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Abstract
In 2016, Chandrasekaran, Végh, and Vempala (Mathematics of Operations Research, 41(1):23–48) published a method to
solve the minimum-cost perfect matching problem on an arbitrary graph by solving a strictly polynomial number of linear
programs. However, their method requires a strong uniqueness condition, which they imposed by using perturbations of
the form c(i) = c0(i) + 2−i. On large graphs (roughly m > 100), these perturbations lead to cost values that exceed the
precision of floating-point formats used by typical linear programming solvers for numerical calculations. We demonstrate,
by a sequence of counterexamples, that perturbations are required for the algorithm to work, motivating our formulation
of a general method that arrives at the same solution to the problem as Chandrasekaran et al. but overcomes the
limitations described above by solving multiple linear programs without using perturbations. The key ingredient of our
method is an adaptation of an algorithm for lexicographic linear goal programming due to Ignizio (Journal of the
Operational Research Society, 36(6):507–515, 1985). We then give an explicit algorithm that exploits our method, and
show that this new algorithm still runs in strongly polynomial time.

Digital Object Identifier 10.5802/ojmo.2

Keywords perfect matching, uniqueness, perturbation, lexicographic linear goal programming, cutting-plane.

1 Introduction

Given a graph G = (V,E) with edge cost function c, the minimum-cost (or minimum-weight) perfect matching
problem is to find a perfect matching E′ ⊆ E (a subset such that every vertex v ∈ V is covered by exactly
one uv ∈ E′) so that the sum of the costs of E′ is minimized. As mentioned in [4], the minimum-cost perfect
matching problem is a classical problem in combinatorial optimization with numerous and varied applications.

Since Edmonds [8] introduced the blossom algorithm (a polynomial-time combinatorial method of solving
the problem), a number of efficient implementations have been developed over the years, with Kolmogorov’s
Blossom V [14] being a recent notable version.

The problem can also be formulated as a binary integer program:

min
∑
e∈E

c(e)x(e)

s.t.
∑
uv∈E

x(uv) = 1 ∀ v ∈ V

x(e) ∈ {0, 1} ∀ e ∈ E.

To use linear programming (LP) techniques to solve the problem, the constraints x(e) ∈ {0, 1} are first relaxed
to x(e) ∈ [0, 1] and then to x(e) ≥ 0 since the upper bounds are then implied. The linear program that results
turns out to be exact for bipartite graphs in the sense that a basic optimal solution is the incidence vector of a

© Amber Q. Chen & Kevin K. H. Cheung & P. Michael Kielstra & Avery D. Winn;

licensed under Creative Commons License Attribution 4.0 International

Volume 1 (2020), article no. 2

mailto:q283chen@uwaterloo.ca
mailto:kcheung@math.carleton.ca
mailto:pmkielstra@college.harvard.edu
mailto:arwinn@umich.edu
https://doi.org/10.5802/ojmo.2
https://creativecommons.org/licenses/by/4.0/
https://ojmo.centre-mersenne.org


2

minimum-weight perfect matching. Edmonds [7] provides an LP formulation for non-bipartite graphs that has
the same property. It requires the addition of “blossom inequalities”:∑

uv∈E
u∈S,v/∈S

x(uv) ≥ 1 ∀ S ⊆ V, |S| odd, 3 ≤ |S| ≤ |V | − 3

Unfortunately, the presence of an exponential number of constraints in this formulation precludes polynomial-time
solvability via a generic LP solver. As a result, researchers in the past have experimented with a cutting-plane
approach, solving the relaxation first without the blossom inequalities, then iteratively finding and adding violated
inequalities until the problem has an integral solution. A polynomial-time (though impractical) algorithm follows
using the equivalence of separation and optimization via the ellipsoid method (see Grötschel et al. [10]) and the
polynomial-time identification of violated blossom inequalities due to Padberg and Rao [15]. The existence of a
practical LP-based cutting plane method for the minimum-weight perfect matching remained uncertain until
2016, when Chandrasekaran et al. [2] gave a cutting-plane algorithm which uses only a polynomial number of
linear programs.

Their approach involves carefully selecting the blossom inequalities to be included and dropping ones that
are not helpful at each iteration and requires that the optimal solution to the linear program be unique. As
this uniqueness property does not always hold in general, their method introduces an edge ordering and a
perturbation on the edge costs. (The edge costs are assumed to be integers.) In particular, if c0(i) is the original
cost for the i-th edge, then the perturbed cost is c(i) = c0(i) + 2−i. Such a perturbation turns out to be sufficient
for providing the required uniqueness property. Even though the increase in size in representing the perturbed
costs is polynomial, when the graph is large (say with hundreds of edges), the precision required to represent the
perturbed costs exceeds what is typical of the floating-point formats used by most LP solvers [6]. (For example,
4 + 2−100 = 5070602400912917605986812821505

1267650600228229401496703205376 requires a mantissa of over 100 bits.)
To overcome the potential numerical difficulties caused by perturbation, we present a variant of the algorithm

which does not require an explicit perturbation to ensure uniqueness. We make the observation that by leaving the
perturbation unspecified yet sufficiently small, the optimization problem is a lexicographic linear goal program.
The algorithm is an adaptation of the sequential method for lexicographic linear goal programming due to
Ignizio [12]. It works by solving a sequence of linear programs for each single linear program that the original
algorithm would solve. We show that, given the solutions to these programs, we can derive the optimal solution
to a hypothetical perturbed linear program without any explicit calculations on perturbed costs. After this, the
rest of the proof follows just as it did for the original algorithm.

The trade-off is that our algorithm has a worse runtime than that of Chandrasekaran et al. Theirs requires
solving O(n logn) linear programs, while ours solves O(mn logn). This is, however, still polynomial. Whether or
not our method is preferable in practice to implementing the algorithm of Chandrasekaran et al. using a high- or
arbitrary-precision solver is a question for future research.

The rest of this paper is organized as follows. After defining some terms (Section 2) and summarizing the
algorithm from [2] (Section 3), we give examples of graphs which show that this algorithm requires some form of
perturbation in both the primal and dual problems. In particular, without perturbing the edge costs, we cannot
guarantee that the intermediate solutions will always be half-integral (Section 4) or that the algorithm will
terminate (Section 5). This occurs even if we force the primal solution to be the same as it would have been
with perturbations. This motivates our new method, which uses multiple linear programs to accurately emulate
the perturbations. We first explain this in a general case and point out its connection with lexicographic linear
goal programming (Section 6) and then apply it to the specific problem of finding perfect matchings (Section 7).

2 Notation and definitions

The set of m × n matrices with real entries is denoted by Rm×n. For a matrix A ∈ Rm×n, Ai,j denotes the
(i, j)-entry of A; that is, the entry of A at the intersection of the i-th row and the j-th column. A:,j denotes the
j-th column of A and Ai,: the i-th row. The transpose of A is denoted by AT.

Following common usage in combinatorics, for a finite set E, let RE denote the set of tuples of real numbers
indexed by elements of E. For y ∈ RE , let y(i) denote the entry indexed by i ∈ E. For a positive integer n,
we use Rn an abbreviation for R{1,...,n}. Depending on the context, elements of Rn are treated as if they were
elements of Rn×1.
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We assume familiarity with basic terminology related to matchings and linear programming. A refresher of the
former can be found in [5, Chapter 5], and of the latter in [16]. We next recall some definitions in Chandrasekaran
et al. [2] to facilitate discussion of their minimum-cost perfect matching algorithm.

Let G = (V,E) be a simple undirected graph with integer edge costs given by c ∈ ZE . A family F of subsets
of V is said to be laminar if for all U,W ∈ F , U ∩W = ∅ or U ⊆W or W ⊆ U . For a set S ⊆ V , δ(S) denotes
the set of edges incident to one vertex in S and one vertex not in S. For a vertex u, δ(u) denotes δ({u}). For
x ∈ RE and T ⊆ E, x(T ) denotes the sum

∑
e∈T x(e).

Let M be a matching of G. Let U ⊆ V , and let F be a laminar family of subsets of V . Then M is a (U,F )-
perfect-matching if |δ(S) ∩M | ≤ 1 for every S ∈ F and M covers exactly the vertex set U . A set of vertices
S ∈ F is said to be (G,F )-factor-critical for G if, for every u ∈ S, there exists an (S \ {u},F )-perfect-matching
using the edges of G.

For a laminar family F of odd subsets of V , define the following primal-dual pair of linear programming
problems:

min
∑
uv∈E

c(uv)x(uv) (PF (G, c))

s.t. x(δ(u)) = 1 ∀ u ∈ V
x(δ(S)) ≥ 1 ∀ S ∈ F

x ≥ 0,

max
∑

S∈V ∪F

Π(S) (DF (G, c))

s.t.
∑

S∈V ∪F :uv∈δ(S)

Π(S) ≤ c(uv) ∀ uv ∈ E

Π(S) ≥ 0 ∀ S ∈ F .

Let Π be a feasible solution to DF (G, c). GΠ denotes the graph (V,EΠ) where

EΠ =

uv ∈ E :
∑

S∈V ∪F :uv∈δ(S)

Π(S) = c(uv)

 .

Colloquially, EΠ is the set of “tight” edges with respect to Π. We say that Π is an F -critical dual if every S ∈ F

is (GΠ,F )-factor-critical and Π(T ) > 0 for every non-maximal T ∈ F . If Π is an F -critical dual except that
some sets S ∈ F for which Π(S) = 0 may not be (GΠ,F )-factor-critical, we say that Π is an F -positively-critical
dual.

Finally, we define a metric on solutions to DF (G, c)

∆(Γ,Π) =
∑

S∈V ∪F

1
|S|
|Γ(S)−Π(S)|.

It can be easily verified that this has the properties of a metric.
For a given fixed Γ, we say that Π is Γ-extremal if it minimizes ∆(Γ,Π). Given Γ and a primal optimal

solution x, we may find a Γ-extremal dual optimal solution by solving the following linear program [2, Section 5]:

min
∑

S∈V ∪F

1
|S|

r(S) (D∗F (G, c))

s.t. r(S) + Π(S) ≥ Γ(S) ∀ S ∈ V ∪Fx

−r(S) + Π(S) ≤ Γ(S) ∀ S ∈ V ∪Fx∑
uv∈δ(S)

Π(S) = c(uv) ∀ uv ∈ supp(x)

∑
uv∈δ(S)

Π(S) ≤ c(uv) ∀ uv /∈ supp(x)

Π(S) ≥ 0 ∀ S ∈ Fx

Π(S) = 0 ∀ S ∈ F \Fx

r(S) = 0 ∀ S ∈ F \Fx,
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where Fx = {S ∈ F : x(δ(S)) = 1}. The solution will give us values for r and Π; we ignore r and take Π to be
our Γ-extremal solution.

3 The Chandrasekaran-Végh-Vempala algorithm

Algorithm 1 for finding a minimum-cost perfect matching on G is due to Chandrasekaran et al. [2]. It assumes,
as we will from now on, that the edge costs are integers.

Algorithm 1: C-P-Matching Algorithm
Input: A graph G = (V,E) with edge costs c ∈ ZE .
Output: A binary vector x representing a minimum-cost perfect matching on G.

1 Let c be the cost function on the edges after perturbation (i.e., after ordering the edges arbitrarily and
increasing the cost of each edge i by 2−i).

2 F ← ∅, Γ← 0
3 repeat
4 Find an optimal solution x to PF (G, c).
5 if x is integral then
6 return x

7 Find a Γ-extremal dual optimal solution Π to DF (G, c) (possibly by solving D∗F (G, c)).
8 H ′ ← {S ∈ F : Π(S) > 0}
9 Let C denote the set of odd cycles in supp(x). For each C ∈ C , define Ĉ as the union of V (C) and

the maximal sets of H ′ intersecting it.
10 H ′′ ← {Ĉ : C ∈ C }
11 F ←H ′ ∪H ′′, Γ← Π
12 end

The authors of the algorithm showed that F is always a laminar family and that the algorithm terminates
after O(n logn) iterations, assuming that PF (G, c) has a unique optimal solution in every iteration of the
algorithm. This is ensured through the use of perturbations in the first step. The authors further demonstrate
that a Γ-extremal dual solution, with an F -critical Γ, is an F -positively-critical dual optimal to DF (G, c), so
the result of step 7 is F -positively-critical. When combined with the uniquness assumption, this leads to x being
half-integral in each iteration.

The choice of using powers of 1
2 for the perturbations is to keep the increases in input size polynomial.

However, to guarantee uniqueness, powers of a sufficiently small ε > 0 can be used instead.

I Lemma 1. There exists a δ > 0 such that the perturbations used in Algorithm 1 may be replaced with powers
of ε for any δ > ε > 0.

Proof. Consider the proof given for the efficacy of the 2−i perturbation in [2, Section 7]. This uses only one
property of the perturbation: that, if

∑m
i=1 a(i)2−i =

∑n
k=1 b(k)2−k, with a(i), b(k) > 0, then m = n and

a(i) = b(i) for all i. We prove this for a class of arbitrary ε > 0, after which the desired result follows.
Assume

∑m
i=1 a(i)εi =

∑n
k=1 b(k)εk. Assume further, without loss of generality, thatm ≤ n. Then

∑m
i=1(a(i)−

b(i))εi −
∑n
k=m+1 b(k)εk = 0.

Take m < n. For ε sufficiently small, either a(i) = b(i) for all i ∈ {1, . . . ,m} or
∑m
i=1 |(a(i) − b(i))|εi >∑n

k=m+1 b(k)εk. In the first case,
∑n
k=m+1 b(k)εk = 0, a contradiction since ε and all b(k) are positive; in the

second,
∑m
i=1(a(i)− b(i))εi −

∑n
k=m+1 b(k)εk 6= 0. Therefore m = n.

Assume there exists a minimal l such that a(l)− b(l) 6= 0. Then

0 =
m∑
i=1

(a(i)− b(i))εi = (a(l)− b(l))εl + εl+1
n∑

i=l+1
(a(i)− b(i))εi−l−1.

For sufficiently small ε, |(a(l)− b(l))εl| > |εl+1∑n
i=l+1(a(i)− b(i))εi−l−1|, so (a(l)− b(l))εl + εl+1∑n

i=l+1(a(i)−
b(i))εi−l−1 6= 0.

This shows that, for any given a and b, there exists a δ such that if
∑
a(i)δi =

∑
b(k)δk, then a = b for all

δ > ε > 0. In fact, we need to only consider the cases where a and b are basic feasible solutions to PF (G, c),
because if there exists an optimal solution that is not a basic feasible solution then there exist two distinct
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basic feasible solutions that are optimal. Therefore, if optimal basic feasible solutions are unique, so are optimal
solutions in general.

Fix F . Then, because PF (G, c) is bounded and finite-dimensional, it has a finite number of basic feasible
solutions s1, . . . , sk. Every pair (sp, sq) gives us a δ by setting a = sp, b = sq and running through the logic
above. Take the smallest of these δs to complete the proof. J

For reasons that will become clear later (see Section 6), it will be more convenient to use powers of a
sufficiently small ε > 0 as perturbations instead of powers of 1

2 . In any case, increasing the bit-length required to
represent the edge costs can lead to practical computation challenges since most LP solvers employ fixed-length
floating-point formats. (Notable exceptions exist, such as QSopt-Exact [1] and the SoPlex rational solver [9], but
they are significantly slower than non-exact solvers.) We feel strongly that the key to a successful implementation
of Algorithm 1 using a typical LP solver is to not work with any explicit numerical perturbation. However, it
remains to be seen whether or not our method is indeed preferable in practice to Algorithm 1 implemented using
an arbitrary-precision LP solver.

An obvious way of modifying the algorithm is simply to not perturb the edge costs and run the rest of the
procedure as stated, but this violates the uniqueness assumption, and as easily demonstrated in [2, Section 1],
can lead to non-half-integrality and cycling.

Instead, we may emulate perturbations by ordering the edges (as in step 1 of Algorithm 1) and then finding
a lexicographically-minimal optimal solution to PF (G, c), where c is now an unperturbed cost function. This
may be accomplished using Algorithm 2, which shows the process in a more general case.

Algorithm 2: Lexicographically-Minimal Primal Algorithm
Input: A linear program P of the form min cTx s.t. Ax ≥ b, where x ∈ Rn.
Output: The lexicographically-minimal solution x to P .

1 Solve P and let its opimal value be γ.
2 K ← ∅, x← 0
3 for i← 1 to n do
4 Set x to an optimal solution to

min xi

s.t. cTx = γ

xj = z ∀(j, z) ∈ K
Ax ≥ b.

5 K ← K ∪ {(i, xi)}
6 end
7 return x

By [16, p. 138], the lexicographically-minimal optimal solution to PF (G, c) is the same as the optimal solution
to the perturbed PF (G, c). Unfortunately, this on its own ensures neither half-integrality nor convergence. Before
giving a slightly more complex modification of the algorithm that uses a multi-stage approach to mimic solving
with perturbation without actually working with perturbations, we first give some examples of graphs that
demonstrate the problems just mentioned.

4 Non-half-integral solution

The following example, which we call the “Dancing Robot,” shows that, if the edge costs are not perturbed at
all, having an F -critical dual is not sufficient to guarantee that all lexicographically-minimal optimal primal
solutions are half-integral. Chandrasekaran et al. [2] provide an example early in their paper of a graph on which
their algorithm as written does not maintain half-integrality, but this does not entirely suffice for our purposes,
as the lexicographically-minimal primal solution on this graph, for any edge ordering, is integral.

The graph shown in Figures 1 to 4, with all edges having cost 1, eventually gives non-half-integral values
when run through the original algorithm without any perturbation while enforcing a lexicographically-minimal
optimal primal. In these figures, Fi denotes the F at the beginning of the loop in the ith iteration while Fi+1
is the laminar family after updating Fi at step 9 in the ith iteration according to Algorithm 1. During each
iteration, an optimal dual solution is given by Π, the vector having value 1

2 on the entries indexed by the vertices
and 0 on entries indexed by the sets in F . Note that all edges in the graph are tight with respect to Π. We can
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Figure 1 Lexicographically-minimal Perfect
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Π1(v) = 1
2 ∀v ∈ V, F1 = ∅

Figure 2 First Iteration
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Π2(v) = 1
2 ∀v ∈ V,

F2 = {{5, 15, 13}, {10, 11, 14}},
Π2(S) = 0 ∀S ∈ F2

Figure 3 Second Iteration
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Π3(v) = 1
2 ∀v ∈ V,

F3 = {{0, 1, 5, 15, 13, 4, 12}, {8, 11, 9}},
Π3(S) = 0 ∀S ∈ F3

Figure 4 Third Iteration

Edge ordering:
(1, 5)
(2, 13)

(10, 14)
(0, 3)
(4, 12)
(5, 13)
(7, 12)
(5, 15)
(3, 7)
(8, 9)
(0, 1)

(11, 14)
(0, 12)
(4, 13)
(2, 6)

(10, 11)
(9, 11)
(4, 11)
(8, 11)

(13, 15)

see that, although the primal solutions in the first and second iterations are half-integral (shown in Figures 2
and 3), the solution in the third iteration is no longer half-integral. The 1

3 - and
2
3 -edges are shown in Figure 4.

Meanwhile, the dual solution Π is a positively-critical optimal dual for the current F in every iteration,
as well as a critical dual for the next F . For instance, the Π from the second iteration, feasible to the dual
problems from both the second and third iterations, is trivially an F -positively-critical optimal dual for the
second iteration, since none of the sets S ∈ F have positive dual value. For the third iteration, since there exists
an (S \ {u},F )-perfect-matching for any node u ∈ S ∈ F , and since F only has maximal sets, that same Π is
an F -critical dual.

Even worse, the algorithm will eventually enter into an infinite loop on this example as illustrated in
Appendix A. The example in the next section also loops but does not lose half-integrality.

On their own, then, a lexicographically-minimal primal and an F -critical dual can guarantee neither half-
integrality nor termination. It is worth mentioning that we could expand the graph to get one with more
non-half-integral edges by making the 2-6 edge (the “arm” of the Dancing Robot) overlap with another Dancing
Robot’s 6-2 edge. This combination would have twice as many non-half-integral edges, spread across twice as
many non-half-integral paths, as the original Dancing Robot. By combining multiple copies of the Dancing Robot
in such a manner, we can get as many non-half-integral paths as we want.

We can even alter the Dancing Robot in order to give us arbitrarily small but nonzero values in a
lexicographically-minimal optimal solution. Say we want a primal solution x such that, for some uv, x(uv) = 1

2n+1
for some n ∈ Z≥0. We add 2(n−1) new edges between 0 and the 0-1 edge, alternately without and with adjoining
4-cycles. The next example shown in Figure 5 illustrates the case n = 2.

Simply by following the algorithm through, we see that we will eventually end up with the cut

{4, 12, 0, 16, 17, 1, 5, 15, 13}
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Figure 8 Third Iteration

Edge ordering:
(1, 5)
(2, 13)
(10, 14)
(0, 3)

(17, 19)
(4, 12)
(5, 13)
(7, 12)
(16, 18)
(5, 15)
(3, 7)

(18, 19)
(8, 9)
(0, 16)
(1, 17)
(11, 14)
(0, 12)
(16, 17)
(4, 13)
(2, 6)

(10, 11)
(9, 11)
(4, 11)
(8, 11)
(13, 15)

(see Figure 7) with 2n+ 1 edges across it. Furthermore, by the conditions of the matching (x(δ(u)) = 1) and the
fact that these edges form a path in the matching, each edge across this cut must have the same value, which we
will call ζ. Since x(δ(S)) ≥ 1, the minimum cost is when (2n+ 1)ζ = 1 or ζ = 1

2n+1 .

5 Cycling example

Even when seeking a lexicographically-minimal optimal solution to PF (G, c) with half-integrality maintained
throughout, cycling can still occur in the absence of perturbation. The graph in Figures 9 and 10 (which is
easily seen to have a perfect matching), with each edge having cost 1, exhibits such behavior. At all times, an
optimal F -positively critical dual is given by a vector with the vertices having value 1

2 and the odd sets in F

having value 0. Since Algorithm 1 only retains cuts which have nonzero values in the dual (step 8), no cuts are
preserved between iterations. Thus, the blossom inequalities which were violated in the previous iteration are
once again allowed to be violated in the next iteration, leading to cycling.

In this example, in every iteration, there is nothing forcing the edge (2, 7) to have any matching value other
than 0. Therefore, to satisfy lexicographical minimality, that edge is indeed left out of the matching, forcing
the two bow-tie arrangements on each end of the edge to form their own half-integral matching as best as they
can. This is of course impossible since each contains five vertices, but the only thing the algorithm sees as going
wrong is the formation of a half-integral triangle. There are two ways to form this triangle, each satisfying the
constraint derived from the other, so the algorithm flip-flops between them forever.

This precludes us from ensuring termination of an approach using a lexicographically-minimal primal with
an unperturbed dual. More significantly, it also means that we could not even implement a heuristic version
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Figure 10 Even iterations

Edge ordering:
(2, 7)
(7, 9)
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(0, 1)
(3, 4)
(2, 4)
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which, in the event of cycling, would restart the algorithm with randomized edge orderings. Were half-integrality
to occur in tandem with cycling, as it does in Section 4, we could simply verify half-integrality at each iteration,
and, in rare cases of non-half-integrality, begin the entire algorithm again with a different edge ordering, giving
us a good average-case runtime.1 However, this graph shows that when a possibility of cycling exists, it is likely
undetectable by any means other than direct comparison between iterations. This forces us to adopt an algorithm
which simulates perturbations in the dual.

6 Handling perturbed costs through lexicographic linear goal programming

Chandrasekaran et al. [2] chose a specific perturbation of the costs, namely, adding 2−i on each edge i. In general,
perturbation in linear programming (usually for the purpose of eliminating degeneracy, as in [3]) is of the form
εi where ε is sufficiently small. In theoretical analysis, ε is simply left unspecified.

Using a technique that is widely known in the goal programming community, we show in this section how we
could obtain optimal solutions to both the primal and dual problems with perturbed costs, working with the
fact that ε is sufficiently small yet not given exactly. Our method thus avoids working directly with cost values
that exceed the representation capacity of fixed-length floating-point formats typically used by LP solvers. It
is an adaptation of a method due to Ignizio [12] for lexicographic linear goal programming which computes a
multidimensional dual solution, a critical piece in the modification of Algorithm 1. In this section, we briefly
discuss the ideas in general terms and we specialize it to Algorithm 1 in the next section.

Let A ∈ Rm×n, b ∈ Rm, and c0, . . . , ck ∈ Rn for some nonnegative integer k. Let N ⊆ {1, . . . , n}. Let
F = {1, . . . , n} \N . Define cε as

∑k
p=0 cpε

p where ε ≥ 0.
Consider the linear programming problem:

min cT
ε x (P (ε))

s.t. Ax ≥ b
xj ≥ 0 ∀ j ∈ N.

Its dual is

max bTy (D(ε))

s.t. AT
:,jy ≤ cε(j) ∀ j ∈ N

AT
:,jy = cε(j) ∀ j ∈ F
y ≥ 0.

1 We discovered the Dancing Robot after searching through over two thousand randomly-generated graphs, all of which were
rapidly and correctly solved by the use of a lexicographically-minimal primal and unperturbed dual. Furthermore, if a random
edge ordering is applied to the Dancing Robot for example, it is very likely that a perfect matching will be found without
issue.
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Readers familiar with linear goal programming (see [11] for an introduction) would recognize the above
primal-dual pair as a representation of the following lexicograhic linear goal program

lexmin [cT
0x, . . . , c

T
kx]

s.t. Ax ≥ b
xj ≥ 0 ∀ j ∈ N.

and its multidimensional dual ([12]):

lexmax bTY

s.t. AT
:,jY:,p ≤ cp(j) ∀ p ∈ {0, 1, . . . , k}, j ∈ N

AT
:,jY:,p = cp(j) ∀ p ∈ {0, 1, . . . , k}, j ∈ F

Yi,:
lex
≥ 0 ∀ i ∈ {1, . . . ,m}

Y ∈ Rm×(k+1)

The correspondence between y and Y is given by y = Y ζ where ζ =
(
1 ε · · · εk

)T, with the understanding
that ε is unspecified yet sufficiently small.

(Here, the notation Yi,:
lex
≥ 0 denotes that if s is the least index such that Yi,s 6= 0, then in fact Yi,s > 0. For

example, it is true that
(
0 1 −5

) lex
≥ 0 but it is not true that

(
0 −5 1

) lex
≥ 0. Note that when k = 1, Yi,:

lex
≥ 0

is simply a nonnegativity constraint.)
To keep this paper self-contained and maintain the flow of exposition, we will not go into the topic of linear

goal programming in any detail. Instead, we adapt the method in [12] to the current pertubation setting and give
proofs to all the necessary results, even though none of the results can be regarded as new. Readers interested in
learning more about lexicographic linear goal programming are referred to [11] and the references therein.

We claim that Algorithm 3 solves the primal-dual pair P (ε) and D(ε).
Algorithm 3: Algorithm for perturbed LP primal-dual pair

Input: P (ε) with ε > 0 sufficiently small.
Output: An optimal x′ to P (ε) and an optimal y′ to D(ε).

1 E ← ∅, J ← ∅
2 for p← 0 to k do
3 J ← N \ J
4 Set xp to be an optimal solution to

min
∑
j∈J

cp(j)x(j)

s.t.
∑
j∈J

Ai,jx(j) ≥ b(i) ∀ i /∈ E

∑
j∈J

Ai,jx(j) = b(i) ∀ i ∈ E

x(j) ≥ 0 ∀ j ∈ J
and yp to an optimal solution to its dual.

5 E ← E ∪ {i : yp(i) > 0}
6 J ← J ∪ {j : AT

:,jyp < cp(j)}
7 end
8 Form x′ ∈ Rn such that x′(j) = xk(j) for all j /∈ J and x′(j) = 0 for all j ∈ J .

9 y′ ←
k∑
p=0

εpyp

10 return x′, y′



10

The correctness of Algorithm 3 follows from Lemma 2 below. Before we give the proof, we illustrate the
algorithm with an example. For each p, let Mp denote the LP problem in step 4 of the algorithm. Consider P (ε)
with

A =
(

1 0 1
0 1 2

)
, b =

(
1
1

)
, c0 =

1
1
3

 , c1 =

4
2
0

 , c2 =

−2
−1
1

 , N = {1, 2}.

The dual problem is

max y(1) + y(2)
s.t. y(1) ≤ 1 + 4ε− 2ε2

y(2) ≤ 1 + 2ε− ε2
y(1) + 2y(2) = 3 + ε2

y(1) , y(2) ≥ 0.

Note that x0 =
(
1 1 0

)T and y0 =
(
1 1

)T are optimal solutions to P (0) and D(0), respectively, which are in
turn equivalent to M0 and its dual.

Since y0(1), y0(2) > 0 and all the constraints in D(0) are satisfied with equality at y0, the problem M1 is

min 4x(1) + 2x(2)
s.t. x(1) + x(3) = 1

x(2) + 2x(3) = 1
x(1) , x(2) ≥ 0.

The dual of M1 is

max y(1) + y(2)
s.t. y(1) ≤ 4

y(2) ≤ 2
y(1) + 2y(2) = 0.

An optimal solution to M1 is x1 =
( 1

2 0 1
2
)T. An optimal dual solution is y1 =

(
4 −2

)T. The second
constraint in the dual is not active at y1. Hence, M2 is

min −2x(1) + x(3)
s.t. x(1) + x(3) = 1

2x(3) = 1
x(1) ≥ 0.

The dual of M2 is

max y(1) + y(2)
s.t. y(1) ≤ −2

y(1) + 2y(2) = 1.

An optimal solution to M2 is
( 1

2 0 1
2
)T. An optimal dual solution is y2 =

(
−2 3

2
)T.

Setting

y′ = y0 + εy1 + ε2y2 =
(

1 + 4ε− 2ε2
1− 2ε+ 3

2ε
2

)
,

we have that y′ is a feasible solution to D(ε) and satisfies complementary slackness with x′ =
( 1

2 0 1
2
)T for

the primal-dual pair P (ε) and D(ε) for a sufficiently small ε > 0.

I Lemma 2. Let Mp denote the LP problem solved in step 4 of Algorithm 3.
1. For every p ∈ {1, . . . , k}, xp is an optimal solution to M0, . . . ,Mp−1.
2. x′ and y′ are feasible to P (ε) and D(ε), respectively, and satisfy complementary slackness.
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Proof. For each j = 1, . . . , p, Mj is obtained from Mj−1 by adding constraints to enforce complementary
slackness with yj−1. Removing x(j) can be viewed as adding the constraint x(j) = 0. It follows that xp is feasible
to Mj and satisfies complementary slackness with yj for all j ∈ {0, . . . , p− 1}.

To prove the second part, we start by noting that x′ is feasible to P (ε). Let Ep, Jp, and Jp be the sets E, J ,
and J referred to in Mp. The dual of Mp is

max bTy

s.t. AT
:,jy ≤ cp(j) ∀ j ∈ Jp

AT
:,jy = cp(j) ∀ j ∈ F
y(i) ≥ 0 ∀ i /∈ Ep.

Clearly, AT
:,jy
′ = cε(j) for all j ∈ F . Next, we show that AT

:,jy
′ ≤ cε(j) for all j ∈ N .

Suppose that j ∈ Jk. Since Jp ⊆ Jp−1 for p = 1, . . . , k, we have AT
:,jyp ≤ cp(j). Thus,

AT
:,jy
′ =

k∑
p=0

εpAT
:,jyp ≤

k∑
p=0

εpcp(j) = cε(j).

Now, suppose that j ∈ Jk. Then, there exists r < n such that AT
:,jyr < cr(j). Let si = ci(j) − AT

:,jyi for
i = 1, . . . ,m. Thus,

cε(j)−AT
:,jy
′ =

k∑
p=0

εpsp

=
r∑
p=0

εpsp +
k∑

p=r+1
εpsp

≥ εr
(
sr +

k∑
p=r+1

εp−rsp

)

= εr

(
sr + ε

k−r−1∑
q=0

εqsq+r+1

)
> 0

for ε > 0 sufficiently small.
We now show that y′ ≥ 0. Consider y′(j) for some j ∈ {1, . . . ,m}. If j /∈ Ek, then yp(j) ≥ 0 for p = 0, . . . , k,

implying that y′(j) ≥ 0. Otherwise, j ∈ Er for some r ∈ {1, . . . , k}. Choose r as small as possible. We must have
yr−1(j) > 0. Then,

y′(j) =
k∑
p=0

εpyp(j)

≥
k∑
p=r

εpyp(j)

= εr

(
yr(j)+ε

k−r−1∑
p=0

εpyp+r+1(j)
)

> 0

for ε > 0 sufficiently small.
Finally, to see that x′ and y′ satisfy complementary slackness, note that, by part 1, if x′(j) > 0, then

AT
:,jyp = cp(j) for all p ∈ {0, . . . , k}. Thus AT

:,jy
′ = cε(j). Furthermore, if Ai,:x′ < b(i) for some i, yp(i) = 0 for

all p ∈ {0, . . . , k}. This implies that y′(i) = 0. J

We now make two observations that will be useful in the next section. First, we can see (as observed by
Ignizio [12] in his setting) from the proof of Lemma 2 that the dual of Mp can be obtained directly from the dual
of Mp−1 and an associated optimal solution yp−1 by removing constraints (including the nonnegativity bound
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constraints) that are not active at yp−1. It follows that one can work exclusively with the duals of M0, . . . ,Mk if
one is only interested in obtaining an optimal solution to D(ε). Moreover, in practice, y′ is represented by the
list y0, . . . , yk without any reference to a particular value of ε. Then, to determine if y′(i) 6= 0 for some i, we
can simply check if there exists a p such that yp(i) 6= 0, since, for sufficiently small ε, y′(i) = 0 if and only if
yp(i) = 0 for all p.

7 Modified Chandrasekaran-Végh-Vempala algorithm

We now modify Algorithm 1 to circumvent the need to utilize an explicit perturbation of the edge costs. First,
we arbitrarily order the edges and increase the cost of each edge i by εi for some sufficiently small ε > 0
that will remain unspecified. By Lemma 1, we may assume that with such a perturbation, Algorithm 1 will
still return a minimum-cost perfect matching. In Algorithm 1, step 4 and step 7 involve solving PF (G, c)
and D∗F (G, c) respectively with perturbed data. We emulate perturbations in the first of these by finding a
lexicographically-minimal optimal solution. The other is handled by applying the method developed in the
previous section to D∗F (G, c). Unfortunately, the formulation D∗F (G, c) as stated is not in the form discussed in
the previous section. Therefore, we write D∗F (G, c) as the following equivalent LP:

max
∑

S∈V ∪Fx

− 1
|S|

r(S)

s.t. − r(S)−Π(S) ≤ −Γ(S) ∀ S ∈ V ∪Fx

−r(S) + Π(S) ≤ Γ(S) ∀ S ∈ V ∪Fx∑
S∈V ∪Fx:uv∈δ(S)

Π(S) = c(uv) ∀ uv ∈ supp(x)

∑
S∈V ∪Fx:uv∈δ(S)

Π(S) ≤ c(uv) ∀ uv ∈ E \ supp(x)

Π(S) ≥ 0 ∀ S ∈ Fx,

r(S) ≥ 0 ∀ S ∈ V ∪Fx

where Fx = {S ∈ F : x(δ(S)) = 1}. Note that we have introduced the redundant bound constraints r(S) ≥
0 ∀ S ∈ V ∪Fx, which are implied by the first two sets of constraints, to make all variables in the formulation
nonnegative.

With explicit perturbation of the edge costs, Γ and c will be polynomials in ε. Intuitively, we define Γi and ci
to be the coefficients of εi in Γ and c; we will define these rigorously in a moment.

The reason for writing D∗F (G, c) as above serves no purpose other than to make it plain that it can be
viewed as the dual problem D(ε) of some P (ε) with cost values given by polynomials in ε. However, in an actual
algorithm as seen below, we can work directly with D∗F (G, c) as originally written. With these changes and the
following definitions, we obtain Algorithm 4.

Given an ordering σ : E 7→ {1, . . . , |E|} on the edges of G, define the following cost function:

ci(uv) =


c(uv) i = 0
1 i > 0, σ(uv) = i

0 i > 0, σ(uv) 6= i

With this, we define the following linear program:

min
∑

S∈V ∪Fx

1
|S|

r(S) (Di
F (G, c, σ,Γ, L,M,N,Q))

s.t. r(S) + Π(S) ≥ Γi(S) ∀ S ∈ (V ∪Fx) \ L
−r(S) + Π(S) ≤ Γi(S) ∀ S ∈ (V ∪Fx) \M∑

S∈V ∪Fx:uv∈δ(S)

Π(S) = ci(uv) ∀ uv ∈ supp(x)

∑
S∈V ∪Fx:uv∈δ(S)

Π(S) ≤ ci(uv) ∀ uv /∈ supp(x) ∪N

Π(S) ≥ 0 ∀ S ∈ Fx \Q.
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Intuitively, ci and Γi correspond to the coefficients of εi in c and Γ if we were to perturb the edge costs on
the graph by εi and run Algorithm 1.

Algorithm 4: Unperturbed C-P-Matching Algorithm
Input: A graph G = (V,E) with edge costs c ∈ ZE and an ordering σ : E 7→ {1, . . . , |E|}.
Output: A binary vector x representing a minimum-cost perfect matching on G.

1 F ← ∅; Γ0, . . . ,Γ|E| ← 0
2 repeat
3 Let x be the lexicographically-minimal optimal solution to PF (G, c) with respect to σ.
4 if x is integral then
5 return x

6 L← ∅;M ← ∅;N ← ∅;Q← ∅;D0, . . . , D|E| ← 0
7 Fx ← {S ∈ F : x(δ(S)) = 1}
8 for i← 0 to |E| do
9 Obtain an optimal solution r,Π to Di

F (G, c, σ,Γ, L,M,N,Q).

10 L← L ∪ {S ∈ V ∪Fx : r(S) + Π(S) 6= Γi(S)}
11 M ←M ∪ {S ∈ V ∪Fx : −r(S) + Π(S) 6= Γi(S)}
12 N ← N ∪ {uv ∈ E :

∑
uv∈δ(S) Π(S) 6= ci(uv)}

13 Q← Q ∪ {S ∈ Fx : Π(S) 6= 0}

14 Di ← Π
15 end
16 H ′ ← {S ∈ F : ∃ i s.t. Di(S) > 0}
17 Let C be the set of odd cycles in supp(x). For each C ∈ C , let V (C) be the union of C with all sets

in H ′ intersecting it.
18 H ′′ ← {V (C) : C ∈ C }
19 F ←H ′ ∪H ′′

20 Γ← D

21 end

Steps 10 through 13 exist to remove the slack constraints from the next iterations of Di
F (G, c, σ,Γ, L,M,N,Q),

as in Algorithm 3.
A reference implementation, written in Python 3, is available at [13].

I Lemma 3. In every iteration of the Unperturbed C-P-Matching Algorithm (4), x is equal to its counterpart in
the C-P-Matching Algorithm (1) with perturbations c(i) = εi.

Proof. As mentioned in Section 3, by [16], the lexicographically-minimal unperturbed primal solution is equal
to the unique perturbed optimal primal solution for a given F , so we need to only show that F is always equal
to its counterpart.

Consider Γ as a single vector of polynomials in ε, with the coefficients of the εi terms given by Γi. Then,
by Lemma 2, y =

∑
i ε
iDi is an optimal solution to the linear program in step 8, and y(S) > 0 if and only if

max(Di) > 0. But the linear program in question is exactly that which the C-P-Matching algorithm uses to
obtain a Γ-extremal dual optimal solution. Therefore H ′, which is defined solely based on whether y(S) > 0 or
not, is equal to its counterpart in the C-P-Matching algorithm. Since H ′′ is defined exactly the same way as its
counterpart, the two are equal, so F is equal to its counterpart as well. J

Since, by Lemma 1, neither the correctness nor the complexity of Algorithm 1 are affected by changing from
the perturbation c(i) = 2−i to the perturbation c(i) = εi, we can rephrase this to give

I Theorem 4. The Unperturbed C-P-Matching Algorithm gives a minimum-cost perfect matching.

The lemma also has the following

I Corollary 5. The Unperturbed C-P-Matching algorithm requires solving O(mn logn) linear programming
problems in the worst case.
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Proof. According to [2, Theorem 1], the C-P-Matching Algorithm takes at most O(n logn) iterations. The
Unperturbed C-P-Matching Algorithm has the same number of iterations, but each iteration utilizes 2(m+ 1)
linear programming problems, which is O(m). Therefore, the Unperturbed C-P-Matching Algorithm requires
solving O(m)×O(n logn) = O(mn logn) linear programming problems in total. J

8 Final remarks

We feel that there are combinatorial optimization problems for which there exist solution methods that assume
the existence of a unique optimal solution in their analyses. In such cases, the method of solving a perturbed
problem via lexicographic linear goal programming described in Section 6 would be applicable. Unfortunately, in
our literature search and conversations with colleagues, we have not yet encountered an actual example. We
hope that knowledgeable readers can inform us of such examples.

We do not yet know if our algorithm, when properly implemented and optimized, can in practice be made
competitive with combinatorial methods such as Edmonds’ blossom algorithm or with the original method
implemented with an arbitrary-precision LP solver. In terms of theoretical complexity, our algorithm, which
solves O(mn logn) linear programs, each of which requires the use of a theoretically polynomial-time solver, is
significantly slower in the worst case than the best known asymptotic running time for an implementation of
Edmonds’ blossom algorithm which is O(n(m+ logn)) according to [14].

We encountered a number of interesting phenomena regarding the subroutine for finding the lexicographically-
minimal primal optimal solution. Although, as written, it requires solving a fixed number of linear programs
(|E|+ 1), we noticed in empirical testing that it often gave this solution far more quickly than that, with the
last few linear programs all giving the same answer. We did not investigate this any further, but hypothesize
that shortcuts exist to decrease the runtime by a factor of 1

4 or more. An immediate future research direction
is to implement our algorithm using a highly efficient lexicographic linear goal programming solver that also
takes advantage of the similarities of the linear programming problems that need to be solved and evaluate its
empirical performance in comparison with existing algorithms for minimum-cost perfect matching.
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A Appendix

The following sequence of figures illustrate how the Dancing Robot using the same ordering as in Section 4
cycles every six iterations and gives rise to non-integral primal solutions every three iterations. The arrows in
the captions indicate the order of the cycling sequence.

Edge ordering:
(1, 5), (2, 13), (10, 14), (0, 3),(4, 12), (5, 13), (7, 12), (5, 15), (3, 7), (8, 9),
(0, 1), (11, 14), (0, 12), (4, 13), (2, 6), (10, 11), (9, 11), (4, 11), (8, 11), (13, 15)
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Figure A.1 First Iteration ⇒
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Figure A.2 Second Iteration ⇒
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Figure A.3 Third Iteration ⇓
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Figure A.6 Sixth Iteration ⇑
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Figure A.4 Fourth Iteration ⇐
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