalidis [86] study a DRO approach to linear regression using an `1-norm cost function, where
the ambiguity set of distributions is formed via p-Wasserstein metric utilizing an arbitrary norm. They show
that this DRO formulation can be relaxed to a convex optimization problem. By selecting proper norm spaces
for the Wasserstein metric, they are able to recover several commonly used regularized regression models. They
establish performance guarantees on both the out-of-sample behavior (prediction bias) and the discrepancy
between the estimated and true regression planes (estimation bias), which elucidate the role of the regularizer.
We refer to Staib and Jegelka [383] for distributionally robust deep learning for adversarial training, Derman and
Mannor [116] for distributionally robust reinforcement learning, and Staib and Jegelka [384] for distributionally
robust kernel methods.

6.1.1.7 Multistage Setting

The single- and two-stage stochastic programs in Pflug and Pichler [300] are extended in Analui and Pflug [5]
to the multistage case, i.e., (10), where the reference data and information structure is represented as a tree.
In these papers it is assumed that the tree structure and scenario values are fixed, while the probabilities are
changing only in an ambiguous neighborhood of the reference model by utilizing the multistage nested distance,
formed via the Wasserstein metric. Built upon the above results, Glanzer et al. [155] show that a scenario tree
can be constructed out of data such that it converges (in terms of the nested distance) to the true model in
probability at an exponential rate. Duque and Morton [131] study a stochastic dual dynamic programming
(SDDP) approach to solve a multistage DRO model formed via the Wasserstein metric.

6.1.2 φ-Divergences
Another popular way to model the distributional ambiguity is to use φ-divergences, a class of measures used in
information theory. A φ-divergence measures the discrepancy between two probability measures P1, P2 ∈M (Ξ,F)
as dφ(P1, P2) :=

∫
Ξ φ
(

dP1
dP2

)
dP2, where the φ-divergence function φ : R+ → R+ ∪ {+∞} is convex, and satisfy

the following properties: φ(1) = 018, 0φ
( 0

0
)

:= 0, and aφ
(
a
0
)

:= a limt→∞
φ(t)
t if a > 0. Note that a φ-divergence

18The assumption φ(1) = 0 is without loss of generality because the function ψ(t) = φ(t) + c(t− 1) yields identical discrepancy
measure to φ Pardo [293].
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Table 3 Examples of φ-divergence functions, their conjugates φ∗(a), and their DRO counterparts
(see Ben-Tal et al. [32])

Divergence φ(t) φ(t), t ≥ 0 dφ(P1, P2) φ∗(a) DRO Counterpart

Kullback–Leibler φkl(t) t log t− t+ 1
∫

Ξ log
(dP1

dP2

)
dP1 ea − 1 Convex program

Burg entropy φb(t) − log t+ t− 1
∫

Ξ log
(dP2

dP1

)
dP2 − log(1− a), a < 1 Convex program

J-divergence φj(t) (t− 1) log t
∫

Ξ log
(dP1

dP2

)
(dP1 − dP2) No closed form Convex program

χ2-distance φc(t) 1
t
(t− 1)2 ∫

Ξ( (dP1−dP2)2

dP1
2− 2

√
1− a, a < 1 SOCP

Modified χ2-distance φmc(t) (t− 1)2 ∫
Ξ( (dP1−dP2)2

dP2

{
−1 a < −2
a+ a2

4 a ≥ −2
SOCP

Hellinger distance φh(t) (
√
t− 1)2 ∫

Ξ(
√

dP1 −
√

dP2)2 a
1−a , a < 1 SOCP

χ-divergence of order θ > 1 φcaθ (t) |t− 1|θ
∫

Ξ |1−
dP1
dP2
|θdP2 a+ (θ − 1)

( |a|
θ

) θ
θ−1 SOCP

Variation distance φv(t) |t− 1|
∫

Ξ |dP1 − dP2|

{
−1 a ≤ −1
a −1 ≤ a ≤ 1

LP

Cressie–Read φcrθ (t) 1−θ+θt−tθ
θ(1−θ)

1
θ(1−θ) (1−

∫
Ξ dP θ1 dP 1−θ

2 ) 1
θ

(
1− a(1− θ)

) θ
1−θ − 1

θ
, a < 1

1−θ SOCP

does not necessarily induce a metric on the underlying space. For detailed information on φ-divergences, we refer
to Pardo [293], Read and Cressie [332], Vajda [394].

A φ-divergence can be used to model the distributional ambiguity as follows:

Pφ(P0; ε) :=
{
P ∈M (Ξ,F)

∣∣ dφ(P, P0) ≤ ε
}
, (40)

where as before P0 is a nominal probability measure and ε controls the size of the ambiguity set. Table 3 presents
a list of commonly used φ-divergence functions in DRO and their conjugate functions φ∗.

Before we review the papers that model the distributional ambiguity via the φ-divergences, we present a
duality result on supP∈Pφ(P0;ε) EP [h0(x, ξ)] on a general probability space.

I Theorem 24 (Shapiro [367], Ahmadi-Javid [3, Theorem 3], Ahmadi-Javid [4, Theorem 5.1]). Suppose that ε > 0
in (40). Then, for a fixed x ∈ X , we have

sup
P∈Pφ(P0;ε)

EP [h0(x, ξ)] = inf
(λ,µ)∈Λφ,h0(x,· )

{
µ+ λε+

∫
Ξ

(λφ)∗(h0(x, s)− µ)P0(ds)
}
,

where Λφ,h0(x,· ) :=
{

(λ, µ)
∣∣λ ≥ 0, h0(x, s) − µ − λ limt→∞

φ(t)
t ≤ 0,∀ s ∈ Ξ

}
, with the interpretation that

(λφ)∗(a) = λφ∗( aλ ) for λ ≥ 0. Here, (0φ)∗(a) = 0φ∗(a0 ), which equals to 0 if a ≤ 0 and +∞ if a > 0.

Note that in the context of DRO, φ-divergences are mostly used to model distributional ambiguity for discrete
distributions. Hence, the integrations in this section may be interpreted as summations. The above result is first
obtained in Ahmadi-Javid [3, 4] for an essentially bounded measurable function h0(x, · ) on a general probability
space. An extension to a function h0(x, · ) with a finite p-th order moment is derived in Shapiro [367]. Theorem 24
can be obtained by taking the Lagrangian dual of supP∈Pφ(P0;ε) EP [h0(x, ξ)], as used in Shapiro [367], or using
Donsker–Varadhan variation formula, as done in Ahmadi-Javid [3, 4]. We refer the readers to Bayraksan and
Love [17], Ben-Tal et al. [32], Love and Bayraksan [255] for a detailed derivation in the discrete setting.

Based on the duality result in Theorem 24, Ahmadi-Javid [3, 4] introduce a class of law invariant coherent
risk measure, referred to as φ-entropic risk measure. CVaR belong to this class. Moreover, the risk measure
corresponding to Kullback–Leibler diveregnce is called entropic value-at-risk, that provides an upper bound on
CVaR.

The robust counterpart of linear and nonlinear optimization problems with an uncertainty set of parameters
defined via general φ-divergences is derived in Ben-Tal et al. [32]. As it is presented in Table 3, when the uncertain
parameter is a finite-dimensional probability vector, the robust counterpart is tractable for most choices of
φ-divergence function considered in the literature. The use of φ-divergence to model the distributional ambiguity
in DRO is systematically introduced in Bayraksan and Love [17] and Love and Bayraksan [256]. To elucidate the
use of φ-divergences for models with different sources of data and decision makers with different risk preferences,
they present a classification of φ-divergences based on the notions of suppressing and popping a scenario. The
situation that a scenario with a positive nominal probability ends up having a zero worst-case probability is
called suppressing. On the contrary, the situation that a scenario with a zero nominal probability ends up having
a positive worst-case probability is called popping. These notions give rise to four categories of φ-divergences.
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For example, they show that the variation distance can both suppress and pop scenarios, while Kullback–Leibler
divergence can only suppress scenarios. Furthermore, they propose a decomposition algorithm to solve the dual
of the resulting DRO model formed via a general φ-divergence.

Motivated by the difficulty in choosing the ambiguity set and the fact that all probability distributions in
the set are treated equally (while those outside the set are completely ignored), Ben-Tal et al. [31] propose to
minimize the expected cost under the nominal distribution while the maximum expected cost over an infinite
nested family of ambiguity sets, parameterized by ε, is bounded from above. More specifically, they allow a
varying level of feasibility for each family of probability distributions, where the maximum allowed expected
cost for distributions in a set with parameter ε is proportional to ε. They refer to this approach as soft robust
optimization and relate the feasibility region induced by this approach to convex risk measures. They illustrate
that the ambiguity sets formed via φ-divergences are related to an optimized certainty equivalent risk measure
formed via φ-functions Ben-Tal and Teboulle [27]. Furthermore, they show that the complexity of the soft robust
approach is equivalent to that of solving a small number of standard corresponding DRO (i.e., DRO with one
ambiguity set) problems. In fact, by showing that standard DRO is concave in ε, they solve the soft robust
model by a bisection method. They also investigate how much larger a feasible region implied by the soft robust
approach can cover compared to the standard DRO, without compromising the objective value.

6.1.2.1 Worst-Case Distribution

For a fixed x ∈ X , supP∈Pφ(P0;ε) EP [h0(x, ξ)] is reformulated into a convex optimization problem in (λ, µ) by
using Theorem 24. One can obtain an optimal worst-case probability distribution at x using an optimal solution
(λ∗, µ∗) to the dual reformulation and by exploiting the KKT conditions.

I Theorem 25 (Love and Bayraksan [256, Property 4]). Suppose that Ξ is a finite sample space with M atoms:
Ξ = {s1, . . . , sM}, and let P0 =

∑M
k=1 qkδk, where δk is the Dirac point mass on sk, k ∈ [M ]. For a fixed x ∈ X ,

let (λ∗, µ∗) be an optimal dual solution to the dual reformulation in Theorem 24. An optimal worst-case probability
distribution P∗ =

∑M
k=1 p

∗
kδk to supP∈Pφ(P0;ε) EP [h0(x, ξ)] can be calculated with the equations

p∗k
qk
∈ ∂φ∗

(
h0(x, sk)− µ∗

λ∗

)
,

∑
k∈[M ]

qkφ

(
p∗k
qk

)
= ε,

∑
k∈[M ]

qk = 1,

when λ∗ > 0 and qk > 0. With λ∗ > 0 and qk = 0, we have p∗k ∈ qk∂φ
∗
(
h0(x,sk)−µ∗

λ∗

)
(i.e., p∗k = 0) when

h0(x,sk)−µ∗
λ∗ < limt→∞

φ(t)
t , and otherwise the last two equations above must be used. With λ∗ = 0, we have

p∗k = 0 when h0(x, sk)− µ∗ < 0, otherwise the equations
∑
k∈[M ] qkφ

(
p∗k
qk

)
≤ ε,

∑
k∈[M ] qk = 1 must be used.

6.1.2.2 Risk and Chance Constraints

A data-driven DRO approach to chance-constrained problems modeled via φ-divergences is studied in Yanıkoğlu
and den Hertog [431]. They propose safe approximations to these ambiguous chance constraints. Their approach
is capable of handling joint chance constraints, dependent uncertain parameters, and a general nonlinear function
hj(x, ξ), j ∈ [m]. Hu et al. [202] and Jiang and Guan [213] show that distributionally robust chance-constrained
programs formed via φ-divergences can be transformed into a chance-constrained problem under the nominal
distribution but with an adjusted risk level. For a general φ-divergence, a bisection line search algorithm to obtain
the perturbed risk level is proposed in Hu et al. [202], Jiang and Guan [213]. In addition, closed-form expressions
for the adjusted risk level are obtained for the case of the variation distance (see, Hu et al. [202] and Jiang and
Guan [213]), and Kullback–Leibler divergence and χ2-distance (see, Jiang and Guan [213]). For the ambiguous
probabilistic programs formed via φ-divergences, similar results to the chance-constrained programs are shown
in Hu et al. [202]. Hu et al. [202] show that the ambiguous probability minimization problem can be transformed
into a corresponding problem under the nominal distribution. In particular, they show that these problems have
the same complexity as the corresponding pure probabilistic programs.

6.1.2.3 Statistical Learning

Hu et al. [200] study distributionally robust supervised learning, where the ambiguity set of distributions is
formed via φ-divergences. They prove that such a DRO model for a classification problem gives a classifier that
is optimal for the training set distribution rather than being robust against all distributions in the ambiguity
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set. They argue such a pessimism comes from two sources: the particular losses used in classification and the
over-conservation of the ambiguity set formed via φ-divergences. Motivated by this observation, they propose an
ambiguity set that incorporates prior expert structural information on the distribution. More precisely, they
introduce a latent variable from a prior distribution. While such a distribution can change in the ambiguity set,
they leave the ambiguous joint distribution of data conditioned on the latent variable intact. Duchi et al. [123]
show that the inner problem of a data-driven DRO formed around the empirical distribution, with ε = χ2

1,1−α
N

has an almost-sure asymptotic expansion. Such an expansion is equivalent to the expected cost under the
empirical distribution plus a regularization term that accounts for the standard deviation of the objective
function. They also show that the set of the optimal solutions of the DRO model converges to that of the
stochastic program under the true underlying distribution, provided that h0(x, ξ) is lower-semicontinuous. As
mentioned in Section 3.2, similar results to Duchi et al. [123] are obtained in Dupuis et al. [130], Lam [228, 229]
in the context of robust sensitivity analysis of stochastic systems.

6.1.2.4 Specific φ-Divergences

In this section, we review papers that consider specific φ-divergences.

Kullback–Leibler Divergence Calafiore [72] investigates the optimal robust portfolio and worst-case distribution
for a data-driven distributionally robust portfolio optimization problem with a mean-risk objective. Motivated
by the application, they consider the variance and absolute deviation as measures of risk. Hu and Hong [201]
study a variety of distributionally robust optimization problems, where the ambiguity is in either the objective
function or constraints. They show that the ambiguous chance-constrained problem can be reformulated as a
chance-constrained problem under the nominal distribution but with an adjusted risk level. They further show
that when the chance safe region is bi-affine in x and ξ, and the nominal distribution belongs to the exponential
families of distributions, then both the nominal and worst-case distribution belong to the same distribution
family.

Blanchet et al. [67] study a DRO approach to extreme value analysis in order to estimate the tail distributions
and consequently, extreme quantiles. They form the ambiguity set of distributions by the class of Rényi
divergences Pardo [293], that includes Kullback–Leibler as a special case19. Kullback–Leibler is also used for
the DRO approach to hypothesis testing in Gül [167], Gül and Zoubir [168], Levy [240]. Guo et al. [169] study
the impacts of the variation of the ambiguity set of probability distributions on the optimal value and optimal
solution of the stochastic programs with distributionally robust chance constraints. To establish the results,
they present conditions under which a sequence of approximated ambiguity sets converges to the true ambiguity
set, for some discrepancy measures, including Kolmogorov and the total variation distance. They apply their
convergence results to the ambiguity sets formed via Kullback–Leibler divergence.

Burg Entropy Wang et al. [407] model the distributional ambiguity via the Burg entropy to consider all
probability distributions that make the observed data achieve a certain level of likelihood. They present statistical
analyses of their model using Bayesian statistics and empirical likelihood theory.

Wiesemann et al. [409] study Markov decision processes where the transition Kernel is known. They use
Burg entropy to construct a confidence region that contains the unknown probability distribution with a high
probability, based on an observation history. It is shown in Lam [230] that a DRO model formed via the Burg
entropy around the empirical distribution of data gives rise to a confidence bound on the expected cost that
recovers the exact asymptotic statistical guarantees provided by the Central Limit Theorem.

χ2-Distance Hanasusanto and Kuhn [173] propose a robust data-driven dynamic programming approach which
replaces the expectations in the dynamic programming recursions with worst-case expectations over an ambiguity
set of distributions. Their motivation to propose such a scheme is to mitigate the poor out-of-sample performance
of the data-driven dynamic programming approach under sparse training data. The proposed method combines
convex parametric function approximation methods (to model the dependence on the endogenous state) with
nonparametric kernel regression method (to model the dependence on the exogenous state). They show the
conditions under which the resulting DRO model, formed via χ2-distance, reduces to a tractable conic program.

19The class of Rényi divergences is defined as dR
r (P1, P2) := 1

1−r

∫
Ξ

(dP1
dP2

)r−1 dP1. This class is not a φ-divergence, but dR
r (P1, P2)

can be rewritten as h(dφ(P1, P2)), where h(t) = 1
r−1 log[(r − 1)t+ 1] and φ(t) = tr−r(t−1)−1

r−1 Pardo [293].
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Klabjan et al. [221] study optimal inventory control for a single-item multiperiod periodic review stochastic
lot-sizing problem under uncertain demand, where the distributional ambiguity is modeled via χ2-distance.
They show that the resulting model generalizes the Bayesian model, and it can be interpreted as minimizing
demand-history-dependent risk measures.

Modified χ2-Distance A SDDP algorithm to solve a distributionally robust multistage optimization model
formed via the modified χ2-distance is proposed in Philpott et al. [304].

Variation Distance Variation distance, or `1-norm, as defined in Table 3, can be used to safely approximate
several ambiguity sets formed via φ-divergences, including χ-divergence of order 2, J-divergence, Kullback–Leibler
divergence, and Hellinger distance. The following lemma states the above result more formally.

I Lemma 26. The following relationship holds between φ-divergences, as defined in Table 3:

1
4
(
dφv(P, P0)

)2 ≤ dφh(P, P0) ≤ dφkl(P, P0) ≤ dφj(P, P0) ≤ dφca2 (P, P0), (41)

which implies

Pφca2 (P0; ε) ⊆ Pφj(P0; ε) ⊆ Pφkl(P0; ε) ⊆ Pφh(P0; ε) ⊆ Pφv(P0; 2ε 1
2 ). (42)

Proof. See Appendix A. J

6.1.3 Total Variation Distance
For two probability measures P1, P2 ∈M (Ξ,F), the total variation distance is defined as

dTV(P1, P2) := sup
A∈F
|P1(A)− P2(A)|.

When P1 and P2 are absolutely continuous with respect to a measure ν ∈ M (Ξ,F), with Radon–Nikodym
derivatives f1 and f2, respectively, then, dTV(P1, P2) = 1

2
∫

Ξ |f1(s)− f2(s)|ν(ds). Note that the total variation
distance can be obtained from other classes of probability metrics: (1) it is a φ-divergence with φ(t) = 1

2 |t− 1|,
(2) it is half of the `1-norm, and (3) it is obtained from the optimal transport discrepancy (31) with

c(s1, s2) =
{

0, ifs1 = s2,

1, ifs1 6= s2.
(43)

The total variation distance can be used to model the distributional ambiguity as follows:

PTV(P0; ε) :=
{
P ∈M (Ξ,F)

∣∣ dTV(P, P0) ≤ ε
}
. (44)

The total variation distance between P1 and P2 is also related to the one-sided variation distances 1
2
∫

Ξ(f1(s)−
f2(s))+ν(ds) and 1

2
∫

Ξ(f2(s)− f1(s))+ν(ds) Rahimian et al. [327], which correspond φ-divergences with φ(t) =
1
2 (t− 1)+ and φ(t) = 1

2 (1− t)+, respectively. However, unlike the total variation distance, the one-sided variation
distances are not a probability metric.

Before we review the papers that model the distributional ambiguity via the total variation distance, we
present a duality result on supP∈PTV(P0;ε) EP [h0(x, ξ)].

I Theorem 27 (Jiang and Guan [214, Theorems 1–2], Rahimian et al. [327, Proposition 3], Shapiro [367]). For a
fixed x ∈ X , we have

sup
P∈PTV(P0;ε)

EP [h0(x, ξ)]

=


EP0 [h0(x, ξ)] , ε = 0,
εν- ess sups∈Ξ h0(x, ξ(s)) + (1− ε)CVaRP0

ε [h0(x, ξ)] , 0 < ε < 1,
ν- ess sups∈Ξ h0(x, ξ(s)), ε ≥ 1,

where ν- ess sups∈Ξ h0(x, ξ(s)) = inf
{
a ∈ R : ν{s ∈ Ξ : h0(x, ξ(s)) > a) = 0}

}
.
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I Remark 28 (Rahimian et al. [327, Proposition 3], Shapiro [367]). Let POTV(P0; ε) denote the ambiguity set
formed via either of the one-sided variation distances. Then, for a fixed x ∈ X , supP∈PTVO(P0; ε2 ) can be obtained
by the right-hand side of the result in Theorem 27.

It is possible to obtain a worst-case probability distribution at x ∈ X , using the dual formulation in
Theorem 27.

I Theorem 29 (Rahimian et al. [327, Proposition 4]). Suppose that Ξ is a finite sample space with M atoms:
Ξ = {s1, . . . , sM}, and let P0 =

∑M
k=1 qkδk, where δk is the Dirac point mass on sk, k ∈ [M ]. For a fixed x ∈ X ,

let (λ∗, µ∗) be optimal dual variables as follows:

λ∗ = sup
k∈[M ]

h(x, ξ(sk))−VaRε [h0(x, ξ)] , µ∗ = 1
2

(
sup
k∈[M ]

h0(x, ξ(sk)) + VaRε [h0(x, ξ)]
)
.

An optimal worst-case probability distribution P∗ =
∑M
k=1 p

∗
kδk to supP∈PTV(P0;ε) EP [h0(x, ξ)] is calculated with

p∗k = 0, h0(x, ξ(sk)) < VaRε [h0(x, ξ)] ,
p∗k ≤ qk, h0(x, ξ(sk)) = VaRε [h0(x, ξ)] ,
p∗k = qk, VaRε [h0(x, ξ)] < h0(x, ξ(sk)) < supk∈[M ] h(x, ξ(sk)),
p∗k ≥ qk, h0(x, ξ(sk)) = supk∈[M ] h(x, ξ(sk)),

coupled with constraints∑
k∈[k:h0(x,ξ(sk))=VaRε[h0(x,ξ)]]

p∗k =
∑

k∈[k:h0(x,ξ(sk))≤VaRε[h0(x,ξ)]]

qk − ε,

∑
k∈[k:h0(x,ξ(sk))=supk∈[M] h(x,ξ(sk))]

p∗k = ε+
∑

k∈[k:h0(x,ξ(sk))=supk∈[M] h(x,ξ(sk))]

qk,

in addition to
∑
k∈[M ] p

∗
k = 1 and p∗k ≥ 0, k ∈ [M ], when λ∗ > 0. When λ∗ = 0, the conditions can be written

asp∗k ≥ 0 if h0(x, ξ(sk)) = supk∈[M ] h(x, ξ(sk)), and p∗k = 0 otherwise, in addition to
∑
k∈[M ] p

∗
k = 1 and

1
2
∑
k∈[M ] |p∗k − qk| ≤ ε.

Jiang and Guan [214] study a two-stage stochastic program with h0(x, ξ) defined as (3), formed via the total
variation distance. They discuss how to find the nominal probability distribution and analyze the convergence of
the problem to the corresponding stochastic program under the true unknown probability distribution. Rahimian
et al. [327] study distributionally robust convex optimization problems with a finite sample space. They study
how the uncertain parameters affect the optimization. In order to do so, they define the notion of “effective” and
“ineffective” scenarios. According to their definitions, a subset of scenarios is effective if their removal from the
support of the worst-case distribution, by forcing their probabilities to zero in the ambiguity set, changes the
optimal value of the DRO problem. They propose easy-to-check conditions to identify effective and ineffective
scenarios for the case that the distributional ambiguity is modeled via the total variation distance. Rahimian
et al. [329] extend the work of Rahimian et al. [327] to the multistage setting, where they define the notions
of effectiveness of scenario paths and the conditional effectiveness of realizations along a scenario path for a
general class of multistage DRO problems. They propose easy-to-check conditions to identify the effectiveness of
scenario paths in the multistage setting when the distributional ambiguity is modeled via the total variation
distance. Rahimian et al. [328] extends Rahimian et al. [327] to distributionally robust newsvendor problems
with a continuous sample space. They derive a closed-form expression for the optimal solution and identify the
maximal effective subsets of demands.

6.1.4 Goodness-of-Fit Test
Various statistical hypothesis tests have been used to construct an ambiguity set of distributions. Bertsimas
et al. [51] and Bertsimas et al. [52] propose a systematic view on how to choose statistical goodness-of-fit test
to construct an ambiguity set of distributions that guarantee the implication (C1) (recall Theorem 12). For a
null hypothesis H0 : P = P0 that makes a claim about an unknown probability distribution P true, a set of data
DN with N data points, a significance level α, a test statistics T (DN , P0), and a critical value Γ(α,DN , P0),
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Bertsimas et al. [51] propose an ambiguity set of probability distributions, constructed as the (1− α) confidence
region, as follows

PGoF(P0; ε) := {P ∈M (Ξ,F) |T (DN , P0) ≤ Γ(α,DN , P0)} . (45)

For instance, for two univariate probability measures P1, P2 ∈M (Ξ,F), Kolmogorov–Smirnov distance is defined
as

dKS(P1, P2) := sup
t
|P1{(−∞, t]} − P2{(−∞, t]}|.

The Kolmogorov–Smirnov distance can be generalized to multivariate random vectors and be used to model the
distributional ambiguity as follows:

Pp(P0; ε) :=
{
P ∈M (Ξ,F)

∣∣ dKS(P, P0) ≤ ε
}
. (46)

A reformulation of the resulting DRO model (8) formed via (46) is given in Luo and Mehrotra [260] for the
case that the random vector have a discrete and continuous supports. Postek et al. [311] review and derive
computationally tractable reformulations of distributionally robust risk constraints over discrete probability
distributions for various risk measures and ambiguity sets formed using statistical goodness-of-fit tests or
probability metrics, including φ-divergences, Kolmogorov–Smirnov, Wasserstein, Anderson–Darling, Cramer-von
Mises, Watson, and Kuiper. For each pair of risk measure and ambiguity set, they obtain a tractable reformulation
by relying on the conjugate duality for the risk measure and the support function of the ambiguity set. Bertsimas
et al. [51] and Bertsimas et al. [52] consider the situation that (i) Ptrue = P true ◦ ξ−1 may have continuous
support, and the components of ξ are independent, (ii) Ptrue may have continuous support, and data are drawn
from its marginal distributions asynchronously, and (iii) Ptrue may have continuous support, and data are
drawn from its joint distribution. They also study a wide range of statistical hypothesis tests, including χ2, G,
Kolmogorov–Smirnov, Kuiper, Cramer-von Mises, Watson, and Anderson–Darling goodness-of-fit tests, and
they characterize the geometric shape of the corresponding ambiguity sets. For instance, they show that G,
Kolmogorov–Smirnov, and Kuiper tests result in polyhedral sets, while χ2, Cramer-von Mises, and Watson result
in SOC sets.

6.1.5 Prohorov Metric
For two probability measures P1, P2 ∈M (Ξ,F), the Prohorov metric is defined as

dp(P1, P2) := inf {γ > 0 |P1{A} ≤ P2{Aγ}+ γandP2{A} ≤ P1{Aγ}+ γ ∀ A ∈ F} ,

where Aγ := {s ∈ Ξ | infs′∈A d(s, s′) ≤ γ} Gibbs and Su [153]. The Prohorov metric takes values in [0, 1] and can
be used to model the distributional ambiguity as follows:

Pp(P0; ε) := {P ∈M (Ξ,F) | dp(P, P0) ≤ ε} . (47)

A specialization of the Prohorov metric to the univariate distributions is called Levy metric, which is defined
in Gibbs and Su [153] as

dL(P1, P2) := inf {γ > 0 |P2{(−∞, t− γ]} − γ ≤ P1{(−∞, t]} ≤ P2{(−∞, t+ γ]}+ γ, ∀ t ∈ R} .

The Levy metric can be used to model the distributional ambiguity as follows:

PL(P0; ε) :=
{
P ∈M (Ξ,F)

∣∣ dL(P, P0) ≤ ε
}
. (48)

Erdoğan and Iyengar [138] study an optimization problem subject to a set of parameterized convex constraints.
Similar to the argument in Section 3.1.2, they study a DRO approach to this problem, where the distributional
ambiguity is modeled by the Prohorov metric. They also consider a scenario approximation scheme of the
problem. By extending the work of Calafiore and Campi [73], Campi and Calafiore [75], they provide an upper
bound on the number of samples required to guarantee that the sampled problem is a good approximation for
the associated ambiguous chance-constrained problem with a high probability.
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6.1.6 `p-Norm
Calafiore and El Ghaoui [74] study distributionally robust individual linear chance constrained problem, and
provide convex conditions that guarantee the satisfaction of the chance constraint within the family of radially-
symmetric nonincreasing densities whose supports are defined by means of the `1- and `∞-norm. Interestingly, they
show that the worst-case distribution is attained by a uniform distribution on the respective support. To be more
precise, consider the sets H(A, ξ0) := {ξ = ξ0 +Aω | ‖ω‖∞ ≤ 1} and E(B, ξ0) := {ξ = ξ0 +Bω | ‖ω‖1 ≤ 1},
where A is a diagonal positive-definite matrix and B is a positive-definite matrix. A random vector ξ has a
probability distribution P within the class of radially-symmetric nonincreasing densities supported on H(A, ξ0)
(respectively, E(B, ξ0)) if ξ−EP [ξ] = Aω (respectively, ξ−EP [ξ] = Bω), where ω is a random vector having the
probability density fω such that fω(ω) = t(‖ω‖∞) for ‖ω‖∞ ≤ 1 and 0 otherwise (respectively, fω(ω) = t(‖ω‖1)
for ‖ω‖1 ≤ 1 and 0 otherwise) and t( · ) is a nonincreasing function. Calafiore and El Ghaoui [74] show that
the worst-case chance within the class of radially-symmetric nonincreasing densities supported on H(A, ξ0)
(respectively, E(B, ξ0)) is attained at a uniform distribution supported on H(A, ξ0) (respectively, E(B, ξ0)). The
class of radially-symmetric distributions contains for example Gaussian, truncated Gaussian, uniform distribution
on ellipsoidal support, and nonunimodal densities Calafiore and El Ghaoui [74].

Mevissen et al. [265] study distributionally robust polynomial optimization, where the distribution of the
uncertain parameter is estimated using polynomial basis functions via the `p-norm. They show that the optimal
value of the problem is the limit of a sequence of tractable SDP relaxations of polynomial optimization problems.
They also provide a finite-sample consistency guarantee for the data-driven uncertainty sets, and an asymptotic
guarantee on the solutions of the SDP relaxations.

Jiang and Guan [214] study two-stage stochastic program with h0(x, ξ) defined as (3), formed via `∞-norm.
Huang et al. [203] extend the work of Jiang and Guan [214] to the multistage setting. They formulate the
problem into a problem that contains a convex combination of expectation and CVaR in the objective function
of each stage to remove the nested multistage minimax structure in the objective function. They analyze the
convergence of the resulting DRO problem to the corresponding multistage stochastic program under the true
unknown probability distribution.

6.1.7 ζ-Structure Metrics
Consider P1, P2 ∈ M (Ξ,F) and let Z be a family of real-valued measurable functions z :

(
Rd,B(Rd)

)
7→

(R,B(R)). The ζ-structure metric (also referred to as integral probability metric Müller [269], Sriperumbudur
et al. [382]) is defined as dZ(P1, P2) := supz∈Z

∣∣EP1 [z(ξ)]− EP2 [z(ξ)]
∣∣. A wide range of metrics in probability

theory can be written as special cases of the above family of metrics (Pichler and Xu [307], Zhao and Guan
[442]). Let us introduce them below.

Total variation metric dTV(P1, P2):

Z = {z | ‖z‖∞ ≤ 1} ,

where ‖z‖∞ = supξ∈Ω |z(ξ)|.
Bounded Lipschitz metric dBL(P1, P2):

Z = {z | ‖z‖∞ ≤ 1, zis Lipschitz continuous, L1(z) ≤ 1} ,

where L1(z) =: sup {|z(u)− z(v)|/‖u− v‖ |u 6= v}, is the Lipschitz modulus.
Kantorovich metric dK(P1, P2):

Z = {z | z is Lipschitz continuous, L1(z) ≤ 1} .

Fortet–Mourier metric dFM(P1, P2):

Z = {z | z is Lipschitz continuous, Lq(z) ≤ 1} ,

where

Lq(z) =: inf
{
L
∣∣ |z(u)− z(v)| ≤ L · ‖u− v‖ ·max(1, ‖u‖q−1, ‖v‖q−1),∀ u,v ∈ Rd

}
.

Note that when q = 1, Fortet–Mourier metric is the same as the Kantorovich metric.
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Uniform (Kolmogorov) metric dU(P1, P2):

Z =
{
z
∣∣ z = 1(−∞,t], t ∈ Rn

}
.

The following lemma, which is immediate from Zhao and Guan [442, Lemmas 1–4], establishes the relationship
between ζ-structure metrics.

I Lemma 30. Suppose that the support Ω of ξ is bounded with diameter θ, i.e., θ := sup{d(ξ1, ξ2) : ξ1, ξ2 ∈ Ω},
where d is metric. Then, the following relationship holds between ζ-structure metrics:

dBL(P, P0) ≤ dK(P, P0)

dK(P, P0) ≤ θdTV(P, P0)

dU(P, P0) ≤ dTV(P, P0)

dK(P, P0) ≤ dFM(P, P0)

dFM(P, P0) ≤ max{1, θq−1}dK(P, P0).

The class of ζ-structure metrics may be used to model the distributional ambiguity as follows:

PZ(P0; ε) :=
{
P ∈M (Ξ,F)

∣∣ dZ(P, P0) ≤ ε
}
. (50)

Zhao and Guan [442] study distributionally robust two-stage stochastic programs with recourse. They discuss
how to construct the ambiguity set from historical data while utilizing a family of ζ-structure metrics. They
propose solution approaches to solve the resulting problem, where the true unknown distribution is discrete or
continuous. They further analyze the convergence of the DRO problem to the corresponding stochastic program
under the true unknown probability distribution. Pichler and Xu [307] investigate how the variation of the
ambiguity set would affect the optimal value and the optimal solution in the DRO problem formed via ζ-structure
metric. They illustrate their results in the context of a two-stage stochastic program with recourse.

6.1.8 Contamination Neighborhood
Contamination around P0, a nominal measure, is defined as

Pc(P0; ε) = {P ∈M (Ξ,F) |P = (1− ε)P0 + εQ, Q ∈ Q} , (51)

where Q ⊆M (Ξ,F) and ε ∈ [0, 1].
This ambiguity set is extensively used in the context of robust statistics, see, e.g., Huber [205], Huber and

Ronchetti [206], and it has also been used in the economics literature, see, e.g., Nishimura and Ozaki [286, 287].
Bose and Daripa [70] study ambiguity aversion in a mechanism design problem using a maximin expected utility
model of Gilboa and Schmeidler [154]. The contamination neighborhood is also used in the context of statistical
learning, see, e.g., Duchi et al. [122], and hypothesis testing, see, e.g., Huber [204].

6.2 Moment-Based Ambiguity Sets
A common approach to model the ambiguity set is moment based, in which the ambiguity set contains all
probability distributions whose moments satisfy certain properties. We categorize this type of models into several
subgroups, although there are some overlaps. Specifically, in this section, we review different moment-based
ambiguity sets that are used in the literature. These include (i) Chebyshev, (ii) ellipsoid and matrix inequality,
(iii) generalized moment and measure inequalities, (iv) moment matrix inequalities, (v) cross-moment or nested
moment, (vi) marginals (Fréchet), and (vii) mixture distribution.

6.2.1 Chebyshev
In this section, we review papers that model the distributional ambiguity by considering the first- and second-order
moments information.

Scarf [351] models the distributional ambiguity in a single-product newsvendor problem, where only the
mean and variance of the random demand is known. He obtains a closed-form expression for the optimal order
quantity and shows that the worst-case probability distribution is supported on only two points. Motivated by
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Table 4 Contributions for Chebyshev-based ambiguity sets

Contributions Assumptions

Scarf [351] Closed-form expression for the
optimal order quantity for a univariate
newsvendor model, worst-case distribution
is supported on only two points

Known mean and variance

El Ghaoui et al. [135] SOCP/SDP reformulation for worst-case VaR in
a one-period portfolio optimization

Mean and covariance matrix
in convex polytopic sets

Lotfi and Zenios [254] SOCP reformulation for worst-case VaR/CVaR in
a one-period portfolio optimization

Mean and covariance matrix
in an ellipsoid set

Goldfarb and Iyengar [161] SOCP reformulation for various portfolio
optimization problems under a linear factor model

Covariance matrix
in an ellipsoid set

the Scarf’s seminal work, other researchers have investigated the Chebyshev ambiguity set in the context of the
newsvendor model. Gallego and Moon [147] study multiple extensions of the problem studied in Scarf [351]. These
include the situations where there is a recourse opportunity, a fixed ordering cost, a random production output,
and a scare resource for multiple competing products. Grünwald and Dawid [166] confine the ambiguity set to
distributions with fixed first order moments τ . By varying τ , they obtain a collection of maximum generalized
entropy distribution and relate it to the exponential family of distributions.

Unlike the ambiguity sets studied in Scarf [351] and Gallego and Moon [147], the mean and covariance matrix
may be unknown themselves and belong to some uncertainty sets, for example:

PC :=

P ∈M (Ξ,F)

∣∣∣∣∣∣
∥∥∥EP [ξ]− µ0

∥∥∥
2
≤ %1,

EP
[
(ξ − µ0)(ξ − µ0)>

]
4 %2Σ0

 . (52)

Some researchers have studied this setup and obtain SDP or SOCP equivalent or approximate reformulations.
We review some of these papers in this section, and provide a summary of main contributions in Table 4.

6.2.1.1 Worst-Case Distribution

Several papers has studied obtaining a worst-case distribution for DRO models with Chebyshev ambiguity sets.
In his seminal paper, Scarf [351] consider a single-product newsvendor problem to decide on the optimal order
quantity x under an uncertain nonnegative demand ξ, with a know mean µ and variance σ2. The key idea in the
analysis is to show that at a fixed x, the cost function h0(x, ξ) := rmin{x, ξ}− cx, with c as the unit purchasing
cost and r as the unit revenue, is supported from below by a quadratic function in ξ, with equality happens at
only two points a and b. They show that there is a minimizing two-point distribution, supported on a and b,
that attains the known mean µ and variance σ2. This idea is further used for other variants of a single-item
newsvendor problem, with different functions h0(x, ξ), in Gallego and Moon [147], Han et al. [172], Xie and
Ahmed [415], Yu et al. [433]. In fact, it is known that moment problems with n moment constraints can be
solved by optimizing only over a convex combination of n+ 1 Dirac measures (i.e., discrete distributions with at
most n+ 1 support points) Smith [380]. In the spirit of this result, Popescu [310] show that for any univariate
function h0(ξ) := h0( · , ξ), minξ∼(µ,σ2) E [h0(ξ)] can be calculated as

min pah0(a) + pbh0(b) + pch0(c) s.t. a ≤ µ− σ2

c− µ
≤ b ≤ µ+ σ2

µ− a
≤ c,

where

pa =
{
σ2+(µ−b)(µ−c)

(a−b)(a−c) if a < b,

1− σ2+(µ−a)2

(c−a)2 if a = b,

pc =
{
σ2+(µ−a)(µ−b)

(c−a)(c−b) if b < c,

1− σ2+(µ−c)2

(c−a)2 if b = c,
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pb = 1− pa − pc.

Popescu [310] further extends the results in Scarf [351] to the class of univariate functions h0(ξ) that satisfy the two-
point support property (i.e., supported from below by a quadratic function, with equality happens at two points a
and b such that for any (µ, σ2), a feasible distribution with supports a and b exists). If h0(ξ) satisfies the two-point
support property, minξ∼(µ,σ2) E [h0(ξ)] can be calculated as min ph0

(
µ+

√
1−p
p σ

)
+ (1− p)h0

(
µ−

√
1−p
p σ

)
.

Special cases of functions with a two-point support property are the cost function considered in Gallego and
Moon [147], Scarf [351], functions with a decreasing and concave-convex derivative, and concave functions with
a concave-convex derivative.

6.2.1.2 Risk and Chance Constraints

El Ghaoui et al. [135] study a distributionally robust one-period portfolio optimization, where the worst-case
VaR of loss over an ambiguity set of distributions with a known mean µ and covariance matrix Σ < 0 is
minimized. They show that this problem can be reformulated as a SOCP. Moreover, El Ghaoui et al. [135]
show that minimizing worst-case VaR with respect to such an ambiguity set can be interpreted as a RO
model where the worst-case portfolio loss with respect to an ellipsoid uncertainty set is minimized. To be
precise, let h0(x, ξ) := −x>ξ, where x is the vector of investment and ξ the random vector of returns. Let
WVaRβ(x) := inf{γ : supP∈P P{h0(x, ξ) ≥ γ} ≤ β} be the worst-case VaR of loss at level β, over a set of
probability distributions P with mean µ and covariance matrix Σ < 0. El Ghaoui et al. [135] show that
WVaRβ(x) is equivalent to κ(β)‖Σ1/2x‖2 − µ>x, where κ(β) :=

√
1−β
β (see also Bertsimas and Popescu [42,

Proposition 6.3] and Calafiore and El Ghaoui [74, Theorem 3.1]). Recall that if ξ follows a multivariate normal
distribution with mean µ and covariance matrix Σ < 0, then VaRβ(x) is equivalent to κ(β)‖Σ1/2x‖2 − µ>x,
where κ(β) := −φ−1(β) with φ−1(β) as the (1− β)-quantile of the standard multivariate normal distribution. If
ξ does not follow a multivariate normal distribution, then, we can calculate an upper bound on WVaRβ(x) as
κ(β)‖Σ1/2x‖2 − µ>x, where κ(β) := 1√

β
. Hence, the importance of the results in El Ghaoui et al. [135] is that

an exact reformulation for WVaRβ(x) can be obtained by just replacing κ(β) in the multivariate normal case by√
1−β
β .
El Ghaoui et al. [135] extend their study to the case that the first two moments are only known to belong

to a convex (bounded) uncertainty set, and they show the conditions under which the resulting model can be
cast as a SDP. In particular, for independent polytopic uncertainty sets for the mean and covariance (so that
the mean and covariance belong to the Cartesian product of these two sets), the problem can be reformulated
as a SOCP. Also, for sets with componentwise bound on the mean and covariance, they cast the problem as a
SDP (see also Halldórsson and Tütüncü [171] for a similar result). Moreover, they show that in the presence of
additional information on the distribution, besides the first two moments, including constraints on the support
and Kullback–Leibler divergence, an upper bound on the worst-case VaR can be obtained by solving a SDP.
Motivated by the work in El Ghaoui et al. [135], Li [242] showcases the results in the context of a risk-averse
portfolio optimization problem. Unlike El Ghaoui et al. [135] that considers polytopic and interval uncertainty
sets for the mean and covariance, Lotfi and Zenios [254] assume that the unknown mean and covariance belong
to an ellipsoidal uncertainty set. They study the worst-case VaR and worst-case CVaR optimization problems,
subject to an expected ambiguous return constraint. They derive an interesting (yet surprising) result that both
problems yield the same SOCP reformulation. It is worth noting that the problem studied in Lotfi and Zenios
[254] is generally more difficult than the ones analyzed in El Ghaoui et al. [135] as they consider an ambiguous
constraints in addition to an ambiguous objective function. El Ghaoui et al. [135] study a similar linear factor
model as the one in Goldfarb and Iyengar [161], but without normality assumption and they assume that the
uncertainty in the mean is not independent of the uncertainty in the covariance matrix of the returns. When the
factor matrix A belongs to ellipsoidal uncertainty set, they show that an upper bound on the worst-case VaR
can be computed by solving a SDP.

Zymler et al. [449] extend the work of El Ghaoui et al. [135] with known first and second order moments
to a portfolio of derivatives, and develop two worst-case VaR models to capture the nonlinear dependencies
between the derivative returns and the underlying asset returns. They introduce worst-case polyhedral VaR with
convex piecewise-linear relationship between the derivative return and the asset returns. They also show that
minimizing worst-case polyhedral VaR is equivalent to a convex SOCP. A worst-case quadratic VaR with (possibly
nonconvex) quadratic relationships between the derivative return and the asset returns is also introduced, and
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they show that minimizing worst-case quadratic VaR is equivalent to a convex SDP. These worst-case VaR
measures are equivalent to the worst-case CVaR of the underlying polyhedral or quadratic loss function, and they
are coherent. As in El Ghaoui et al. [135], Zymler et al. [449] show that optimization of these new worst-case
VaR has a RO interpretation over an uncertainty set, asymmetrically oriented around the mean values of the
asset returns. Using the result from Zymler et al. [448], Rujeerapaiboon et al. [344] show that the worst-case
VaR of the quadratic approximation of a portfolio growth rate can be expressed as the optimal value of a SDP.

Chen et al. [88] summarize and develop different approximations to the individual chance constraint used in
the robust optimization as the consequence of applying different bounds on CVaR. These bounds, in turn, can be
written as an optimization problem over an uncertainty set. For instance, they show that when the uncertainties
are characterized only by their means and covariance, the corresponding uncertainty set is an ellipsoid. Calafiore
and El Ghaoui [74] provide explicit results for enforcement of the individual chance constraint over an ambiguity
set of distributions. When only the information on the mean and covariance are considered, the worst-case
chance constraint is equivalent to a convex second-order conic (SOC) constraint. With additional information
on the symmetry, the worst-case chance constraint can be safely approximated via a convex SOC constraint.
Additionally, when the means are known and individual elements are known to belong with probability one to
independent bounded intervals, the worst-case chance constraint can be safely approximated via a convex SOC
constraint.

Zymler et al. [448] study a safe approximation to distributionally robust individual and joint chance constraints
based on the worst-case CVaR. Under the assumptions that the ambiguity set is formed via distributions with
fixed mean and covariance, and the chance safe regions are bi-affine in x and ξ, they obtain an exact SDP
reformulation of the worst-case CVaR. They show that the CVaR approximation is in fact exact for individual
chance constraints whose constraint functions are either convex or (possibly nonconconvex) quadratic in ξ by
relying on nonlinear Farkas lemma and S-lemma, see, e.g., Pólik and Terlaky [308].

Chen et al. [88] extend their idea to the joint chance constraint by using bounds for order statistics. They
show that the resulting approximation for the joint chance constraint outperforms the Bonferroni approximation,
and the constraints of the approximation are second-order conic-representable. Zymler et al. [448] show that the
CVaR approximation is exact for joint chance constraints whose constraint functions depend linearly on ξ.

Motivated by the fact that chance constraints do not take into account the magnitude of the violation, Xu
et al. [424] study a probabilistic envelope constraint. This approach can be interpreted as a continuum of chance
constraints with nondecreasing target values and probabilities. They show that when the first two order moments
are known, an ambiguous probabilistic envelope constraint is equivalent to a deterministic SIP, which is called as
the globalized robust optimization, originally referred as the comprehensive robust optimization, problem (Ben-Tal
et al. [31, 29]). In other words, ambiguous probabilistic envelope constraint alleviates the “all-or-nothing” view
of the standard RO that ignores realizations outside of the uncertainty set. We refer to Yang and Xu [429] for an
extension of the work in Xu et al. [424] to the nonlinear inequalities.

Bertsimas et al. [48] study a risk-averse two-stage stochastic LP, i.e., h0(x, ξ) is defined as (3) with q1 = 0.
They assume that the mean and the covariance matrix are known, and a convex nondecreasing piecewise linear
disutility function is used to model risk. When the second-stage objective function’s coefficients q(ξ) are random,
they obtain a tight polynomial-sized SDP formulation. They also provide an explicit construction for a sequence
of (worst-case) distributions that asymptotically attain the optimal value. They prove that this problem is
NP-hard when the right-hand side is random, and further show that under the special case that the extreme
points of the dual of the second-stage problem are explicitly known, the problem admits a SDP reformulation.

Li and Kwon [243] study a distributionally robust approach for a single-period portfolio selection problem.
They consider a set of reference means and variances, and they form the ambiguity set by all distributions whose
means and variances are in a pre-specified distance from the reference means and variances set (in the regular
sense of a point from a set via a norm). For the case that moments take values outside the reference region, since
evaluation based on its worst-case performance can be overly conservative, they consider a penalty term that
further accounts for measure discrepancy between the moments in and outside the reference region. Moreover,
for the case that the reference region is a conic set, they obtain an equivalent SDP reformulation.

6.2.1.3 Discrete Problems

Under the assumption that the mean and covariance are unknown but belongs to a nonempty, closed, convex
set, Natarajan et al. [277] investigate the worst-case expected value of a random function Z(ξ), defined as the
maximum of a linear function of nonnegative random variables, i.e., Z(ξ) = max

{
ξ>x

∣∣∣x ∈ X} with X is
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specified as a bounded feasible region to a mixed-binary LP. They show that this problem can be reformulated
as a completely positive program, i.e., an optimization problem over the convex cone of completely positive
matrices. A relaxation to this problem can be obtained by using the cone of doubly nonnegative matrices, i.e.,
both positive semidefinite and nonnegative. When the mean and covariance matrix are known, Natarajan and
Teo [274] investigate a similar problem to the one in Natarajan et al. [277] where set X is specified with either a
finite number of points or a bounded feasible region to a mixed-integer LP. They reformulate this problem as a
SDP, whose complexity is related to characterizing the convex hull of the quadratic forms of the points in the
feasible region (Natarajan and Teo [274, Theorem 2]).

Xie and Ahmed [415] study a DRO approach to a two-stage stochastic program with a simple integer round-up
recourse function, defined as follows:

min
x

{
c>x+ max

P∈P
EP [h0(x, ξ)]

∣∣∣∣Ax ≥ b, x ∈ Rn
}
,

where

h0(x, ξ) = min
u,v

{
q>u+ r>v

∣∣u ≥ ξ − Tx, v ≥ Tx− ξ, u,v ∈ Zq+
}
.

The ambiguity set is formed by the product of one-dimensional ambiguity sets for each component of the random
parameter ξ, formed with marginal distributions with known support and mean. They obtain a closed-form
expression for the inner problem corresponding to each component, and they reformulate the problem as a
mixed-integer SOCP.

6.2.1.4 Statistical Learning
Lanckriet et al. [234] present a DRO approach to a binary classification problem to minimize the worst-case
probability of missclassification where the mean and covariance matrix of each class are known. They show that
for a linear hypothesis, the problem can be formulated as a SOCP. They also investigate the case where the
mean and covariance are unknown and belong to convex uncertainty sets. They show that when the mean is
unknown and belongs to an ellipsoid, the problem is a SOCP. On the other hand, when the mean is known
and covariance belongs to a matrix norm ball, the problem is a SOCP and adopts a regularization term. For a
nonlinear hypothesis, they seek a kernal function to map into a higher-dimensional covariates-response space such
that a linear hypothesis in that space corresponds to a nonlinear hypothesis in the original covariate-response
space. Using this idea, the model is reformulated as an SOCP.

Fathony et al. [141] study a distributonally robust approach to graphical models for leveraging the graphical
structure among the variables. The proposed model in Fathony et al. [141] seeks a predictor to make a probabilistic
prediction P̂ (ŷ|u) over all possible label assignments so that it minimizes the worst-case conditional expectation
of the prediction loss l(ŷ, ȳ) with respect to P̄ (ȳ|u) as follows:

min
P̂ (ŷ|u)

max
P̄ (ȳ|u)

EU∼P̆ Ŷ |U∼P̂ Ȳ |U∼P̄
[
l(Ŷ , Ȳ )

]
s.t. EU∼P̆ Ȳ |U∼P̄ [Φ(U , Y )] = Φ̆,

where Φ(U , Y ) is a given feature function and Φ̆ = E(U ,Y )∼P̆ [Φ(U , Y )]. The worst-case in the above formulation
is taken with respect to all conditional distributions of the predictor, conditioned on the covariates. This
conditional distribution P̄ (ȳ|u) is such that the first-order moment of the feature function Φ(U , Y ) matches
the first-order moment under the empirical joint distribution of the covariates and labels, P̆ . Fathony et al.
[141] show that the DRO approach enjoys the consistency guarantees of probabilistic graphical models, see, e.g.,
Lafferty et al. [226], and has the advantage of incorporating customized loss metrics during the training as in
large margin models, see, e.g., Tsochantaridis et al. [390].

6.2.1.5 Multistage Setting

Xin and Goldberg [418] study a multistage distributionally robust newvendor problem of the form (10), where
the support and the first two order moments of the demand distribution are known at each stage. They provide a
formal definition of the time consistency of the optimal policies and study this phenomena in the context of the
newsvendor problem. They further relate time consistency to rectangularity of measures, see, e.g., Shapiro [366],
and provide sufficient conditions for time consistency. Unlike Xin and Goldberg [418] that suppose the demand
process is stage-wise independent, Xin and Goldberg [419] assume that the demand process is a martingale.
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They form the ambiguity set by all distributions with a known support and mean at each stage. They obtain the
optimal policy and a two-point worst-case probability distribution, one of which is zero, in closed forms. They
also show that for any initial inventory level, the optimal policy and random demand (distributed according to
the worst-case distribution) is such that for all stages, either demand is greater than or equal to the inventory or
demand is zero, meaning that all future demands are also zero. Yang [427] and Van Parys et al. [397] study a
stochastic optimal control model to minimize the worst-case probability that a system remains in a safe region for
all stages. Yang [427] forms the ambiguity set at each stage by all distributions for which the componentwise mean
of random parameters is within an interval, while the covariance is in a positive semidefinite cone. Van Parys
et al. [397] form the ambiguity set by all distributions with a known mean and covariance.

6.2.2 Ellipsoid and Matrix Inequality
Unlike the ambiguity sets studied in Scarf [351] and Gallego and Moon [147], Delage and Ye [105] allow the
mean and covariance matrix to be unknown themselves and unify the studies mentioned in Section 6.2.1. This
ambiguity set is defined as follows (Delage and Ye [105]):

PDY :=

P ∈M (Ξ,F)

∣∣∣∣∣∣∣∣
P{ξ ∈ Ω} = 1,(
EP [ξ]− µ0

)>Σ−1
0
(
EP [ξ]− µ0

)
≤ %1,

EP
[
(ξ − µ0)(ξ − µ0)>

]
4 %2Σ0

 . (53)

The first constraint denotes the smallest closed convex set Ω ⊆ Rd that contains ξ with probability one (w.p. 1),
i.e., Ω is the support of P = P ◦ξ−1 w.p.1. The second constraint ensures that the mean of ξ lies in an ellipsoid of
size %1 and centered around the nominal mean estimate µ0. Note that we can equivalently write this constraint
as

EP
[(

−Σ0 µ0 − ξ
(µ0 − ξ)> −%1

)]
4 0.

The third constraint defines the second central-moment matrix of ξ by a matrix inequality. The parameters %1
and %2 control the level of confidence in µ0 and Σ0, respectively. Note that the ambiguity sets with a known
mean and covariance matrix can be seen as a special case of (53), with %1 = 0 and %2 = 1. Delage and Ye [105]
propose data-driven methods to form confidence regions for the mean and the covariance matrix of the random
vector ξ using the concentration inequalities of McDiarmid [261], and provide probabilistic guarantees that the
solution found using the resulting DRO model yields an upper bound on the out-of-sample performance with
respect to the true distribution of the random vector ξ. A conic generalization of the ambiguity set PDY, beyond
the first and second moment information is also studied in Delage [102]. Below, we present a duality result for
supP∈PDY EP [h0(x, ξ)] given a fixed x ∈ X , due to Delage and Ye [105].

I Theorem 31 (Delage and Ye [105, Lemma 1]). For a fixed x ∈ X , suppose that Slater’s constraint qualification
conditions are satisfied, i.e., there exists a strictly feasible P to PDY , and h0(x, ξ) is P -integrable for all
P ∈ PDY . Then, supP∈PDY EP [h0(x, ξ)] is equal to the optimal value of the following semi-infinite convex conic
optimization problem:

inf
Y ,y,r,t

r + t s.t.


r ≥ h0(x, ξ)− ξ>Y ξ − ξ>y, ∀ ξ ∈ Ω,
t ≥ (%2Σ0 + µ0µ

>
0 ) • Y + µ>0 y +√%1‖Σ

1
2
0 (y + 2Y µ0)‖,

Y < 0,

where Y ∈ Rd×d and y ∈ Rd.

The reformulated problem in Theorem 31 is polynomial-time solvable under the following assumptions Delage
and Ye [105]:

The sets X and Ω are convex and compact, and are both equipped with oracles that confirm the feasibility of
a point x and ξ, or provide a hyperplane that separates the infeasible point from its corresponding feasible
set in time polynomial in the dimension of the set.
Function h0(x, ξ) := maxj∈[J] lj(x, ξ) is piecewise-linear and is such that for each j, lj(x, ξ) is convex in x
and concave in ξ. In addition, for any given pair (x, ξ), one can evaluate lj(x, ξ), find a supergradient of
lj(x, ξ) in ξ, and find a subgradient of lj(x, ξ) in x, in time polynomial in the dimension of X and Ω.
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As a special case when Ω is an ellipsoid, the resulting reformulation in Theorem 31 reduces to a SDP of finite
size. Motivated by the computational challenges of solving a semidefinite reformulation of (8) formed via (53),
Cheng et al. [99] propose an approximation method to reduce the dimensionality of the resulting DRO. This
approximation method relies on the principal component analysis for the optimal lower dimensional representation
of the variability in random samples. They show that this approximation yields a relaxation of the original
problem and give theoretical bounds on the gap between the original problem and its approximation.

Rujeerapaiboon et al. [345] derive Chebyshev-type bounds on the worst-case right and left tail of a product
of nonnegative symmetric random variables. They assume that the mean is known, but the covariance matrix
might be known or bounded above by a matrix inequality. They show that if both the mean and covariance
matrix are known, these bounds can be obtained by solving a SDP. For the case that the covariance matrix is
bounded above, they show that (i) the bound on the left tail is equal to the bound on the left tail under the
known covariance setting, and (ii) the bound on the right tail is equal to the bound on the right tail under the
known mean and covariance setting, for a sufficiently large tail. They extend their results to construct Chebyshev
bounds for sums, minima, and maxima of nonnegative random variables.

6.2.2.1 Risk and Chance Constraints

Risk-based DRO models formed via the ambiguity set (53) are studied in the literature. A distributionally robust
approach to an individual chance constraint with binary decisions is studied in Zhang et al. [439]. They consider
the following individual chance constraints with hj(x, ξ), j ∈ [m], in (9) is defined as hj(xj , ξj) := 1[ξ>

j
xj≤bj ](ξj),

where xj ∈ {0, 1}nj , x = [x1, . . . ,xm], and ξ = [ξ1, . . . , ξm]. They form the ambiguity set of distributions by all
joint distributions whose marginal means and covariances satisfy the constraints in (53). They reformulate the
chance constraints as binary second-order conic (SOC) constraints. Li [242] obtains a closed-form expression to
the worst-case of the class of law invariant coherent risk measures, where the worst case is taken with respect to
all distributions with the same mean and covariance matrix.

6.2.3 Generalized Moment and Measure Inequalities
In this section we review an ambiguity set that allows to model the support of the random vector, and impose
bounds on the probability measure as well as functions of the random vector as follow:

PMM :=
{
P ∈M+(Ξ,F)

∣∣∣∣ ν1 � P � ν2,

∫
Ξ
fdP ∈ [l,u]

}
, (54)

where ν1, ν2 ∈ M+(Ξ,F) are two given measures that impose lower and upper bounds on a measure P ∈
M+(Ξ,F), and f := [f1, . . . , fm] is a vector of measurable functions on (Ξ,F), with m ≥ 1. The first constraint
in (54) enforces a preference relationship between measures. To ensure that P is a probability measure, i.e.,
P ∈M (Ξ,F), we set l1 = u1 = 1 and f1 = 1 in the above definition of PMM . Shapiro and Ahmed [369] propose
this framework, and its special cases appear in Bansal and Mehrotra [13], Bertsimas and Popescu [42], Mehrotra
and Papp [262], Perakis and Roels [297], Popescu [309], among others. Note that if the first constraint in (54) is
disregarded (i.e., we only have P � 0), then we can form the constraints of a classical problem of moments, see,
e.g., Landau [235]. Using this unified set, one can impose bounds on the standard moments, by setting the ith
entry of f to have the form: fi(ξ) := (ξ1)ki1 · (ξ2)ki2 · · · (ξd)kid , where kij is a nonnegative integer indicating the
power of ξj for the ith moment function. Other possible choices for the functions f include the mean absolute
deviation, the (co-)variances, semi-variance, higher order moments, and Huber loss function. Moreover, proper
choices of f will give the flexibility to impose structural properties on the probability distribution, see, e.g.,
Popescu [309] and Perakis and Roels [297], to model the unimodality and symmetry of distributions within this
framework (see also Section 6.3).

Below, we present a duality result supP∈PMM EP [h0(x, ξ)], given a fixed x ∈ X .

I Theorem 32 (Shapiro and Ahmed [369, Proposition 2.1]). For a fixed x ∈ X , suppose that h0(x, ξ) is ν2-
integrable, i.e.,

∫
Ξ |h0(x, ξ)|dν2 <∞, as defined in (54). Moreover, suppose that f is ν2-integrable, and there

exists ν1 � P � ν2 such that
∫

Ξ fdP ∈ (l,u). If supP∈PMM EP [h0(x, ξ)] is finite, then, it can be written as the
optimal value of the following problem:

inf
r,t
r>u− t>l+ Ψ(r, t) s.t. r, t ≥ 0,
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where

Ψ(r, t) =
∫

Ξ

(
h0(x, s) + (t− r)>f(s)

)
+
ν2(ds)−

∫
Ξ

(
− h0(x, s)− (t− r)>f(s)

)
+
ν1(ds).

Shapiro and Ahmed [369] focus on a special case of (54), where the first constraint is written as (1− ε)P ∗ �
P � (1 + ε)P ∗, for some reference measure P ∗, and they identify the coherent risk measure corresponding to the
studied DRO. They further study the class of problems with convex objective function h0( · , ξ) and two-stage
stochastic programs. Bertsimas and Popescu [42], Mehrotra and Papp [262], Popescu [309] study the classical
problem of moments, i.e., ambiguity set is formed via only the second constraints in (54). When f are moment
functions, Mehrotra and Papp [262] show that under mild conditions (continuous function h and compact support
Ω), the optimal value of a sequence of problems of the form (8), where the ambiguity set is constructed via
an increasing number of moments of the underlying probability distributions, with moments matched to those
under a reference distribution, converges to the optimal value of a problem of the form (1) under the reference
distribution. Moreover, using the SIP reformulation of (8), Mehrotra and Papp [262] propose a cutting surface
method to solve a convex (8). This method can be applied to problems where bounds of moments are of arbitrary
order, and possibly, bounds on nonpolynomial moments are available.

Chen et al. [89] consider a two-stage stochastic linear complementarity problem, where the underlying random
data are continuously distributed. They study a distributionally robust approach to this problem, where the
ambiguity set of distributions is formed via (54) without the first constraint, and propose a discretization
scheme to solve the problem. They investigate the asymptotic behavior of the approximated solution in the
number of discrete partitions of the sample space Ξ. As an application, they study robust game in a duoploy
market where two players need to make strategic decisions on capacity for future production with anticipation
of Nash–Cournot type competition after demand uncertainty is observed. There are studies that consider only
lower order moments, up to order 2. Ardestani-Jaafari and Delage [6] study distributionally robust multi-item
newsvendor problem, where the ambiguity set of distribution contains all distributions with a known budgeted
support, mean, and partial first order moments. To provide a reformulation of the problem, they propose a
conservative approximation scheme for maximizing the sum of piecewise linear functions over a polyhedral
uncertainty set based on the relaxation of an associated mixed-integer LP. They show that for the above studied
newsvendor problem such an approximation is exact and it is a LP.

Royset and Wets [343] study a DRO model with a decision-dependent ambiguity set, where the ambiguity
set has the form of (54), without the second set of constraints, and the first constraint is formed via the
decision-dependent cumulative distribution functions. They establish the convergence properties of the solutions
to this problem by exploiting and refining results in variational analysis.

6.2.3.1 Discrete Problems

Bansal et al. [15] study a two-stage integer program, i.e., (8) with h0(x, ξ) defined as (3), with pure binary first-
stage and mixed-binary second-stage variables on a finite set of scenarios. They propose a decomposition-based
L-shaped algorithm and a cutting surface algorithm to solve the resulting model. They investigate the conditions
and ambiguity set of distribution under which the proposed algorithm is finitely convergent. They show that
ambiguity set of distributions formed via (54) without the first constraint, satisfy these conditions. Hanasusanto
et al. [178] study a finite adaptability scheme to approximate the following two-stage distributionally robust
program, with binary recourse decisions and optimized certainty equivalent as a risk measure:

min
x

max
P∈P

{
ξ>Cx+RP [h0(x, ξ)]

∣∣∣Ax ≥ b, x ∈ {0, 1}q1 × Rn−q1
}
,

where

h0(x, ξ) = min
y

{
q>Qy(ξ)

∣∣Wy(ξ) ≥ Rξ − Tx, y(ξ) ∈ {0, 1}q2
}
,

and RP [h0(x, ξ)] is an optimized certainty equivalent risk measure corresponding to the utility function u:
RP [h0(x, ξ)] = infη∈R η + EP

[
u
(
h0(x, ξ)− η

)]
(Ben-Tal and Teboulle [26, 27]). As an alternative to the affine

recourse approximation, they pre-determine a set of finite recourse decisions here-and-now, and implement the
best among them after the realization is observed. They form the ambiguity set of distributions as in (54) but
without the first constraint, where the support is assumed to be a polytope and functions fi are also convex
piecewise linear in ξ. They derive an equivalent mixed-integer LP for the resulting model. They also obtain
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upper and lower bounds on the probability with which any of these recourse decisions is chosen under any
ambiguous distribution as LPs. Postek et al. [313] study (8), with h0(x, ξ) defined as (3) with q1 > 0. They
model the distributional ambiguity by all distributions whose mean and mean-absolute deviation are known.
While they show that the problem reduces to a two-stage stochastic program when there is no discrete variables,
they develop a general approximation framework for the DRO problem with integer variables.

6.2.3.2 Risk and Chance Constraints

Bertsimas and Popescu [42] study the worst-case bound on the probability of a multivariate random vector falling
outside a semialgebraic confidence region (i.e., a set described via polynomial inequalities) over an ambiguity set
of the form (54), where functions f are represented by all polynomials of up to kth-order. For the univariate case,
they obtain the result as a SDP. In particular, they obtain closed-form bounds, when k ≤ 3. For the multivariate
case, they show that such a bound can be obtained via a family of SDP relaxations, yielding a sequence of
increasingly stronger, asymptotically exact upper bounds, each of which is calculated via a SDP. A special case
of Bertsimas and Popescu [42] appears in Vandenberghe et al. [400], where the confidence region is described
via linear and quadratic inequalities, and the first two order moments are assumed to be known within the
ambiguity set.

Building from Chen et al. [89], Liu et al. [248] study a distributionally robust reward-risk ratio model, based
on a variation of the Sharpe ratio. The ambiguity set contains all distributions whose componentwise means
and covariances are restricted to intervals. They turn this problem into a model with a distributionally robust
inequality constraint, and further reformulate this model as a nonconvex SIP. They approximate the semi-infinite
constraint with an entropic risk measure approximation20 and provide an iterative method to solve the resulting
model. They provide statistical analysis to assess the likelihood of the true probability distribution lying in
the ambiguity set, and provide a convergence analysis of the optimal value and solutions of the data-driven
distributionally robust reward-risk ratio problems.

Natarajan et al. [278] study a distributionally robust approach to minimize the worst-case CVaR of regret in
combinatorial optimization problems with uncertainty in the objective function coefficients, defined as follows:

min
x∈X

WCVaRP
α [h0(x, ξ)] ,

where h0(x, ξ) = −ξ>x+ maxy∈{0,1}q1 ξ
>y and WCVaRP

α [h0(x, ξ)] = supP∈P CVaRP
α [h0(x, ξ)]. It is assumed

that the ambiguity set is formed with the knowledge of marginal distributions, where the ambiguity for each
marginal distribution is formed via (54). They reformulate the resulting problem as a polynomial sized mixed-
integer LP when (i) the support is known, (ii) the support and mean are known, and (iii) the support, mean,
and mean absolute deviation are known; and as a mixed-integer SOCP when the support, mean, and standard
deviation are known.

Hanasusanto et al. [179] study a distributionally robust joint chance constrained stochastic program where
each chance constraint is linear in ξ, and the technology matrix and right hand-side are affine in x. They form
the ambiguity set of distributions as in (54) without the first constraint. They show that the pessimistic model
(i.e., the chance constraint holds for every distribution in the set) is conic-representable if the technology matrix
is constant in x, the support set is a cone, and fi is positively homogeneous. They also show the optimistic
model (i.e., the chance constraint holds for at least one distribution in the set) is also conic-representable if the
technology matrix is constant in x. For other research in chance-constrained optimization problem, we refer
to Xie and Ahmed [416], Xie et al. [417].

6.2.4 Moment Matrix Inequalities
In this section, we review an ambiguity set that generalizes both the ambiguity set PDY (53) and the ambiguity
set PMM (54) as follows:

PMMI :=
{
P ∈M+(Ξ,F)

∣∣∣∣L 4
∫

Ξ
FdP 4 U

}
, (55)

where F := [F 1, . . . ,Fm], with F i be a symmetric matrix in Rni×ni or scalar with measurable components
on (Ξ,F). Similarly, let L := [L1, . . . ,Lm] and U := [U1, . . . ,Um] be the vectors of symmetric matrices or

20For a measurable function Z ∈ Z∞(Q), the entropic risk meaure is defined as 1
γ lnEQ [exp (−γZ)], where γ > 0 Liu et al. [248].



Hamed Rahimian & Sanjay Mehrotra 49

scalars. As in (54), to ensure that P is a probability measure, i.e., P ∈M (Ξ,F), we set L1 = U1 = [1]1×1 and
F 1 = [1]1×1 in the above definition of PMMI . We generalize this ambiguity set from the ambiguity set proposed
in Xu et al. [425], where the moment constraint are either in the form of equality or upper bound. Note that as
a special case of PMMI , we can set F i, Li, and U i to be scalars, i = 2, . . . ,m, to recover the second constraint

in the ambiguity set PMM , defined in (54). Moreover, by setting F 2 to be a matrix as
(
−Σ0 µ0 − ξ

(µ0 − ξ)> −%1

)
,

F 3 to be a matrix as (ξ − µ0)(ξ − µ0)>, L2 = −∞, U2 = L3 = 0, and U3 = %2Σ0, we can recover (53).
Below, we present a duality result on supP∈PMMI EP [h0(x, ξ)], given a fixed x ∈ X .

I Theorem 33. For a fixed x ∈ X , suppose that h0(x, ξ) and F are integrable for all P ∈ PMMI. In addition,
suppose that the following Slater-type condition holds:

(−U ,L) ∈ int
({(

−
∫

Ξ
FdP,

∫
Ξ
FdP

)
−K

∣∣∣∣ P ∈M+(Ξ,F)
})

,

where K := Sn1
+ × . . .S

nm
+ × Sn1

+ × . . .S
nm
+ . If supP∈PMM EP [h0(x, ξ)] is finite, then, it can be written as the

optimal value of the following problem:

inf
W ,Y

m∑
i=1

W i •U i −
m∑
i=1

Y i •Li

s.t.
{∑m

i=1W i •
∫

Ξ F i(s)P (ds)−
∑m
i=1 Y i •

∫
Ξ F i(s)P (ds) ≥

∫
Ξ h0(x, ξ(s))P (ds), ∀ P ∈M+(Ξ,F),

W ,Y < 0.

Proof. See Appendix A. J

Suppose that every finite subset of Ξ is F -measurable, i.e., for every s ∈ Ξ, the corresponding Dirac measure
δs (of mass one at point s) belongs to M+(Ξ,F). Then, the first constraint in Theorem 33 can be written as
follows:

m∑
i=1

W ∗
i • F i(s)−

m∑
i=1

Y ∗i • F i(s) ≥ h0(x, ξ(s)), ∀ s ∈ Ξ.

Motivated by the difficulty in verifying the Slater-type conditions to guarantee strong duality for
supP∈PMMI EP [h0(x, ξ)] and its dual, Xu et al. [425] investigate the duality conditions from the perspec-
tive of lower semicontinuity of the optimal value function of the inner maximization problem, with a perturbed
ambiguty set. While these conditions are restrictive in general, they show that they are satisfied in the case of
compact Ξ or bounded F i. Xu et al. [425] present two discretization schemes to solve the resulting DRO model:
(1) a cutting-plane-based exchange method that discretizes the ambiguity set PMMI and (2) a cutting-plane-based
dual method that discretizes the semi-infinite constraint of the dual problem. For both methods, they show the
convergence of the optimal values and optimal solutions as sample size increases. This type of ambiguity sets is
also considered in Chen et al. [93], Liu et al. [249].

6.2.5 Cross-Moment or Nested Moment
In an attempt to unify modeling and solving DRO models, Wiesemann et al. [410] propose a framework for
modeling the ambiguity set of probability distributions as follows:

PWKS :=
{
P ∈ P

(
Rd × Rr,B(Rd)×B(Rr)

) ∣∣∣∣∣EP [Aξ +Bu] = b,

P{(ξ,u) ∈ Ci} ∈ [p
i
, pi], i ∈ I

}
, (56)

where P represents a joint probability distribution of ξ and some auxiliary random vector u ∈ Rr. Moreover,
A ∈ Rs×d, B ∈ Rs×r, b ∈ Rs, and I = {1, . . . , I}, while the confidence sets Ci are defined as

Ci :=
{

(ξ,u) ∈ Rd × Rr
∣∣Ciξ +Diu 4Ki ci

}
, (57)

with Ci ∈ RLi×d, Di ∈ RLi×r, c ∈ RLi , and Ki being a proper cone. By setting p
I

= pI = 1, they ensure that
CI contains the support of the joint random vector (ξ,u). This set contains all distributions with prescribed
conic-representable confidence sets and with mean values residing on an affine manifold. An important aspect
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of (56) is that the inclusion of an auxiliary random vector u gives the flexibility to model a rich variety of
structural information about the marginal distribution of ξ in a unified manner (see Section 6.3 for more details).
Using this framework, Wiesemann et al. [410] show that many ambiguity sets studied in the literature can be
represented by a projection of the ambiguity set (56) on the space of ξ. In other words, these ambiguity sets are
special cases of the ambiguity set PWKS. This development is based on the following lifting result.

I Theorem 34. (Wiesemann et al. [410, Theorem 5]) Let f ∈ RN and l : Rd 7→ RN be a function with a
conic-representable K-epigraph, and consider the following ambiguity set:

P ′ :=
{
P ∈ P(Rd,B(Rd))

∣∣∣∣∣EP [l(ξ)] 4K f ,
P{ξ ∈ Ci} ∈ [p

i
, pi], i ∈ I

}
,

as well as the lifted ambiguity set

P :=

P ∈ P
(
Rd × RN ,B(Rd)×B(RN )

) ∣∣∣∣∣∣∣
EP [u] = f ,

P{l(ξ) 4K u} = 1,
P{ξ ∈ Ci} ∈ [p

i
, pi], i ∈ I

 ,

which involves the auxiliary random vector u ∈ RN . We have that (i) P ′ is the union of all marginal distributions
of ξ under all P ∈ P and (ii) P can be formulated as an instance of the ambiguity set PWKS in (56).

Using Theorem 34, Wiesemann et al. [410] show how an ambiguity set of the form PWKS, defined in (56), with
conic-representable expectation constraints and a collection of conic-representable confidence sets, can represent
ambiguity sets formed via (1) φ-divergences, (2) mean, (3) mean and upper bound on the covariance matrix
(i.e., a special case of the ambiguity set (53)), (4) coefficient of variation (i.e., the inverse of signal-to-noise ratio
from information theory), (5) absolute mean spread, and (6) higher-order moment information. Moreover, they
illustrate that (56) can capture information from robust statistics, such as (7) marginal median, (8) marginal
median-absolute deviation, and (9) known upper bound on the expected Huber loss function. It is worth noting
that (56) does not cover ambiguity sets that impose infinitely many moment restrictions that would be required
to describe symmetry, independence, or unimodality characteristics of the distributions Chen et al. [97].

Wiesemann et al. [410] determine conditions under which distributionally robust expectation constraints,
formed via the proposed ambiguity set (56), can be solved in polynomial time as follows: (i) the cost function
hj(x, ξ), j ∈ [m], is convex and piecewise affine in x and ξ (i.e., hj(x, ξ) := maxk∈[K] ljk(x, ξ) with ljk(x, ξ) :=
sjk(ξ)x+ tjk(ξ) such that sjk(ξ) and tjk(ξ) are affine in ξ) and (ii) the confidence sets Ci’s satisfy a strict nesting
condition. Below, we present a duality result under above assumptions and additional regularity conditions.

I Theorem 35 (Wiesemann et al. [410, Theorem 1]). Consider a fixed x ∈ X . Then, under suitable regularity
conditions, supP∈PWKS EP [hj(x, ξ)] ≤ 0, j ∈ [m], is satisfied if and only if there exists β ∈ RK , κ,λ ∈ RI+, and
αik ∈ K′i, i ∈ I and k ∈ [K], that satisfy the following systems:

b>β +
∑
i∈I

(piκi − piλi) ≤ 0,

c>i αik + s>k x+ tk ≤
∑

i′∈{i}∪A(i)

(κi′ − λi′), ∀ i ∈ I, k ∈ [K],

C>i αik +A>β = S>k x+ tk, ∀ i ∈ I, k ∈ [K],

D>i αik +B>β = 0, ∀ i ∈ I, k ∈ [K],

where A(i) denote the set of all i′ ∈ I such that Ci′ is strictly contained in the interior of Ci.

The tractability of the resulting system in Theorem 35 depends on how the confidence sets Ci are described,
and hence, they give rise to linear, conic-quadratic, or semidefinite programs for the corresponding confidence
sets Ci. Wiesemann et al. [410] also provide tight tractable conservative approximations for problems that violate
the nesting condition by proposing an outer approximation of (56).

There are several papers that use the ambiguity set (56) and consider its generalization or special cases. Chen
et al. [97] introduce an ambiguity set of probability distributions that is characterized by conic-representable
expectation constraints and a conic-represetable support set, similar to the one studied in Wiesemann et al. [410].
However, unlike Wiesemann et al. [410], an infinite number of expectation constraints can be incorporated into
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the ambiguity set to describe stochastic dominance, entropic dominance, and dispersion, among other. A main
result in this work is that for any ambiguity set, there exists an infinitely constrained ambiguity set, such that
worst-case expected h0(x, ξ) over both sets are equal, provided that the objective function h0(x, ξ) is tractable
and conic-representable in ξ for any x ∈ X . Reformulation of the resulting DRO model formed via this infinitely
constrained ambiguity set yields a conic optimization problem. To solve the model, Chen et al. [97] propose
a procedure that consists of solving a sequence of relaxed DRO problems (each of which considers a finitely
constrained ambiguity set, and results in a conic optimization reformulation) and converges to the optimal value
of the original DRO model. By incorporating covariance and fourth-order moment information into the ambiguity
set, they show that the relaxed DRO is a SOCP. This is different from Delage and Ye [105] which shows that a
DRO problem formed via a fixed mean and an upper bound on covariance is reformulated as a SDP.

Postek et al. [312] derive exact reformulation of the worst-case expected constraints when function hj(x, · ),
j ∈ [m], is convex in ξ, and the ambiguity set of distributions consists of all distributions of componentwise
independent ξ with known support, mean, and mean-absolute deviation information. They also obtain exact
reformulation of the resulting model when hj(x, · ), j ∈ [m], is concave in ξ and there is additional information
on the probability that a component is greater than or equal to its mean. These results heavily depend on the
tight lower and upper bounds on the expectation of a function of a random variable, derived in Ben-Tal and
Hochman [21]–extending the well-known Jensen and Edmundson–Madansky bounds to the case that additional
information on the dispersion is available. Postek et al. [312] show once random variables are linearly aggregated
and function hj(x, · ), j ∈ [m], is convex, upper bounds can be constructed without the independence restriction.
More importantly, under the assumption of independent random variables, Postek et al. [312] use the above
results for the worst-case expected constraints to derive Bernstein-type safe approximations to a chance constraint.
Long and Qi [251] study a distributionally robust binary stochastic program to minimize the entropic VaR (i.e.,
Bernstein approximation for the chance constraint). They propose an approximation algorithm to solve the
problem via solving a sequence of problems.

To reduce the conservatism of RO, Roos and den Hertog [342] propose an approach that bounds worst-case
expected total violation of constraints from above and condense all constraints into a single constraint. They form
the ambiguity set with all distributions of ξ with known support, mean, and mean-absolute deviation information.
When the right-hand side is uncertain, they use the results in Postek et al. [312] to show that the proposed
formulation is tractable. When the left-hand side is uncertain, they use the aggregation approach introduced
in Postek et al. [312] to derive tractable reformulations. We also refer to Sun et al. [388] for a two-stage quadratic
stochastic optimization problem and DeMiguel and Nogales [109] for a portfolio optimization problem.

Bertsimas et al. [53] develop a modular and tractable framework for solving an adaptive distributionally
robust two-stage linear optimization problem with recourse, i.e., h0(x, ξ) is defined as (3) with q1 = 0. They
assume that and the function r(ξ) and T (ξ) are affinely dependent on ξ. Both the ambiguity set of probability
distributions P and the support set are assumed to be second-order conic-representable. Such an ambiguity set
is a special case of the conic-representable ambiguity set (56). They show that the studied DRO model can
be formulated as a classical RO problem with a second-order conic-representable uncertainty set. To obtain a
tractable formulation, they replace the recourse decision functions y(ξ) with generalized linear decision rules
that have affine dependency on the uncertain parameters ξ and some auxiliary random variables21. By adopting
the approach of Wiesemann et al. [410] to lift the ambiguity set to an extended one by introducing additional
auxiliary random variables, they improve the quality of solutions and show that one can transform the adaptive
DRO problem to a classical RO problem with a second-order conic-representable uncertainty set. Bertsimas et al.
[53] discuss extension to the conic-representable ambiguity set (56) and multistage problems.

Following the approach in Bertsimas et al. [53], Zhen et al. [445] reformulate an adaptive distributionally
robust two-stage linear optimization problem with recourse into an adaptive robust two-stage optimization
problem with recourse. Then, using Fourier–Motzkin elimination, they reformulate this problem into an equivalent
problem with a reduced number of adjustable variables at the expense of an increased number of constraints.
Although from a theoretical perspective, every adaptive robust two-stage optimization problem with recourse
admits an equivalent static reformulation, they propose to eliminate some of the adjustable variables, and for the
remaining adjustable variables, they impose linear decision rules to obtain an approximated solution. They show
that for problems with simplex uncertainty sets, linear decision rules are optimal, and for problems with box

21Restricting the recourse decision function y(ξ) to the class of functions that are affinely-dependent on ξ, referred to as linear
decision rules, is an approach to derive computationally tractable problems to approximate stochastic programming and robust
optimization models Ben-Tal et al. [28], Chen et al. [91, 92]. Whether or not the linear decision rules are optimal depends on
the problem Shapiro and Nemirovski [372].
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uncertainty sets, there exists convex two-piecewise affine functions that are optimal for the adjustable variables.
They illustrate that their approach improves the solutions obtained in Bertsimas et al. [53].

6.2.5.1 Statistical Learning

Gong et al. [162] study a distributionally robust multiple linear regression model with the least absolute value cost
function. They form the ambiguity set of distributions using expectation constraints over a conic-representable
support set as in (56). They reformulate the resulting model as a conic optimization problem, based on the
results in Wiesemann et al. [410].

6.2.5.2 Multistage Setting

A Markov decision process with unknown distribution for the transition probabilities and rewards for each state
is studied in Xu and Mannor [421, 422]. It is assumed that the parameters are statewise independent and each
state belongs to only one stage. Moreover, the parameters of each state are constrained to a sequence of nested
sets, such that the parameters belong to the largest set with probability one, and there is a lower bound on the
probability that they should belong to other sets, in a increasing manner. Yu and Xu [434] extends the work
in Xu and Mannor [421, 422] by forming the ambiguity set of distributions as in (56). Shapiro et al. [373] study
a multistage stochastic program, where the data process can be naturally separated into two components: one
can be modeled as a random process, with a known probability distribution, and the other can be treated as a
random process, with a known support and no distributional information. They propose a variant of the SDDP
method to solve this problem.

6.2.6 Marginals (Fréchet)
Most of the moment-based ambiguity sets discussed so far, study the ambiguity of the joint probability
distribution of the random vector ξ. Papers reviewed in this section assume that only the marginals of a
multivariate distribution are constrained, while the dependence structure is unconstrained. The proposed
ambiguity set is of the following generic form

PF := {P ∈M (Ξ,F) |P ∈ Γ(µ1, . . . , µd)} , (58)

where Γ(µ1, . . . , µd) denotes the set of distributions with marginals µ1, . . . , µd. We refer to the class of joint
distributions with fixed marginal distributions as the Fréchet class of distributions Doan et al. [121]. Obtaining
worst-case bounds on the distribution and on the tails for functions of dependent random vectors with fixed
multivariate marginals are studied in the literature, see, e.g., Embrechts and Puccetti [136, 137], Puccetti and
Rüschendorf [318, 319], Puccetti et al. [320], Wang and Wang [404]. The ambiguity sets studied in this section
relate to quantitative risk management or extreme-event analysis, in which obtaining or modeling the dependence
structure from data can be much more challenging than the marginals.

6.2.6.1 Discrete Problems
Chen et al. [85] study a problem of the form (8), where the cost function h0(x, ξ) denotes the optimal value of
a linear or discrete optimization problem with random linear objective coefficients. They assume the ambiguity
set of distribution is formed by all distributions with known marginals. Using techniques from optimal transport
theory, they identify a set of sufficient conditions for the polynomial time solvability of this class of problems.
This generalizes the tractability results under marginal information from 0-1 polytopes, studied in Bertsimas
et al. [45], to a class of integral polytopes.

6.2.6.2 Risk and Chance Constraints

Dhara et al. [118] provide bounds on the worst-case CVaR over an ambiguity set of discrete distributions,
where the ambiguity set contains all joint distributions whose univariate marginals are fixed and their bivariate
marginals are within a minimum Kullback–Leibler distance from the nominal bivariate marginals. They develop
a convex reformulation for the resulting DRO. Doan et al. [121] study a DRO model of the form (8) with a
convex piecewise linear objective function in ξ and affine in x. They form the ambiguity set of joint distributions
via a Fréchet class of discrete distributions with multivariate marginals, where the components of the random
vector are partitioned such that they have overlaps. They show that the resulting DRO model for a portfolio
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optimization problem is efficiently solvable with a LP. In particular, they develop a tight LP reformulation to
find a bound on the worst-case CVaR over such an ambiguity set, provided that the structure of the marginals
satisfy a regularity condition.

Zhang et al. [441] study a distributionally robust approach to a stochastic bin-packing problem subject to
chance constraints on the total item sizes in the bins. They form the ambiguity set by all discrete distributions with
known marginal means and variances for each item size. By showing that there exists a worst-case distribution
that is at most a three-point distribution, they obtain a closed-form expression for the chance constraint and
they reformulate the problem as a mixed-binary program.

6.2.6.3 Statistical Learning

Farnia and Tse [140] study a DRO approach in the context of supervised learning problems to infer a function
(i.e., decision rule) that predicts a response variable given a set of covariates. Motivated by the game-theoretic
interpretation of Grünwald and Dawid [166] and the principle of maximum entropy, they seek a decision rule
that predicts the response based on a distribution that maximizes a generalized entropy function over a set of
probability distributions. However, because the covariate information is available, they apply the principle of
maximum entropy to the conditional distribution of the response given the covariates, see also Globerson and
Tishby [158] for the case of Shannon entropy. Farnia and Tse [140] form the ambiguity set of distributions by
matching the marginal of covariates to the empirical marginal of covariates while keeping the cross-moments
between the response variables and covariates close enough (with respect to some norm) to that of the joint
empirical distribution. They show that the DRO approach adopts a regularization interpretation for the maximum
likelihood problem under the empirical distribution. As a result, Farnia and Tse [140] recover the regularized
maximum likelihood problem for generalized linear models for the following loss functions: linear regression under
quadratic loss function, logistic regression under logarithmic loss function, and SVM under the 0-1 loss function.

Eban et al. [132] study a DRO approach to a classification problem to minimize the worst-case hinge loss
of missclassification, where the ambiguity set of the joint probability distributions of the discrete covariates
and response should contain all distributions that agree with nominal pair-wise marginals. They show that the
proposed classifier provides a 2-approximation upper bound on the worst-case expected loss using a zero-one
hinge loss. Razaviyayn et al. [331] study a DRO approach to the binary classification problem, with an ambiguity
set similar to that of Eban et al. [132], to minimize the worst-case missclassification probability. By changing the
order of inf and sup, and smoothing the objective function, they obtain a probability distribution, based on
which they propose a randomized classifier. They show that this randomized classifier enjoys a 2-approximation
upper bound on the worst-case missclassification probability of the optimal solution to the studied DRO.

6.2.7 Mixture Distribution
In this section, we study DRO models, where the ambiguity set is formed via mixture distribution. A mixture
distribution is defined as a convex combination of pdfs, known as the mixture components. The weights associated
with the mixture components are called mixture probabilities Kapsos et al. [219]. For example, a mixture model
can be defined as the set of all mixtures of normal distributions with mean µ and standard deviation σ with
parameter a = (µ, σ) in some compact set A ⊂ R2. In a more generic framework, the distribution P can be any
mixture of probability distributions Qa ∈M (Ξ,F), for some family of distributions {Qa}a∈A ∈M (Ξ,F), that
depends on the parameter vector a ∈ A as follows:

P (B) =
∫
A
Qa(B)M(da), B ∈ F , (59)

where M is any probability distribution on A (Lasserre and Weisser [237]). Hence, modeling the ambiguity in the
mixture probabilities may give rise to a DRO model over the resultant or barycenter P of M (Popescu [309]).

6.2.7.1 Risk and Chance Constraints

Lasserre and Weisser [237] study a distributionally robust (individual and joint) chance-constrained program
with a polynomial objective function, over a mixture ambiguity set and a semi-algebraic deterministic set. They
approximate the ambiguous chance constraint with a polynomial whose vector coefficients is an optimal solution
of a SDP. They show that the induced feasibility set by a nested sequence of such polynomial optimization
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approximation problems converges to that of the ambiguous chance constraints as the degree of approximate
polynomials increases.

Kapsos et al. [219] introduce a probability Omega ratio for portfolio optimization (i.e., a probability weighted
ratio of gains versus losses for some threshold return target). They study a distributionally robust counterpart of
this ratio, where each distribution of the ratio can be represented through a mixture of some known prespecified
distributions with unknown mixture probabilities. In particular, they study a mixture model for a nominal discrete
distribution, where the mixture probabilities are modeled via the box uncertainty and ellipsoidal uncertainty
models. In the former case, they reformulate the problem as a LP, and in the latter case, they reformulate the
problem as a SOCP.

Hanasusanto et al. [175] study a distributionally robust newsvendor model with a mean-risk objective, as a
convex combination of the worst-case CVaR and the worst-case expectation. The worst case is taken over all
demand distributions within a multimodal ambiguity set, i.e., a mixture of a finite number of modes, where the
conditional information on the ellipsoid support, mean, and covariance of each mode is known. The ambiguity
in each mode is modeled via (53). They cast the resulting model as an exact SDP, and obtain a conservative
semidefinite approximation by using quadratic decision rules to approximate the recourse decisions. Hanasusanto
et al. [175] further robustify their model against ambiguity in estimating the mean-covariance information,
caused from ambiguity about the mixture weights. They assume that the mixture weights are close to a nominal
probability vector in the sense of χ2-distance. For this case, they also obtain exact SDP reformulation as well as
a conservative SDP approximation.

6.3 Shape-Preserving Models
A few papers propose to model the distributional ambiguity in a way that all distributions in the ambiguity set
share similar structural properties. We refer to such models as shape-preserving models to form the ambiguity
set of probability distributions.

Popescu [309] propose to incorporate structural distributional information, such as symmetry, unimodality,
and convexity, into a moment-based ambiguity set. The proposed ambiguity set is of the following generic form:

PSP :=
{
P ∈M+(Ξ,F)

∣∣∣∣ ∫
Ξ
fdP = a

}
∩ {P satisfies structural properties}. (60)

By relying on information from classical statistics as well as robust statistics, Hanasusanto et al. [177] propose
a unifying canonical ambiguity set that contains many ambiguity sets studied in the literature as special cases,
including Gauss and median-absolute deviation ambiguity sets. Such a canonical framework is characterized
through intersecting the cross-moment ambiguity set, proposed in Wiesemann et al. [410], and a structural
ambiguity set on the marginal distributions, representing information such as symmetry and α-unimodality.

Hu et al. [199] study a data-driven newsvendor problem to decide on the optimal order quantity and price.
They assume that demand depends on the pricing, however, there is ambiguity about the price-demand function.
To hedge against the misspecification of the demand function, they introduce a novel approach to this problem,
called functionally robust approach, where the demand-price function is only known to be decreasing convex or
concave. The proposed modeling approach in Hu et al. [199] also provides a systematic view on the risk-reward
trade-off of coordinating pricing and order quantity decisions based on the size of the ambiguity set. To solve the
resulting minimax model, Hu et al. [199] reduce the problem into a univariate problem that seeks the optimal
pricing and develop a two-sided cutting surface algorithm that generates function cuts to shrink the set of
admissible functions.

6.3.1 Risk and Chance Constraints
Popescu [309] obtains upper and lower bounds on a generalized moment of a random vector (e.g., tail probabilities),
given the moments and structural constraints in a convex subset of the proposed ambiguity set (60). Popescu [309]
uses conic duality to evaluate such lower and upper bounds via SDPs. The key to the development in Popescu
[309] is to focus on ambiguity sets that posses a Choquet representation, where every distribution in the ambiguity
set can be written as a mixture (i.e., an infinite convex combination) of measures in a generating set and in
the virtue of (59). For univariate distributions, it is assumed that the generating set is defined by a Markov
kernel. It is shown that if the optimal value of the problem is attained, there exists a worst-case probability
measure that is a convex combination of m+ 1 (recall m is the dimension of f) (extremal) probability measures
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from the generating set. Popescu [309] uses the above result to obtain generalized Chebyshev’s inequalities
bounds for distributions of a univariate random variable that are (1) symmetric, (2) unimodal with a given
mode, (3) unimodal with bounds on the mode, (4) unimodal and symmetric, or (5) convex/concave monotone
densities with bounds on the slope of densities. Popescu [309] further derives generalized Chebyshev’s inequality
for symmetric and unimodal distributions of multivariate random variables.

Nemirovski and Shapiro [279] study a convex approximation, referred to as Bernstein approximation, to an
ambiguous joint chance-constrained problem of the form

min
x∈X

h0(x) s.t. inf
P∈P

P

ξ : gi0(x) +
d∑
j=1

ξjgij(x) ≤ 0, i ∈ [m]

 ≥ 1− ε. (61)

I Theorem 36 (Nemirovski and Shapiro [279, Theorem 6.2]). Suppose that the ambiguous joint chance-constrained
problem (61) is such that (i) the components of the random vector ξ are independent of each other, with finite-
valued moment generating functions, (ii) function h0(x) and all functions gij(x), i ∈ [m], j ∈ [d], are convex and
well defined on X , and (iii) the ambiguity set of probability distributions P forms a convex set. Let εi, i ∈ [m],
be positive real values such that

∑m
i=1 εi ≤ ε. Then, the problem

min
x∈X

h0(x) s.t. inf
t>0

[
gi0(x) + tΨ̂(t−1zi[x])− t log εi

]
≤ 0, i ∈ [m],

where zi(x) =
(
gi1(x), . . . , gid(x)

)
and Ψ̂(z) := maxQ1×...×Qd∈P

∑d
j=1 log

( ∫
Ξ exp{zjs}dQj(s)

)
, is a conser-

vative approximation of problem (61), i.e., every feasible solution to the approximation is feasible for the
chance-constrained problem (61). This approximation is a convex program and is efficiently solvable, provided
that all gij and Ψ̂ are efficiently computable, and X is computationally tractable.

Nemirovski and Shapiro [279] obtain closed-form expressions for maxQj∈Pj log
( ∫

Ξ exp{zjs}dQj(s)
)
for some

families of univariate distributions, including those with structural properties.
A related notion to unimodality is α-unimodality, which is defined as follows:

I Definition 37 (Dharmadhikari and Joag-Dev [119]). For α > 0, a distribution P ∈ P(Rd,B(Rd)) is called
α-unimodal with mode a if P{t(A−a)}

tα is nonincreasing in t > 0 for all A ∈ B(Rd).

Van Parys et al. [396] further extend the work of Popescu [309] to obtain worst-case probability bounds
over α-unimodal multivariate distributions with the same mode and within the class of distributions in PDY,
defined in (53), and on a polytopic support. They show that when the support of the random vector is an open
polyhedron, this generalized Gauss bound can be obtained via a SDP. Similar to Popescu [309], Van Parys et al.
[396] derive semidefinite representations for worst-case probability bounds using Choquet representation of the
ambiguity set. They demonstrate that classical generalized Chebyshev and Gauss bounds22 can be obtained as
special cases of their result. They also show how to obtain a SDP reformulation to obtain the worst-case bound
over α-multimodal multivariate distributions, defined via a mixture distribution.

As in Popescu [309], the key to the development in Hanasusanto et al. [177] is to focus on structural ambiguity
sets that posses a Choquet representation. They study distributionally robust uncertainty quantification (i.e., a
probabilistic objective function) and chance-constrained programs over the proposed ambiguity sets, where the
safe region is characterized by a bi-affine expression in ξ and x. They study the ambiguity sets over which the
resulting problems are reformulated as conic programming formulations. A summary of these results can be found
in Hanasusanto et al. [177, Table 2]. A by-product of their study is to recover some results from probability theory.
For instance, by studying the worst-case probability of an event over the Chebyshev ambiguity set with a known
mean and upper bound on the covariance matrix, they recover the generalized Chebyshev inequality, discovered
in Popescu [309], Vandenberghe et al. [400]. Similarly, they recover the generalized Gauss inequality, discovered
in Van Parys et al. [396], by considering the Gauss ambiguity set. Furthermore, they propose computable
conservative approximations for the chance-constrained problem. Recognizing that the uncertainty quantification
problem is tractable over a broad range of ambiguity sets, their key idea for the proposed approximation scheme
is to decompose the chance-constrained problem into an uncertainty quantification problem that evaluates
the worst-case probability of the chance constraint for a fixed decision x, followed by a decision improvement
procedure.

22The random variable differs from its mean by more than k standard deviations.
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Li et al. [241] study distributionally robust chance- and CVaR-constrained stochastic programs, where
the ambiguity set contains all α-unimodal distributions with the same first two order moments, and the safe
region is bi-affine in both ξ and x. They show that these two ambiguous risk constraints can be cast as an
infinite set of SOC constraints. They propose a separation approach to find the violated SOC constraints in an
algorithmic fashion. They also derive conservative and relaxation approximations of the two SOC constraints by
a finite number of constraints. These approximations for the CVaR-constrained problem are based on the results
in Van Parys et al. [398].

To overcome the difficulty in evaluating extremal performance due to the lack of data, Lam and Mottet [231]
study the computation of worst-case bounds under the geometric premise of the tail convexity. They show that
the worst-case convex tail behavior is in a sense either extremely light-tailed or extremely heavy-tailed.

6.4 Kernel-Based Models
Kernel smoothing methods have shown robustness properties in regression (Christmann et al. [101]) and
classification (Christmann and Steinwart [100], Steinwart [385], Xu et al. [423]), demonstrating relationships
between robustness and regularization. On the other hand, the space associated with kernel functions are used
for comparing probability distributions Smola et al. [381]. These have motivated researchers to study a DRO
model in the functional space produced by a kernel function Zhu et al. [447]. This framework unifies many
discrepancy-based and moment-based DRO models. We present some basic results in this section.

Consider a metric space (S, d) and a positive definite symmetric kernel function K : S ×S 7→ R23. It is known
that for any positive definite symmetric kernel K, there is a mapping Φ : S 7→ H such that K(s, t) = 〈Φ(s),Φ(t)〉H
defines an inner product on H, see, e.g., Schölkopf and Smola [352] and Mohri et al. [268, Theorem 5.2]. The
mapping Φ is called a feature map, and H is called a feature space of K, containing real-valued functions on S.
The canonical feature map Φ(s) = K(s, · ) gives rise to the canonical feature space H, or the so-called reproducing
kernel Hilbert space (RKHS), with a reproducing property: f(s) = 〈f,Φ(s)〉H for any f ∈ H and s ∈ S, and
norm ‖f‖H =

√
〈f, f〉H for any f ∈ H. Many continuous kernel functions are universal in the sense that their

corresponding RKHSs are dense in the space of continuous bounded functions on the compact space S Steinwart
[385].

Smola et al. [381] study embedding probability measures into a RKHS by defining the kernel mean mapping
µP :=

∫
S K(s, · )dP . Provided that

∫
S K(s, s)dP <∞, then µP is an element of H, for any probability measure P

on S. By the reproducing property of H, we have EP [f(s)] = 〈f, µP 〉H. Embedding probability measures into H
allows one to measure the discrepancy between the probability measures using the norm defined on H. Moreover,
if kernel K is universal, then the mapping P 7→ µP is injective. Thus, given two probability measure P1 and
P2, ‖µP1 − µP2‖H defines a probability metric. This metric can be seen as an instance of ζ-structure or integral
probability metrics; hence, can be written as ‖µP1 − µP2‖H = sup‖f‖H≤1

∣∣EP1 [f(s)]− EP2 [f(s)]
∣∣. Motivated by

these properties, Zhu et al. [447] propose a unifying kernel-based DRO model, where the distributional ambiguity
is modeled with the ambiguity set

PK(K, C) :=
{
P ∈M (Ξ,F)

∣∣∣∣ ∫ Φ dP = µ, P ∈ K, µ ∈ C
}
, (62)

where Φ : Ξ 7→ H is the feature map of the RHKS associated with the kernel function K : Ξ×Ξ 7→ R. Both sides
of
∫

ΦdP = µ are functions in H. Hence, µ can be considered as a generalized (infinite-dimensional) moment
vector within the set C ⊆ H. Moreover, K is a subset of M (Ξ,F). As argued in Zhu et al. [447], small RKHSs
lead to a large set PK(K, C), and thus; a conservative model. In an extreme, if H = {0}, the smallest possible
RKHS, then H does not contain any function to distinguish between distributions. Consequently, the resulting
DRO model is reduced to a RO model. On the other hand, large RKHSs might lead to meaningless models
with trivial solutions. Moreover, suitably chosen kernel functions and sets C in (62) lead to some of the models
studied in previous sections. Given a set of observations {ξi}Ni=1, consider an empirical distribution P̂N . Then,
C = { 1

N

∑N
i=1 Φ(ξi)} reduces the resulting DRO model to a SAA model. Setting K(ξ1, ξ2) = (1 + ξ>1 ξ2)2 and

C = {µP̂N } leads to an ambiguity set of distributions where the first two moments are the same as those of P̂N
(see Section 6.2.1). As another example, C = {µ : ‖µ− µP̂N ‖H ≤ ε} leads to an ambiguity set PZ(P̂N ; ε), studied
in Section 6.1.7, where Z = {z : ‖z‖H ≤ 1}.

23A kernel is said to be positive definite symmetric if the induced kernel matrix is symmetric positive semidefinite.
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Table 5 Examples of convex sets C and their support functions δ∗(f |C)

Set C δ∗(f |C)

Norm-ball C = {µ : ‖µ− µ
P̂N
‖H ≤ ε} 1

N

∑N

i=1 f(ξi) + ε‖f‖H
Convex hull C = conv(C1, . . . , CN ) max1≤i≤N δ

∗(f |Ci)
Example: Polytope C = conv(Φ(ξ1), . . . ,Φ(ξN )) max1≤i≤N f(ξi)

Affine combination: C =
∑N

i=1 αiCi,
∑N

i=1 αi = 1
∑N

i=1 αiδ
∗(f |Ci)

Example: Minkowski sum C = C1 + C2 max1≤i≤N f(ξi) + ε‖f‖H
C1 = {µ : ‖f‖H ≤ ε}
C2 = conv(Φ(ξ1), . . . ,Φ(ξN ))
Example: Contamination neighborhood
C =

{
P
∣∣P = (1− ε)P̂N + εQ, Q ∈ Q

} (1−ε)
N

∑N

i=1 f(ξi) + εδ∗(f |Q)

Intersection C = ∩Ni=1Ci
∑N

i=1 δ
∗(fi|Ci), f =

∑N

i=1 fi

Singleton C = { 1
N

∑N

i=1 Φ(ξi)} 1
N

∑N

i=1 f(ξi)
C = H = {0} 0

I Theorem 38 (Zhu et al. [447, Theorem 3.1]). Consider an ambiguity set of probability measures as formed via
PK(K, C), defined in (62). Suppose that C is a closed convex set and the relative interior of PK(K, C) is nonempty.
In addition, suppose that for a fixed x ∈ X , h0(x, · ) is upper semicontinuous. Then, supP∈PK(K,C) EP [h0(x, ξ)]
is equivalent to

min
f0∈R,f∈H

f0 + δ∗(f |C) s.t. h0(x, ξ) ≤ f0 + f(ξ), ξ ∈ Ξ,

where δ∗(f |C) = supµ∈C〈f, µ〉H is the support function of C at f ∈ H.

A list of sets C and their support functions are given in Zhu et al. [447]. We present a few of them in Table 5.
We also refer to Staib and Jegelka [384] for a related work.

The use of kernel functions in decision-making problems has led to an emerging area of research that integrates
machine learning techniques into the optimization framework, see, e.g., Ban and Rudin [11], Bertsimas and
Kallus [41]. For reference, consider a given set of data {(ui, ξi)}Ni=1, where ui ∈ Rm is a vector of covariates
associated with the uncertain parameter of interest ξi ∈ Rd.

Bertsimas and Kallus [41] propose a decision framework that incorporates the covariates u in addition
to ξ into the optimization problem in the form of a conditional stochastic optimization problem, where the
decision-maker is seeking a predictive prescription x(u) that minimizes the conditional expectation of h0(x, ξ)
in anticipation of the future, given the observation u. However, the conditional distribution of ξ given u is not
known and should be learned from data. Bertsimas and Kallus [41] propose to find a data-driven predictive
prescription that minimizes

∑N
i=1 w

i(u)h0(x, ξi) over X . Functions wi(u) are weights learned locally from the
data, in a sense that predictions are made based on the past observations that are in some way similar to
the one at hand, u. Bertsimas and Kallus [41] obtain these weight functions by methods that are motivated
by k-nearest-neighbors regression, Nadaraya–Watson kernel regression, local linear regression (in particular,
LOESS), classification and regression trees (in particular, CART), and random forests. For instance, the estimate
of EP

[
h0(x, ξ)

∣∣u] using the Nadaraya–Watson kernel regression is obtained as

N∑
i=1

Kb(u− ui)∑N
i=1Kb(u− ui)

h0(x, ξi),

where Kb( · ) := K( ·b )
b is a kernel function with bandwidth b. Common kernel smoothing functions are

Naive: K(a) = 1[‖a‖≤1],
Epanechnikov: K(a) = (1− ‖a‖2)1[‖a‖≤1],
Tri-cubic: K(a) = (1− ‖a‖3)3

1[‖a‖≤1],
Gaussian or radial basis function: K(a) = 1√

2π exp(−‖a‖
2

2 ).
The general framework of the proposed data-driven model in Bertsimas and Kallus [41] resembles SAA, i.e.,
1/N weights in SAA are replaced by weights wi(u), i ∈ [N ]. Bertsimas and Kallus [41] show that under mild
conditions, the resulting predictive prescription problem is asymptotically optimal and consistent. As illustrated
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by Bertsimas and Kallus [41] the direct usage of SAA on {ξi}Ni=1 and ignoring {ui}Ni=1 can result in suboptimal
decisions which are neither asymptotically optimal nor consistent.

A similar modeling framework as the conditional stochastic optimization problem studied in Bertsimas and
Kallus [41] is investigated in other papers to incorporate machine learning into decision-making, see, e.g., Ban
et al. [12], Kannan et al. [217, 218]. Deng and Sen [110] use regression models such as k-nearest-neighbors
regression to learn the conditional distribution of ξ given u. They study the statistical optimality of the resulting
solution and its generalization error, and they provide hypothesis-based tests for model validation and selection.
In Ban and Rudin [11], Hannah et al. [180], Pang Ho and Hanasusanto [292], the weights are obtained by the
Nadaraya–Watson kernel regression method. For a newsvendor problem, Ban and Rudin [11] show that the SAA
decision does not converge to the true optimal decision. This motivates them to derive generalization bounds for
the out-of-sample performance of the cost and the finite-sample bias from the true optimal decision.

Similar to Bertsimas and Kallus [41], Bertsimas and Van Parys [44] consider the problem of finding an optimal
solution to a data-driven stochastic optimization problem, where the uncertain parameter is affected by a large
number of covariates. They study a distributionally robust approach to this problem formed via Kullback–Leibler
divergence. By borrowing ideas from the statistical bootstrap, they propose two prescriptive methods based on
the Nadaraya–Watson and nearest-neighbors learning formulation, first introduced by Bertsimas and Kallus
[41], which safeguards against overfitting and lead to an improved out-of-sample performance. Both resulting
prescriptive models reduce to tractable convex optimization problems. Shang and You [360] adopt the ambiguity
set proposed in Wiesemann et al. [410], and propose to use principal component analysis (PCA) to calibrate the
moment functions. In fact, a moment function in their model is a piecewise linear function, which is defined
as a first-order deviation of the uncertain parameter along a certain projection direction, truncated at certain
points. They propose to use PCA to come up with the projection directions, and choose the truncation points
symmetrically around the sample mean along the direction. We refer the readers to Appendix B for discussion
on kernel-based models in RO.

6.5 Choosing an Ambiguity Set of Probability Distributions

In this section, we discuss what ambiguity sets are good in what situations.
Recognizing the fact that the ambiguity set should be chosen judiciously for the application in hand, Gao

and Kleywegt [148] argue that by using the Wasserstein metric the resulting distributions hedged against are
more reasonable than those resulting from other popular choices of sets, such as φ-divergence-based sets, see
Section 6.1.2.

Recall the notions of popping and suppressing scenarios (Bayraksan and Love [17], Love and Bayraksan
[256]), discussed in Section 6.1.2 for φ-divergences. On the basis of these notions, Bayraksan and Love [17], Love
and Bayraksan [256] propose some modeling considerations when choosing a φ-divergence. If every scenario with
a positive nominal probability comes from high-quality data, and the decision maker may wish to hedge against
those scenarios, then one may choose φ-divergences that cannot suppress scenarios, e.g., χ2-distance and Burg
entropy. However, if the data is poorly sampled or comes from opinion rather than observations or simulation,
then φ-divergences that can suppress scenarios may be preferable, e.g., variation distance, Hellinger distance,
modified χ2-distance, and Kullback–Leibler divergence. If the scenarios strictly come from observations, with
little theoretical understanding of the problem, then one may choose φ-divergences that cannot pop scenarios,
e.g., modified χ2-distance and Kullback–Leibler divergence. However, if the scenarios come from a mixture of
observed/simulated data and expert opinions, then φ-divergences that can pop scenarios may be desirable, e.g.,
variation and Hellinger distance.

7 Calibration of the Ambiguity Set of Probability Distributions

In Section 6, we reviewed different approaches to model the distributional ambiguity. These models rely on
some parameters that need to be calibrated for the problem in-hand to reach a solution with a reasonably good
out-of-sample performance. In Section 7.1, we briefly discuss the choice of nominal parameters. In Section 7.2,
we explain the choice of robustness parameters for a number of models described in Section 6.
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7.1 Choice of the Nominal Parameters
All discrepancy-based ambiguity sets, studied in Section 6.1, and some of the moment-based ambiguity sets,
studied in Section 6.2, rely on some nominal input parameters, for instance, the nominal distribution P0 in the
ambiguity set PW(P0, ε), defined in (32), and parameters µ0 and Σ0 in the ambiguity set PDY, defined in (53).
In this section, we discuss how these parameters are chosen in a data-driven setting.

The nominal distribution P0 in the discrepancy-based ambiguity sets is usually obtained by the maximal
likelihood estimator of the true unknown distribution. In the discrete case, P0 is typically chosen as the empirical
distribution on data. Additionally, it is known that even in the continuous distribution case, one may choose
P0 to be the empirical distribution, in which case the statistical guarantees are obtained by using tools related
to the empirical or profile likelihood, see, e.g., Blanchet et al. [64], Duchi et al. [123], Lam [230], Lam and
Zhou [232, 233]. Alternatively, Jiang and Guan [214] and Zhao and Guan [442] propose to obtain P0 with
nonparametric kernel density estimation methods, see, e.g., Devroye and Gyorfi [117].

Delage and Ye [105] propose to estimate µ0 and Σ0 by their empirical estimates. We discuss in Section 7.2
how this choice of nominal parameters, in conjunction with other assumptions, ensure that the constructed
ambiguity set PDY contains the true unknown probability distribution with a high probability.

7.2 Choice of Robustness Parameters
All discrepancy-based ambiguity sets, studied in Section 6.1, and some of the moment-based ambiguity sets,
studied in Section 6.2, rely on parameters that control the size of the ambiguity set. For instance, parameter ε
in the ambiguity set PW(P0; ε), defined in (32), and parameters %1 and %2 in the ambiguity set PDY, defined
in (53), control the size of their corresponding ambiguity sets. A judicious choice of these parameters reduce the
level of conservatism of the resulting DRO. A natural question is then how to choose appropriate values for
these parameters.

In this section, we review different approaches to choose the level-of-robustness parameters. To have a
structured review, we make a distinction between data-driven DROs with i.i.d. data (Section 7.2.1) and non-i.i.d
data (Section 7.2.2). We end this section by describing cross-validation as a widely used approach in practice.

7.2.1 Data-Driven DROs with i.i.d. Data
Data-driven DROs usually propose a robustness parameter that is inversely proportional to the number of
available data points. This construction is motivated from the asymptotic convergence of the optimal value of
DRO to that of the corresponding model under the true unknown distribution, with an increasing number of
data points, see, e.g., Bertsimas et al. [51], Delage and Ye [105], Pflug and Wozabal [302].

A common underlying assumption in data-driven methods is that data points are independently and identically
distributed (i.i.d.) from the unknown distribution. Given this assumption, data-driven approaches for discrepancy-
based ambiguity sets propose to choose the level of robustness by analyzing the discrepancy (with respect to
some metric) between the empirical distribution and the true unknown distribution24, asymptotically, see, e.g.,
Ben-Tal et al. [32], Shafieezadeh-Abadeh et al. [355], or with a finite sample, see, e.g., Pflug and Wozabal [302]. A
direct consequence of such analysis is that it establishes a finite-sample probabilistic guarantee on the discrepancy
between the empirical distribution and the true unknown distribution. Hence, it gives rise to a probabilistic
guarantee on the inclusion of the unknown distribution in the constructed set, with respect to the empirical
distribution. By construction, such an ambiguity set can be interpreted as a confidence set on the true unknown
distribution. Moreover, such a construction implies a finite-sample guarantee on the out-of-sample performance,
so that the current optimal value provides an upper bound on the out-of-sample performance of the current
solution with a high probability. A similar idea is used in moment-based ambiguity sets, see, e.g., Goldfarb
and Iyengar [161] and Delage and Ye [105]. In a recent work, Gotoh et al. [165] propose to choose the level of
robustness by trading off between the mean and variance of the out-of-sample objective function value. We refer
the readers to that paper for a review of calibration approaches in DRO.

Below, we review some theoretical results on choosing the level of robustness for a number of models
introduced in Section 6. In this section, we suppose that a set {ξi}Ni=1 of i.i.d data, distributed according to
Ptrue, is available. Moreover, P̂N = 1

N

∑N
i=1 δξi denotes the empirical probability distribution of data, where δξi

denotes the Dirac mass point on ξi. Also, PN is the sampling distribution of P̂N .

24 Some probability metrics, such as Wasserstein metric, metrize the weak convergence Gibbs and Su [153]. That is, the convergence
between two probability distributions, with respect to some metric, implies the convergence in probability.
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7.2.1.1 Optimal Transport Discrepancy

When the ambiguity set contains all discrete distributions around the empirical distribution in the sense of the
Wasserstein metric, Pflug and Wozabal [302] and Pflug et al. [303] propose to choose the level of robustness
based on a probabilistic statement on the Wasserstein metric between the empirical and true distributions, due
to Dudley [124], as ε = CN

− 1
d

α . This choice of ε guarantees that PN{dW
c (P, P̂N ) ≥ ε} ≤ α. In addition to the

confidence level 1− α and the number of available data points N , the proposed level of robustness in Pflug et al.
[303], Pflug and Wozabal [302] depends on the dimension of ξ, d, and a constant C. For such a Wasserstein-based
ambiguity set, one can also choose the size of the set by utilizing the probabilistic statement on the discrepancy
between empirical distribution and the true unknown distribution, established in Fournier and Guillin [143].

Similarly, when the ambiguity set contains all (discrete and continuous) distributions around the empirical
distribution in the sense of the Wasserstein metric, Mohajerin Esfahani and Kuhn [266] present a theoretical
result on how to choose the level of robustness. This analysis is also based on the measure concentration property
in Fournier and Guillin [143], assuming that the underlying distribution has an exponentially decaying tail. This
assumption trivially holds if the support set Ω is compact.

I Theorem 39 (Mohajerin Esfahani and Kuhn [266, Theorem 3.5]). Suppose that there exists a > 1 and A > 0 such
that EPtrue [exp{c(ξ, ξ0)}] ≤ A for some ξ0 ∈ Rd, where c( · , · ) denotes the transportation cost in the definition of
the optimal transport discrepancy (31). Let α ∈ (0, 1] and define

εN (α) :=


(

log(c1/α)
c2N

)1/max{d,2}
if N ≥ log(c1/α)

c2
,(

log(c1/α)
c2N

)1/a
if N < log(c1/α)

c2
,

where d 6= 2 and c1, c2 > 0 are constants that only depend on a, A, and d. Let x∗N denote an optimal solution
to (8) with P = PW(P̂N ; ε

)
, where ε ≥ εN (α). Then,

P
N

EPtrue [h0(x∗N , ξ)] ≤ sup
P∈PW

(
P̂N ;ε
)EP [h0(x∗N , ξ)]

 ≥ 1− α.

Using the above result, Mohajerin Esfahani and Kuhn [266, Theorem 3.6] implies that under proper
assumptions, if the significance level αN converges to 0 at a judiciously chosen rate, e.g., αN = exp(−

√
N), then

the optimal value to (8) with P = PW(P̂N ; εN (αN )
)
converges to that of (1) under the true distribution. A

similar asymptotic consistency holds for the corresponding data-driven optimal solution.
Observe that because all the utilized probabilistic statements stated so far rely on some exogenous constants

C, even if they can be computed, the size of the resulting ambiguity set calculated from the theoretical analysis
may be very conservative; hence, such proposals are not practical. By acknowledging the issue raised above, some
researchers propose to choose the level of robustness without relying on exogenous constants. For cases that
the ambiguity set contains all discrete distributions, supported on a compact space and around the empirical
distribution, Ji and Lejeune [211] derive a closed-form expression for computing the size of the Wasserstein-based
ambiguity set.

I Theorem 40 (Ji and Lejeune [211, Theorem 2]). Suppose that the random vector ξ is supported on a finite
Polish space (Ω, d), where Ω ⊆ Rd and d( · , · ) is the `1-norm. Choose c( · , · ) = d( · , · ) in the definition of
the optimal transport discrepancy (31). For some ξ0, assume that logEPtrue [exp{λd(ξ, ξ0)}] <∞,∀ λ > 0. Let
θ := sup{d(ξ1, ξ2) : ξ1, ξ2 ∈ Ω} be the diameter of Ω. Then,

P
N{dW

d (Ptrue, P̂N ) ≤ ε} ≥ 1− exp
{
−N

(√
4ε(4θ + 3) + (4θ + 3)2

4θ + 3 − 1
)2
}
.

Moreover, if

ε ≥
(
θ + 3

4

)(
− 1
N

logα+ 2
√
− 1
N

logα
)
,

then

P
N{dW

d (Ptrue, P̂N ) ≤ ε} ≥ 1− α.
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Unlike the result in Pflug and Wozabal [302], the proposed level of robustness in Ji and Lejeune [211], stated
in Theorem 40, depends only on the confidence level α, the number of available data points, and the diameter of
the compact support Ω. Ji and Lejeune [211] obtain this result by bounding the Wasserstein distance between
two probability distributions from above, using the properties of the weighted total variation Bolley and Villani
[68], and the weighted Csiszar–Kullback–Pinsker inequality Villani [403], and consequently applying Sanov’s
large deviation theorem Dembo and Zeitouni [108] to reach a probabilistic statement on the Wasserstein distance
between two distributions. As stated in Theorem 40, such a result guarantees that the constructed set contains
the unknown probability distribution with a high probability. Moreover, it implies a probabilistic guarantee on
the true optimal value.

Another criticism of methods such as those proposed in Pflug and Wozabal [302] and Pflug et al. [303] is that
they merely rely on the discrepancy between two probability distributions, and the optimization framework plays
no role in the prescription. By making connection between the regularizer parameter and the size of the ambiguity
for Wassersetin-based sets, Blanchet et al. [64] aim to optimally choose the regularization parameter. A key
component of their analysis is a robust Wasserstein profile (RWP) function. At a given solution x, this function
calculates the minimum Wasserstein distance from the nominal distribution to the set of optimal probability
distributions for the inner problem at x. For any confidence level α, they show that the size of the ambiguity set
should be chosen as (1− α)-quantile of RWP at the optimal solution to the minimization problem under the
true unknown distribution. Using this selection of ε, the optimal solution to the true problem belongs to the set
of optimal solutions to the DRO problem, with (1 − α) confidence for all P ∈ PW(PN , ε). As such a result is
based on the true optimal solution, they study the asymptotic behavior of the RWP function and discuss how to
use it to optimally choose the regularization parameter without cross validation. The work in Blanchet et al. [64]
is extended in Blanchet and Kang [59, 61]. Blanchet and Kang [59] utilize the RWP function to introduce a
data-driven (statistical) criterion for the optimal choice of the regularization parameter and study its asymptotic
behavior. For a DRO approach to linear regression, Chen and Paschalidis [86] give guidance on the selection of
the regularization parameter from the standpoint of a confidence region.

7.2.1.2 Goodness-of-Fit Test
Bertsimas et al. [51] propose to form the ambiguity set of distributions using the confidence set of the unknown
distribution via goodness-of-fit tests. With such an approach, one chooses the level of robustness as the threshold
value of the corresponding test, depending on the confidence level α, data, and the null hypothesis.

7.2.1.3 φ-Divergences

By noting that the class of φ-divergences can be used in statistical hypothesis tests, a similar approach to the
one in Bertsimas et al. [51] can be used to choose the level of robustness for φ-divergence-based ambiguity sets.
For the case that the distributional ambiguity in discrete distributions is modeled via φ-divergences, some papers
propose to choose the level of robustness by relying on the asymptotic behavior of the discrepancy between
the empirical distribution and true unknown distribution, see, e.g., Bayraksan and Love [17], Ben-Tal et al.
[32], Yanıkoğlu and den Hertog [431].

Suppose that Ξ is finite sample space of size m and the φ-divergence function in (40) is twice continuously
differentiable in a neighborhood of 1, with φ′′(1) > 0. It is shown in Pardo [293] that under the true distribution,
the statistics 2N

φ′′(1)d
φ(Ptrue, P̂N ) converges in distribution to a χ2

m−1-distribution, with m− 1 degrees of freedom.
Thus, at a given confidence level α, one can set the level of robustness to φ′′(1)

2N χ2
m−1,1−α, where χ2

m−1,1−α is
the (1 − α)-quantile of χ2

m−1, to obtain an (approximate) confidence set on the true unknown distribution.
Ben-Tal et al. [32] show that such a choice of the level of robustness gives a one-sided confidence interval with
(asymptotically) inexact coverage on the true optimal value of infx∈X EPtrue [h0(x, ξ)]. For corrections for small
sample sizes, we refer readers to Pardo [293]. Lam and Zhou [232, 233] show that by using a χ2-distribution with
a smaller degree of freedom than m− 1, one can obtain asymptotically valid coverage, including cases where
the objective and constraints are both stochastic and observed from data. Additionally, Lam [230] shows that
in general, one needs to use the supremum of a χ2-process, instead of only a χ2 random variable, to obtain
asymptotically valid coverage of an expectation constraint in a non-conservative fashion.

By generalizing the empirical likelihood framework Owen [291] on a separable metric space (not necessarily
finite), Duchi et al. [123] propose to choose the level of robustness ε such that a confidence interval [lN , uN ] on
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the true optimal value of infx∈X EPtrue [h0(x, ξ)] has an asymptotically exact coverage 1− α, i.e.,

lim
N→∞

P
N

{
inf
x∈X

EPtrue [h0(x, ξ)] ∈ [lN , uN ]
}

= 1− α,

where

uN := inf
x∈X

sup
P∈Pφ(P̂N ;ε)

EP [h0(x, ξ)]

and

lN := inf
x∈X

inf
P∈Pφ(P̂N ;ε)

EP [h0(x, ξ)] .

I Theorem 41 (Duchi et al. [123, Theorem 4]). Suppose that the φ function is three time continuously differentiable
in a neighborhood of 1, and normalized with φ(1) = φ′(1) = 025 and φ′′(1) = 2. Furthermore, suppose that X is
compact, there exists a measurable function M : Ω 7→ R+ such that for all ξ ∈ Ω, h( · , ξ) is M(ξ)-Lipschitz with
respect to some norm ‖ · ‖ on X , EPtrue

[
M(ξ)2] <∞, and EPtrue [|h0(x0, ξ)|] <∞ for some x0 ∈ X . Additionally,

suppose that h( · , ξ) is proper and lower semicontinuous for ξ, Ptrue-almost surely. If infx∈X EPtrue [h0(x, ξ)] has
a unique solution, then

lim
n→∞

P
N

{
inf
x∈X

EPtrue [h0(x, ξ)] ≤ uN
}

= 1− 1
2P (χ2

1 ≥ Nε)

and

lim
n→∞

P
N

{
inf
x∈X

EPtrue [h0(x, ξ)] ≥ lN
}

= 1− 1
2P (χ2

1 ≥ Nε).

According to Theorem 41, if infx∈X EPtrue [h0(x, ξ)] has a unique solution, the desired asymptotic guarantee
is achieved with the choice ε = χ2

1,1−α
N . Duchi et al. [123] also give rates at which uN − lN → 0. Moreover, the

upper confidence interval (−∞, uN ] is a one-sided confidence interval with an asymptotic exact coverage when
ε = χ2

1,1−2α.
On another note, it can be seen from Table 3 that the φ-divergence function corresponding to the variation

distance is not twice differentiable at 1. Hence, one cannot use the above result. However, by utilizing the first
inequality in Lemma 26, i.e., the relationship between the variation distance and the Hellinger distance, Jiang
and Guan [214] propose to set the level of robustness to

√
1
N χ

2
m−1,1−α in order to obtain an (approximate)

confidence set on the true unknown discrete distribution. The proposed choice of the level of robustness ensures
that the unknown discrete distribution belongs to the ambiguity set with a high probability. For the case that ξ
follows a continuous distribution, the proposed level of robustness in Jiang and Guan [214] depends on some
constants that appear in the probabilistic statement of the discrepancy between the empirical distributions and
the true distribution.

7.2.1.4 `p-Norm

For the case that `∞-norm is used to model the distributional ambiguity, Jiang and Guan [214] propose to choose
the level of robustness based on a probabilistic statement on the discrepancy between the empirical distributions
and the true distribution as ε =

z1−α2√
N

maxmi=1
√
pi(1− pi), where z1−α2 represents the (1− α

2 )-quantile of the
standard normal distribution. The proposed choice of the level of robustness ensures that the unknown discrete
distribution belongs to the ambiguity set with a high probability. Similar to the `1-norm (i.e., the variation
distance) case, when ξ follows a continuous distribution, the proposed level of robustness depends on some
constants that appear in the probabilistic statement of the discrepancy between the empirical distributions and
the true distribution.

25As in the definition of φ-divergence, the assumptions φ(1) = φ′(1) = 0 are without loss of generality because the function
ψ(t) = φ(t)− φ′(1)(t− 1) yields identical discrepancy measure to φ Pardo [293]



Hamed Rahimian & Sanjay Mehrotra 63

7.2.1.5 ζ-Structure

By exploiting the relationship between different metrics in the ζ-structure family, see, e.g., Lemma 30, Zhao and
Guan [442] provide guidelines on how to choose the level of robustness for the ambiguity sets of the unknown
discrete distribution formed via bounded Lipschitz, Kantorovich, and Fortet–Mourier metrics as follows.

I Theorem 42. Suppose that the random vector ξ is supported on a bounded finite space Ω and θ denotes the
diameter of Ω, as defined in Theorem 40.
1. if ε ≥ θ

√
−2 logα

N , then PN{dK(Ptrue, P̂N ) ≤ ε} ≥ 1− α and PN{dBL(Ptrue, P̂N ) ≤ ε} ≥ 1− α.

2. if ε ≥ θmax{1, θq−1}
√
−2 logα

N , then PN{dFM(Ptrue, P̂N ) ≤ ε} ≥ 1− α.

Proof. See Appendix A. J

As it can be seen from Theorem 42, the proposed levels of robustness for the case that the unknown
distribution is discrete depend on the diameter of Ω, the number of data points N , and the confidence level 1−α.
However, the results in Zhao and Guan [442] for the continuous case suffer from similar practical issues as
in Jiang and Guan [214], Pflug et al. [303], Pflug and Wozabal [302].

7.2.1.6 Chebyshev

A data-driven approach to construct a Chebyshev ambiguity set is proposed in Goldfarb and Iyengar [161]. Recall
the linear model for the asset returns ξ in Goldfarb and Iyengar [161]: ξ = µ+Af + ε, where µ is the vector of
mean returns, f ∼ N(0,Σ) is the vector of random returns that derives the market, A is the factor loading
matrix, and ε ∼ N(0,B) is the vector of residual returns with a diagonal matrix B. Under the assumption
that the covariance matrix Σ is known, Goldfarb and Iyengar [161] study three different models to form the
uncertainty in B, A, and µ as follows:

UB =
{
B
∣∣B = diag(b), bi ∈ [bi, bi], i = 1, . . . , d

}
,

UA = {A |A = A0 +C, ‖ci‖g ≤ ρi, i = 1, . . . , d} ,
Uµ = {µ |µ = µ0 + ζ, |ζi| ≤ γi, i = 1, . . . , d} ,

where ci denotes the i-th column of C, and ‖ci‖g =
√
c>i Gc

>
i denotes the elliptic norm of ci with respect to

a symmetric positive definite matrix G. Calibrating the uncertainty sets UB, UA, and Uµ involves choosing
parameters bi, bi, ρi, γi, i = 1, . . . , d, vector µ0, and matrices A0 and G. Assuming that a set of data points is
available on ξ and f , by relying on the multivariate linear regression, Goldfarb and Iyengar [161] obtain least
square estimates (µ0,A0) of (µ,A), respectively, and construct a multidimensional confidence region of (µ,A)
around (µ0,A0). Now, projecting this confidence region along vector µ and matrix A gives the corresponding
uncertainty sets Uµ and UA, respectively. To form the uncertainty set UB, they propose to use a bootstrap
confidence interval around the regression error of the residual.

7.2.1.7 Ellipsoid and Matrix Inequality

Data-driven methods to construct the ambiguity set PDY is proposed in Delage and Ye [105].

I Theorem 43 (Delage and Ye [105, Corollary 4]). Suppose that the random vector ξ is supported on a bounded
space Ω. Consider the following parameters:

µ̂0 = 1
N

N∑
i=1

ξi,

Σ̂0 = 1
N − 1

N∑
i=1

(ξi − µ̂0)(ξi − µ̂0)>,

θ̂ = Nsup
i=1

∥∥∥Σ̂− 1
2 (ξi − µ̂0)

∥∥∥
2
,
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where µ̂0, Σ̂0, and θ̂ are estimates of the mean, covariance, and diameter of the support of ξ, respectively.
Moreover, for a confidence level 1− α, let us define

θ̄ =
(

1− (θ̂2 + 2)
2 +

√
2 log( 4

ᾱ )
√
N

)− 1
2

θ̂,

γ̄1 = θ̄2
√
N

(√
1− d

θ̄4
+
√

log
( 4
ᾱ

))

γ̄2 = θ̄2

N

(
2 +

√
2 log

( 2
ᾱ

))
,

%̄1 = γ̄2

1− γ̄1 − γ̄2
,

%̄2 = 1 + γ̄2

1− γ̄1 − γ̄2
,

where ᾱ = 1−
√

1− α. Let PDY(Ω, µ̂0, Σ̂0, %̄1, %̄2) be the ambiguity set formed via (53), using parameters µ̂0,
Σ̂0, %̄1, and %̄2. Then, we have

P
N
{
P

true ∈ PDY(Ω, µ̂0, Σ̂0, %̄1, %̄2)
}
≥ 1− α.

7.2.2 Data-Driven DROs with non-i.i.d. Data
As mentioned before, data-driven DRO models typically assume that a set of i.i.d. sampled data is available from
the unknown true distribution. In many situations, however, there is no guarantee that the future uncertainty
is drawn from the same distribution, see, e.g., Glasserman and Yang [157], Lam [229] in the context of the
model uncertainty, robust control and robust risk analysis. Recognizing this fact, some research is devoted to
choosing the level of robustness in situations where the i.i.d. assumption is violated and data-driven methods to
calibrate the level of robustness may be unsuitable. Rahimian et al. [328] use the notions of maximal effective
subsets and prices of optimism/pessimism and nominal/worst-case regrets to calibrate the level of robustness
in discrepancy-based DRO models. Price of optimism is defined as the loss by being too optimistic (i.e., using
SO model with the nominal distribution)—and hence, implementing the corresponding solution—while DRO
accurately represents the ambiguity in the distribution. Similarly, the price of pessimism is defined as the
loss by being too pessimistic (i.e., using RO model with no distributional information except for the support
of uncertainty). Nominal/worst-case regret is defined as the loss of being unnecessarily ambiguous/not being
ambiguous enough—and hence, implementing the corresponding solution—while DRO is ill-calibrated. Rahimian
et al. [328] suggest to balance the price of optimism and pessimism if the decision-maker is indifferent regarding
the error from using too optimistic or pessimistic solutions. They refer to the smallest level of robustness for which
such a balance happens as indifferent-to-solution level of robustness. On the other hand, Rahimian et al. [328]
propose to balance the nominal and worst-case regrets if the decision-maker wants to be indifferent regarding the
error from using an ill-calibrated DRO model in either the optimistic or the pessimistic scenarios. They refer to
the smallest level of robustness for which such a balance happens as indifferent-to-distribution level of robustness.

7.3 Cross-Validation
In this section, we describe a practical approach to choose the level-of-robustness parameter for a DRO model.
Suppose that ε denotes a generic level-of-robustness parameter. Recall the discussion in Section 2, and let x∗N (ε) be
an optimal data-driven solution, obtained by solving a data-driven DRO model using parameter ε. With regards
to (12), one would ideally select an optimal ε∗ such that it would minimize V̂ N

(
x∗N (ε)

)
:= RPtrue [h0(x∗N (ε), ξ)]

over all ε ≥ 0. As Ptrue is unknown, it is not possible to calculate V̂ N
(
x∗N (ε)

)
. However, one can estimate the

best choice of ε∗ (possibly from a finite number of candidates E).
A commonly used approach to choose the level-of-robustness parameter is cross-validation Friedman et al.

[144]. Below, we describe K-fold cross-validation, which is widely used in situation where there is not enough
data and the use of a DRO model is justified:

Split data into K roughly equal-sized subsets (at random),
For each fold k = 1, . . . ,K,
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Use exactly one subset as the test and merge the remaining K − 1 subsets into the training set,
Use the training set to solve a data-driven DRO, formed via ε ∈ E , and obtain x∗N (ε),
Use the test set to estimate the out-of-sample performance V̂ N

(
x∗N (ε)

)
, ε ∈ E ,

Choose an εk that minimizes V̂ N
(
x∗N (ε)

)
over all choices in E ,

Choose ε̂ = 1
K

∑K
k=1 εk as an estimate of ε∗.

Now, using ε̂, one can solve a data-driven DRO and obtain an optimal data-driven solution.

8 Modeling Toolboxes

In recent years, several open-source tools have been developed to handle RO/DRO problems. These tools support
an algebraic modeling interface to enter the problem and uncertainty/ambiguity set. In addition, they provide
tools to obtain an exact or approximate robust/distributional robust reformulation. They also connect to the
existing open-source or commercial solvers to solve the resulting reformulation. Goh and Sim [160] develop a
MATLAB-based algebraic modeling toolbox, named ROME (Robust Optimization Made Easy), for a class of
DRO problems with conic-representable sets for the support and mean, known covariance matrix, and upper
bounds on the directional deviations studied in Goh and Sim [159]. Goh and Sim [160] elucidate the practicability
of this toolbox in the context several application domains. A C++-based algebraic modeling package, named
ROC, is developed in Bertsimas et al. [53], to demonstrate the practicability and scalability of the studied
adaptive DRO model. Some features of ROC include declaration of uncertain parameters and linear decision
rules, transcriptions of ambiguity sets, and reformulation of DRO using the results obtained in Bertsimas
et al. [53]. A brief introduction to ROC and some illustrative examples to declare the objects of a model, such
as variables, constraints, ambiguity set, among others, are given in an early version of Bertsimas et al. [50].
XProg (http://xprog.weebly.com), is a MATLAB-based algebraic modeling package that also implements the
proposed model in Bertsimas et al. [53]. Chen et al. [98] develop a MATLAB-based algebraic modeling package,
named RSOME (Robust Stochastic Optimization Made Easy), to illustrate the modeling power of their proposed
ambiguity set. RSOME supports more general ambiguity sets than ROME and is capable of handling static and
multistage DRO problems. A Python version of RSOME is presented in Chen and Xiong [95].

There are also some other packages to handle RO problems. A C++-based algebraic modeling language,
named ROC++, is presented in Vayanos et al. [401]. ROC++ supports static and multistage problems involving
both exogenous and endogenous uncertain parameters. A Python package, named ROmodel, is also developed
in Wiebe and Misener [408] to handle RO problems within Pyomo (Hart et al. [181]). We also refer the readers
to Pyros (Isenberg et al. [208]), standing for Pyomo Robust Optimization Solver, PICOS (Sagnol and Stahlberg
[349]), standing for Python Interface to Conic Optimization Solvers, and JuMPeR (Dunning [125]), standing for
JuMP extension for Robust) in JuMP (Dunning et al. [126]).

9 Conclusion and Future Research Directions

This paper provided an overview over the modeling paradigm DRO. Starting from Scarf’s seminal work Scarf
[351] and till early 2000s, there had been several papers on this paradigm, mainly under the name of minimax
or ambiguous stochastic optimization. However, there has been an increasing attention on this paradigm since
late 2000s, mostly under the widely dominant term “distributionally robust optimization” (Calafiore and
El Ghaoui [74], Delage and Ye [105]). DRO is often described as a modeling approach that seeks a trade-off
between stochastic optimization, assuming full distributional information, and robust optimization, assuming no
distributional information except for the support of the uncertain parameters. By modeling the distributional
ambiguity in a way that respects statistical and/or structural properties of the underlying unknown distribution,
the DRO approach seeks decisions that are immune with respect to the distributional parameter uncertainty due
to limited observability of data, noisy measurements, implementation and prediction errors.

Recognizing the interest in DRO within operations research and machine learning communities, this paper
provided a holistic view that connects DRO to other widely studied concepts in these communities. These include
concepts such as game theory, risk aversion, chance constraint, robust optimization, and function regularization.
We explained general solution techniques to solve DRO models, and discussed several models to express the
distributional ambiguity as well as calibration of the resulting ambiguity sets. We also provided an overview of
efforts to unify modeling approaches and to develop software packages with promising capabilities.

http://xprog.weebly.com
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We believe that the success of DRO is made possible by recent advances in SDP, SOCP, integer programming,
numerical optimization algorithms, among others. Despite extensive research on modeling, theoretical, and
computational aspects of DRO, from reformulation, to customized solution approaches, to statistical properties
of the resulting decisions, we envision several research directions that are to be tackled in the near future to
make DRO a more appealing modeling paradigm for decision making and estimation:

Randomized policies. Decision-making problems within the DRO literature usually aim for an optimal
deterministic policies. As DRO problems may be interpreted as a minimax game between the decision maker
and an adversary, randomized policies may have the potential to exhibit a better out-of-sample performance
compared to commonly considered deterministic policies for several applications, as witnessed in Delage et al.
[106], Delage and Saif [104].
Sequential decision-making. Most of the DRO literature focuses on static and two-stage setting, with the
exception of a few papers that study the multistage setting, see, e.g., Bertsimas et al. [55], Duque and Morton
[131], Philpott et al. [304], Pichler and Shapiro [306], Rahimian et al. [329], Shapiro [368], Yu and Shen
[435]. Distributional robustness is also studied in the context of reinforcement learning, see, e.g., Derman
and Mannor [116], Smirnova et al. [379], Zhou et al. [446]. As most stochastic decision-making problems are
dynamic in nature, with information being revealed over time and decisions made sequentially given the
available information, further research on sequential decision-making under distributional ambiguity would
make DRO more applicable in practical setting.
Decision-making with side information. In statistical learning, DRO is usually performed with the hope of
achieving a predictive model (between the independent and dependent variables) with reasonably acceptable
generalization properties (Blanchet et al. [66]). On the other hand, decision-making models usually ignore
the side information in the optimization framework and create an offline predictive model between the
independent and dependent variables, whose outputs are to be used indirectly in the optimization framework.
With the abundance of historical data and access to side information when decision-making, we envision
the modeling framework of conditional stochastic optimization (Ban and Rudin [11], Bertsimas and Kallus
[41], Kannan et al. [217]) and their distributionally robust versions (Bertsimas et al. [54], Bertsimas and
Van Parys [44], Esteban-Pérez and Morales [139], Kannan et al. [218], Nguyen et al. [283]) receive an increasing
attention in theory and practice.
Model-free distributional robustness. Most of the DRO literature is model-based, in the sense that a “model”
to express the distributional ambiguity is selected a priori and the parameters of the ambiguity sets are
calibrated. This approach would raise the question of whether the selected ambiguity set is “appropriate” or
there are other types of ambiguity sets that should be chosen. Even if an appropriate ambiguity set is selected,
finding appropriate values for its parameters remains challenging. There are several efforts in the DRO
literature that are model-free and instead, specify an acceptable target cost or regret compared to a baseline
decision-maker, see, e.g., Bennouna and Van Parys [35], Sutter et al. [389], Van Parys [395], Van Parys et al.
[399]. This research is close in spirits to Long et al. [250], Ramachandra et al. [330], Sim et al. [375], and we
expect that it will continue to receive much attention in the years to come.
Globalized and soft robustness. Two core characteristics of RO are its constraint-wise nature and the
assumption that no constraint can be violated for any scenarios in the uncertainty set. To reduce conservatism
of RO, these assumptions are relaxed by “light robustness” (Fischetti and Monaci [142]), “globalized robustness”
(Ben-Tal et al. [29, 34]), and “soft robustness” (Ben-Tal et al. [31]). The idea of “globalization” is also extended
to the DRO setting see, e.g., Ding et al. [120], Li and Xing [244], Liu et al. [247], and we envision these less
conservative alternatives receive much attention in the future.
Emerging real-world applications. To develop theoretical and computational results, most DRO papers
focus on synthesized and stylized problems, although in different application domains. These include finance
(Pflug and Wozabal [302]), environment and energy systems (Park and Bayraksan [294], Zhao and Jiang
[444]), scheduling and project management (Jiang et al. [216], Natarajan et al. [276]), and network flow and
transportation (Ahipaşaoğlu et al. [2], Carlsson et al. [77]). Resorting to real data, further development of
data-driven DRO models in emerging real-world applications and public good areas, such as humanitarian
logistics and operations management (Lu and Shen [257]), is interesting.

Appendix: Proofs and Further Discussions

All the emitted proofs are presented in Section A. We also describe kernel-based models in RO in Section B.
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A Proofs

Proof of Proposition 3. We have that

EPN

[
RP̂N

[h0(x∗N , ξ)]
]

= EPN

[
inf
x∈X
RP̂N

[h0(x, ξ)]
]
≤ inf
x∈X

EPN

[
RP̂N

[h0(x, ξ)]
]

≤ inf
x∈X
RPtrue [h0(x, ξ)] ≤ RPtrue [h0(x∗N , ξ)] ,

where the second inequality is due to the hypothesis and the third inequality is due to the suboptimality
of x∗N . J

Proof of Theorem 8. First note that Z is a Banach space, paired with the dual space Z∗, which is also a
Banach space. Then, by a similar proof to Shapiro et al. [374, Theorem 6.7], we can show that if ρ is a proper
and lower semicontinuous coherent risk measure, then (13) holds whenM is equal to the subdifferential of ρ at
0 ∈ Z, i.e.,M = ∂ρ(0), where

∂ρ(Z) = arg max
P∈M

EP [Z] .

Now, we show that ρ is a proper and lower semicontinuous coherent risk measure. Consider the cone C ⊂ Z
of nonnegative functions Z. This cone is closed, convex, and pointed, and it defines a partial order relation on
Z that Z ≥ Z ′ if and only if Z(s) ≥ Z ′(s) a.e. on Ξ. We let the least upper bound of Z,Z ′ be Z ∨ Z ′, where
(Z ∨ Z ′)(s) = max{Z(s), Z ′(s)}. It follows that Z with cone C forms a Banach lattice26. Thus, by Shapiro et al.
[374, Theorem 7.91], we conclude that ρ is continuous and subdifferentiable on the interior of its domain. This,
in turns, implies that the lower semicontinuity of ρ is automatically satisfied. Moreover, by Shapiro et al. [374,
Theorem 7.85], the subdifferentials of ρ at any point form a nonempty, convex, and weakly* compact subset of
Z∗. In particular,M = ∂ρ(0) is a convex and weakly* compact setM⊆M (Ξ,F).

Conversely, suppose that (13) holds with the setM being a convex and weakly* compact subset of M (Ξ,F).
Then, ρ is a real-valued coherent risk measure.

To prove the last part notice that for any Z ∈ Z, we have ρ(Z) ≥ ρ(0) + EP [Z − 0], for all P ∈ ∂ρ(0). Now,
by the facts thatM = ∂ρ(0) and ρ(0) = 0, we concludeM = {P ∈M (Ξ,F) |EP [Z] ≤ ρ(Z), ∀ Z ∈ Z}. J

Proof of Lemma 17. Problems (DRO) and (18) can be reformulated, respectively, as min {θ | (x, θ) ∈ G} and
min {θ | (x, θ) ∈ G′}, where

G :=
{

(x, θ) ∈ Rn+1
∣∣∣x ∈ X ,RP [h0(x, ξ)

]
≤ θ,RP

[
hj(x, ξ)

]
≤ 0,∀ P ∈ P, j ∈ [m]

}
,

and

G′ :=
{

(x, θ) ∈ Rn+1
∣∣∣x ∈ X ,RP [h0(x, ξ)

]
≤ θ,RP

[
hj(x, ξ)

]
≤0,∀ P ∈ conv(P), j ∈ [m]

}
.

Because P ⊆ conv(P), we have G′ ⊆ G. We now show that G ⊆ G′. Consider an arbitrary (x, θ) ∈ G. For an
arbitrary P ∈ conv(P), there exists a collection {P i}i∈I such that P =

∑
i∈I λ

iP i, where
∑
i∈I λ

i = 1, P i ∈ P ,
λi ≥ 0, i ∈ I. Now, by the convexity ofRP [·] in P on M (Ξ,F), we haveRP [h0(x, ξ)] ≤

∑
i∈I λ

iRP i [h0(x, ξ)] ≤
θ andRP [hj(x, ξ)] ≤

∑
i∈I λ

iRP i [hj(x, ξ)] ≤ 0, j ∈ [m]. Thus, it follows that (x, θ) ∈ G′, and hence, G ⊆ G′. J

Proof of Lemma 26. The first two inequalities in (41) can be found in e.g., Reiss [334, p. 99]27 and the last
two inequalities can be found in e.g., Jiang et al. [215, Lemma 1]. Then, (42) follows from (41). J

Proof of Theorem 33. Using the conic duality results from Theorem 18, we write the dual of
supP∈PMM EP [h0(x, ξ)] as

inf
W ,Y

m∑
i=1

W i •U i −
m∑
i=1

Y i •Li s.t.
{∑m

i=1W i • F i −
∑m
i=1 Y i • F i <M′+(Ξ,F) h0(x, · ),

W ,Y < 0,

26 It is said a partial order relation induces a lattice structure on Z if the least upper bound exists for any Z,Z′ ∈ Z (Shapiro
et al. [374]). A Banach space Z with lattice structure is called Banach lattice if Z,Z′ ∈ Z and |Z| ≥ |Z′| implies ‖Z‖ ≥ ‖Z′‖
(Shapiro et al. [374]).

27As shown for e.g., in Reiss [334] and Gibbs and Su [153], dφh (P, P0) ≤ dφkl (P, P0). However, in Jiang et al. [215, Lemma 1]
this relationship has been shown as dφh (P, P0) ≤

(
dφkl (P, P0)

) 1
2 .
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where M′+ (Ξ,F) is the dual cone of M+ (Ξ,F):

M′+ (Ξ,F) =
{
Z ∈ S (Ξ,F)

∣∣∣∣ ∫
Ξ
Z(s)P (ds) ≥ 0, ∀ P ∈M+(Ξ,F)

}
.

Thus, we can write the first constraint above as
m∑
i=1

W i •
∫

Ξ
F i(s)P (ds)−

m∑
i=1

Y i •
∫

Ξ
F i(s)P (ds) ≥

∫
Ξ
h0(x, ξ(s))P (ds), ∀ P ∈M+(Ξ,F).

The Slater-type condition ensures that the strong duality holds (Shapiro [363]). J

Proof of Theorem 42. The proof is immediate from the relationship between ζ-structure metrics, stated in
Lemma 30, and the fact that PN{dK(Ptrue, PN ) ≤ ε} ≥ 1−exp{− ε

2N
2θ2 } due to Zhao and Guan [442, Proposition 3].

J

B Kernel-based Models in Robust Optimization

The papers mentioned in Section 6.4 incorporate machine learning into the optimization framework using kernel
functions in the virtue of SO and DRO. There are also papers that study this integration in the sense of RO,
and mainly in order to learn the uncertainty, see, e.g., Tulabandhula and Rudin [391, 393, 392]. This is an
important question to investigate, particularly, when facing high-dimensional uncertain parameters. In fact, in
these situations, it may not be practical to fix the form of uncertainty set a priori; this is even more complicated
with the calibration of different parameters describing the set. An alternative practice is to learn the form of the
uncertainty set by using unsupervised learning algorithms on the historical data. Different from Bertsimas and
Kallus [41], Tulabandhula and Rudin [391] study a framework that simultaneously seeks a best statistical model
and a corresponding decision policy. In their framework, in addition to {(ui, ξi)}Ni=1, a new set of unlabeled
data is available that in conjunction with the statistical model affects the cost. The minimum of such a cost
function over the set of possible decisions is cast by a regularization term in the objective function of the learning
algorithm. Tulabandhula and Rudin [391] show that under some conditions this problem is equivalent to a RO
model, where the uncertainty set of the statistical model contains all models that are within ε-optimality from
the predictive model describing {(ui, ξi)}Ni=1. Similar to Tulabandhula and Rudin [391], Tulabandhula and Rudin
[392] use a new set of unlabeled data in addition to {(ui, ξi)}Ni=1 in order to combine machine learning and
decision making. Their idea to form the uncertainty set of ξ is to consider a class of “good” predictive models
with low training error on the data set {(ui, ξi)}Ni=1. Recognizing that the uncertainty can be decomposed into
the predictive model uncertainty and residual uncertainty, they form the uncertainty by the Minkowski sum of
two sets: (1) predictions of the new data set with the class of “good” predictive models, and (2) residuals of the
new data set with the class of “good” predictive models. To form the class of “good” predictive models, one can
use loss functions such as least squares and hing loss.

Kernel density estimation (KDE) (Devroye and Gyorfi [117]) in combination with principal component
analysis (PCA) is also used in the RO literature to construct the uncertainty set (Ning and You [285]). PCA
captures the correlation between uncertain parameters and transforms data into their corresponding uncorrelated
principal components. KDE, then, captures the distributional information of the transformed, uncorrelated
uncertain parameters along the principal components, by using kernel smoothing methods. Ning and You [285]
propose to use a Gaussian kernel K defined between the latent uncertainty along the principal component k, wk,
and the projected data along the principal component k, tk. By incorporating forward and backward deviations
to allow for asymmetry (Chen et al. [91]), Ning and You [285] propose the following polytopic uncertainty set
that resembles the intersection of a box, with the so-called budget, and polyhedral uncertainty sets:

U =


u

∣∣∣∣∣∣∣∣∣∣∣

u = µ0 + V w, w = w � z− +w � z+,

0 ≤ z−, z+ ≤ 1, z− + z+ ≤ 1, 1>(z− + z+) ≤ Γ,

w = [F−1
1 (α), . . . , F−1

m (α)]>,

w = [F−1
1 (1− α), . . . , F−1

m (1− α)]>


.

Let us define U = [u1, . . . ,uN ]>. Above µ0 = 1
N

∑N
i=1 u

i, and V is a square matrix consists of allm eigenvvectors
(i.e., principal components) obtained from the eignevalue decomposition of the sample covariance matrix
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S = 1
N−1 (U − 1µ>0 )>(U − 1µ>0 ). Moreover, z− is a backward deviation, z+ is a forward deviation vector, and

Γ is the uncertainty budget. In addition, F−1
k := min{wk|Fk(wk) ≥ α}, k ∈ [m], where Fk(wk) is the cdf of wk,

with the density function is obtained using KDE as follows: fk(wk) = 1
N

∑n
i=1Kb(wk, tik). Ning and You [285]

further extend their approach to the data-driven static and adaptive robust optimization.
In the context of RO, support vector clustering (SVC) is proposed to form the uncertainty set, which seeks

for a sphere with the smallest radius that encloses all data mapped in the covariate space (Shang et al. [362]). In
SVC, to avoid overfitting, the violations of the data outside the sphere is penalized by a regularization term as
follows:

min
δ,s,c

δ2 + 1
Nγ

N∑
i=1

si s.t.
{
‖Φ(ui)− c‖22 ≤ δ2 + si, i = 1, . . . , N,
s ≥ 0.

Dualizing the problem of finding the smallest sphere using dual multipliers π results in a quadratic problem
where the kernel function appears in the objective function. It is shown that commonly used kernel functions in
SVC, such as polynomial, radial basis function, sigmoid function kernel, lead to an intractable robust counterpart
problem for the corresponding uncertainty set. Hence, Shang et al. [362] propose to use a piecewise linear kernel,
referred to as a weighted generalized intersection kernel, defined as follows:

K(u,v) =
m∑
k=1

lk − ‖Q(u− v)‖1, (63)

where Q = S−
1
2 and S = 1

N−1
∑N
i=1

[
ui(ui)> −

(∑N
i=1 u

i
)(∑N

i=1 u
i
)>], and lk, k ∈ [m], is chosen such that

lk > maxNi=1Q
>
·ku

i −minNi=1Q
>
·ku

i. Such a kernel not only incorporates covariance information, but also gives
rise to the following results.

I Theorem 44 (Shang et al. [362, Propositions 1, Propositions 3–4]). Suppose that the kernel function is constructed
as in (63). Then,
1. The kernel matrix induced by the kernel K is positive definite.
2. The constructed uncertainty set

U =

u
∣∣∣∣∣∣∣∣∣
∃ vi, i ∈ Ss.t.∑
i∈S

πiv
>
i 1 ≤ ε,

− vi ≤ Q(u− ui) ≤ vi, i ∈ S

 ,

where S := {i |πi > 0}, ε =
∑
i∈S πi‖Q(uj − ui)‖1, j ∈ B, and B :=

{
i
∣∣∣ 0 < πi <

1
Nγ

}
, is a polytope; hence,

the robust counterpart maxu∈U u>x ≤ b has the same complexity as the deterministic problem.
3. The regularization parameter γ gives an upper bound on the fraction of the outliers; hence, a feasible solution
x in the robust counterpart maxu∈U u>x ≤ b is also feasible to a SAA-based chance-constrained problem
P{u>x ≤ b} ≥ 1− γ.

4. As the number of data points increases, the fraction of outliers converges to the regularization parameter γ
with probability one.

5. The regularization parameter γ gives a lower bound on the fraction of the support vectors.

Shang and You [361] further propose to calibrate the radius of the uncertainty set and provide a probabilistic
guarantee of the proposed uncertainty set. Shang and You [359] use PCA in combination with SVC to construct
the uncertainty set. By employing PCA, the data space is decomposed into the principal subspace and residual
subspace. Then, they utilize the uncertainty set formed in Shang et al. [362] to explain the variation in the
principal subspace, and utilize a polyhedral set to explain noise in the residual subspace. The proposed uncertainty
set is then the intersection of the above two sets.
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