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Abstract
We study the convergence rate of Bregman gradient methods for convex optimization in the space of measures on a
d-dimensional manifold. Under basic regularity assumptions, we show that the suboptimality gap at iteration k is in
O(log(k)k−1) for multiplicative updates, while it is in O(k−q/(d+q)) for additive updates for some q ∈ {1, 2, 4} determined
by the structure of the objective function. Our flexible proof strategy, based on approximation arguments, allows us to
painlessly cover all Bregman Proximal Gradient Methods (PGM) and their acceleration (APGM) under various
geometries such as the hyperbolic entropy and Lp divergences. We also prove the tightness of our analysis with matching
lower bounds and confirm the theoretical results with numerical experiments on low dimensional problems. Note that all
these optimization methods must additionally pay the computational cost of discretization, which can be exponential in d.
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1 Introduction

Convex optimization in the space of measures is a theoretical framework that leads to fruitful point of views
on a large variety of problems, ranging from sparse deconvolution [12] and two-layer neural networks [9] to
global optimization [31] and many more [10]. Various algorithms have been proposed to solve such problems
including moments methods [31], conditional gradient [12, 21], (non-convex) particle gradient flows [16] and
noisy versions [33, 37].

In this paper, we consider perhaps the simplest methods: gradient descent and its extensions that handle
non-smooth regularizers and non-Euclidean geometries, the Bregman Proximal Gradient Method (PGM) (an
extension of mirror descent [34] that handles composite objectives) and its acceleration (APGM) [40]. Our aim is
to establish well-posedness and convergence rates for these methods when minimizing composite functions over
the space of measures M(Θ) over a d-dimensional manifold Θ, of the form

F (µ) := R

(∫
Φdµ

)
+H(µ) (1)

where Φ is continuous and Hilbert space-valued, R convex and smooth and H is convex and “simple” (see precise
assumptions in Section 3.1). For such problems, minimizers are typically at an infinite (Bregman) distance from
the initialization, and thus all the standard convergence bounds are inapplicable.

Our contributions are the following:
We recall and adapt (A)PGM in Section 3, taking care of the subtleties that appear in our context (definition
of the iterates and lack of strong convexity of the divergence);
We prove in Section 4 upper-bounds on the convergence rate for (A)PGM under various structural assumptions,
summarized in Table 2. These rates depend on the choice of the Bregman divergence and on the precise
structure of the objective function;
Tight lower bounds of two kinds are proved in Section 5: proof technique-dependent lower bounds, and
algorithm-dependent lower bounds (the latter are stronger but do not cover all cases);
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2 Optimization in the Space of Measures

Numerical experiments on synthetic toy problems in Section 6 often show an excellent agreement between
the theoretical rates and the ones observed in practice. Even for cases with an apparent mismatch, a closer
look at the structure of the problem shows that the theory still shades light on the observed rates.

Our motivation for studying this problem is threefold. First, our results make a case for APGM with the
hyperbolic geometry instead of FISTA to solve convex problems in the space of measures, as they show that the
former enjoys a faster convergence rate. Second, we believe that a precise understanding of (A)PGM in this
context is useful to develop and analyze more complex methods, such as the particle-based (a.k.a. moving grid)
approaches mentioned above1. Third, this setting offers a rich test case to deepen our understanding of Bregman
gradient methods in Banach spaces, and the behavior of optimization algorithms when all minimizers are at an
infinite distance from the initialization, beyond the well-explored Hilbert space setting.

Related work

The comparison between additive updates (L2 geometry) and multiplicative updates (entropy geometry) is
well-known in finite dimensional spaces [30]. For instance, for convex optimization in the n-dimensional simplex,
the two methods typically converge at the same rate but the “constant” factor is polynomial in n for additive
updates while it is logarithmic in n for multiplicative updates, see [13, §4]. We obtain in this paper an infinite
dimensional (n = ∞) version of this separation; but where the distinction is directly in the rates rather than in
the constants.

Analysis of convex optimization in infinite dimensional (Banach) spaces is a classical subject [6, 7]. Here,
we study a concrete class of problems defined on the space of measures which exhibit specific features. This
problem-specific approach for infinite dimensional problems has proved fruitful for the analysis of gradient
methods for least-squares (e.g. [22, 43] and references therein), for partly smooth problems [32] and for the
Iterative Soft Thresholding Algorithm (ISTA) in Hilbert spaces [11, 24].

The latter is close to our subject since ISTA is in fact an instance of PGM with the L2-divergence – and
FISTA [8] is analogous to APGM with the L2-divergence. These prior works perform the analysis in a Hilbert
space, while we work in the space of measures or in L1, which are non-reflexive Banach space. This is also the
context of [15] who, for a modified version of FISTA, obtained in particular the convergence rate of Table 2
when p = 2 and q = 1, and also discuss discretization. Our analysis allows to compare various algorithms and
shows that FISTA is always slower than APGM with the hyperbolic entropy geometry [25] when the solution is
truly sparse, see the rates in Table 2. This is clearly observed in numerical experiments and suggests that the
latter forms a stronger baseline for our class of problems.

To prove our upper bounds, we use the abstract proof strategy proposed by [28], recalled in Section 2. In
that paper, the authors study different classes of problems (total variation denoising of image and earth mover’s
distance) under Hilbertian geometry.

Notation

The domain of a function F : V → R ∪ {+∞} is domF = {x ∈ V ; F (x) < +∞}. Throughout, Θ is a compact
d-dimensional manifold, M(Θ) (resp. M+(Θ)) is the set of finite signed (resp. nonnegative) Borel measures on Θ
and P(Θ) is the set of Borel probability measures. For µ ∈ M(Θ), ∥µ∥ is its total variation norm. For a Hilbert
space F , Cp(Θ; F) is the set of p-times continuously differentiable functions from Θ to F . Lip(f) is the Lipschitz
constant of a function f . For τ ∈ P(Θ) and p ≥ 1, Lp(τ) is the space of (equivalence classes of) measurable
functions f : Θ → R such that

∫
Θ |f(θ)|pdτ(θ) < +∞ or, for p = +∞, such that |f | is τ -almost everywhere

bounded by some K > 0. The asymptotic notation a(k) ≲ b(k) means that there exists c > 0 independent of k
such that a(k) ≤ c · b(k), and a(k) ≍ b(k) means [a ≲ b and b ≲ a].

2 Strategy to derive upper bounds on convergence rates

This section introduces the strategy, adapted from [28], that we adopt to derive upper bounds on the convergence
rates.

1 In fact, the idea of writing this paper came from a technical step in a proof of [16], which studies particle-based methods.
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Figure 1 Shape of ψ defined in Eq. (3) in our situation of interest where D(xk, x0) explodes for any
minimizing sequence (xk)k∈N (Proposition 1). When an optimization method satisfies Eq. (2) for some
sequence (αk)k∈N then ψ(αk) bounds its convergence rate in objective values.

Let F be a lower bounded convex function defined on a real vector space. Suppose that an iterative method
designed to minimize F initialized at x0 ∈ domF generates a sequence x1, x2, · · · ∈ domF that satisfies

F (xk) − F (x) ≤ αk ·D(x, x0), ∀ x ∈ domF, ∀ k ≥ 1, (2)

where (αk)k∈N∗ is a positive sequence converging to 0 and D is a divergence, i.e. D(x, x0) ∈ [0,+∞] and
D(x0, x0) = 0. Most first order methods enjoy guarantees of this form. For instance, PGM and APGM enjoy
such guarantees with respectively αk ≲ k−1 and αk ≲ k−2 under suitable assumptions, see Section 3.3.

While Eq. (2) is sometimes the endpoint of the analysis in the optimization literature, this is our starting
point: we are interested in cases where for any minimizer x∗ of F , the quantity D(x∗, x0) is infinite, which makes
the bound of Eq. (2) inapplicable. Even if there exists a quasi-minimizer x with a small suboptimality gap and
satisfying D(x, x0) < +∞, choosing a fixed x independent of k in Eq. (2) leads to a poor upper bound which
often does not match the observed practical behavior. Instead, we should exploit the flexibility offered by the
guarantee of Eq. (2) and choose a different reference point at each time step2. This means that we reformulate
the guarantee in the equivalent form:

F (xk) − inf F ≤ ψ(αk) where ψ(α) := inf
x

{
F (x) − inf F + αD(x, x0)

}
. (3)

Studying ψ is particularly fruitful to understand optimization algorithms satisfying Eq. (2). In particular, its
behavior at 0 determines the asymptotic convergence rate. This function can be interpreted as the value at x0
of the (Bregman) Moreau envelope [29] of (F − inf F ) with regularization parameter α, and it intervenes in
many area of applied mathematics. For instance, when D(x, x0) is a squared Hilbertian norm, ψ has a variety
of behaviors which characterize the performance of kernel ridge regression in machine learning (see e.g. [5,
Chap. 7.5]). Before we head in a more concrete setting, let us gather a few relevant properties of the function ψ
that hold in full generality.

▶ Proposition 1. Assume that F (x0) < +∞ and D(·, x0) ≥ 0 with equality at x0. Then the function ψ is concave
on [0,+∞[ and satisfies 0 = ψ(0) ≤ ψ(α) ≤ F (x0) − inf F . Moreover,
i. ψ is right-continuous at 0 if and only if there exists a minimizing sequence (xk)k∈N such that F (xk) → inf F (x)

and D(xk, x0) < +∞, ∀ k ∈ N ;
ii. ψ′(0) := limα→0+ ψ(α)/α is finite if and only if there exists a minimizing sequence (xk)k∈N such that

F (xk) → inf F (x) and D(xk, x0) is bounded.

Proof. The function ψ is concave as the pointwise infimum of affine functions. The lower bound is immediate and
the upper bound is obtained by taking x0 as a candidate in the infimum. Let us prove ii (the proof of i follows a
similar scheme and is simpler). By concavity, the limit defining ψ′(0) always exists and belongs to ]0,+∞]. If a
sequence (xk) exists as in the statement, then for any α > 0, pick xk such that F (xk) − inf F ≤ α2 and then
ψ(α) ≤ αD(xk, x0) + α2 so ψ(α)/α ≤ D(xk, x0) + α. Since the upper bound is uniformly bounded as α → 0 it
follows that ψ′(0) is finite. Conversely, if ψ′(0) is finite, take a decreasing sequence (αk) that converges to 0
and let (xk) be a sequence of quasi-minimizers for Eq. (3) satisfying F (xk) − inf F + αkD(xk, x0) ≤ ψ(αk) + α2

k.
By dividing by αk, we see that (F (xk) − inf F )/αk + D(xk, x0) is bounded as k → ∞ which implies that
F (xk) → inf F and D(xk, x0) is bounded. ◀

2 In Section 4, these reference points will be constructed as mollifications of the optimal measure µ∗.



4 Optimization in the Space of Measures

Figure 1 illustrates the general shape of the function ψ. Observe that if ψ′(0) < +∞ then the bound of
Eq. (3) is F (xk) − inf F ≤ ψ′(0)αk + o(αk) and thus the convergence rate given by Eq. (2) is not modified
(only the constant changes). However, Proposition 1 shows that when any minimizing sequence (xk) satisfies
D(xk, x0) → +∞, then ψ′(0) = +∞ and thus the convergence rate is modifed. This is the situation we are
interested in this paper, in the context of optimization in the space of measures.

3 Gradient methods for optimization in the space of measures

In the rest of this paper, we apply the general method of Section 2 to a class of optimization problems in the
space of measures where it leads to a zoo of – often tight – convergence rates.

3.1 Objective function
Let Θ be a compact Riemannian manifold without boundary, with distance dist and with a reference probability
measure τ ∈ P(Θ) that is proportional to the volume measure. We consider an objective function on the space
of measures F : M(Θ) → R ∪ {+∞} of the form

F (µ) := G(µ) +H(µ) where G(µ) := R

(∫
Φdµ

)
.

Typically, G is a data-fitting term and H a regularizer. We make the following assumptions, where ιC is the
convex indicator of a convex set C and λ ≥ 0 a regularization parameter:
(A1). Φ ∈ C0(Θ; F) where F is a Hilbert space, R : F → R is convex and differentiable with a Lipschitz gradient

∇R, and H is a sum of functions from the following list: ιP(Θ), ιM+(Θ), λ∥µ∥ and ι{µ ; λ∥µ∥≤1}.
One specific property of H that we use in our proof is that it should be non-decreasing under convolutions by a
probability kernel, but we prefer to work with these specific instances rather than giving abstract conditions. We
finally denote by F : L1(τ) → R ∪ {+∞} the function defined, for f ∈ L1(τ), by

F (f) := F (fτ),

and similarly H(f) := H(fτ) and G(f) := G(fτ) so that F = G+H. These “bar” notations convey the idea
that F ,G,H are the lower-semicontinuous (l.s.c.) extensions of F,G,H for the weak* topology induced by C0(Θ)
on M(Θ).

Here are examples of problems that fall under this setting:
(Sparse deconvolution). The goal is, given a signal y∗ ∈ L2(τ), to find a sparse measure µ such that
the convolution of µ with a filter ϕ ∈ C(Θ) approximately recovers y∗. Here the domain is typically the
d-dimensional torus Θ = Td endowed with the Lebesgue measure τ and the objective is [14, 20]

F (µ) :=
∫

Θ

∣∣∣ ∫
Θ
ϕ(θ1 − θ2)dµ(θ2) − y∗(θ1)

∣∣∣2
dτ(θ2) + λ∥µ∥.

Adding the nonnegativity constraint ιM+(Θ) is also relevant in certain applications.
(Two-layer relu neural networks). The goal is, given n observations (xi, yi) ∈ Rd × R, to find a regressor
written as a linear combination of simple “ridge” functions. Consider a loss ℓ : R2 → R convex and smooth in
its second argument, let ϕ(s) = (s)+ and let

F (µ) := 1
n

n∑
i=1

ℓ
(
yi,

∫
Θ
ϕ([xi; 1]⊤θ)dµ(θ)

)
+H(µ).

Key differences with the previous setting are that Θ = Sd is the sphere, with d potentially large, and that
the object that is truly sought after is the regressor x 7→

∫
ϕ([x; 1]⊤θ)dµ(θ) rather than the measure µ.

Typical choices for ℓ are the logistic loss ℓ(y, z) = log(1 + exp(−yz)) when yi ∈ {−1, 1} or the square loss
ℓ(y, z) = 1

2 |y − z|2. The signed setting with regularization H(µ) = λ∥µ∥ is the most common one [4, 9] but
the regularization ιP(Θ) also appears in the context of max-margin problems [17].
The following smoothness lemma will be useful to analyze optimization algorithms and is analogous to the

usual “Lipschitz gradient” property in convex optimization. Since the dual of (M(Θ), ∥ · ∥) is a bit exotic, we
avoid using the notion of gradient at all.
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▶ Lemma 2 (Smoothness). Under Assumption (A1), if Φ ∈ Cp(Θ,F) for p ∈ N, then the differential of G at
µ ∈ M(Θ) can be represented by the function G′[µ] ∈ Cp(Θ,R) defined by

G′[µ](θ) =
〈

∇R
( ∫

Φdµ
)
,Φ(θ)

〉
F

in the sense that it holds G(µ + ν) − G(µ) =
∫
G′[µ](θ)dν(θ) + o(∥µ − ν∥). Moreover, µ 7→ G′[µ] is Lipschitz

continuous as a function from M(Θ) to Cp(Θ,R). The following smoothness inequality holds with Lip(G′) ≤
∥Φ∥2

∞ · Lip(∇R) and for all µ, ν ∈ M(Θ),

0 ≤ G(ν) −G(µ) −
∫
G′[µ]d[ν − µ] ≤ 1

2 Lip(G′)∥ν − µ∥2.

Those results hold true when replacing (M(Θ), G(µ), G′[µ]) by (L1(τ), G(f), G′[f ] := G′[fτ ]).

Proof. For the first part, the differentiability of R implies that

G(µ+ ν) −G(µ) =
〈

∇R
( ∫

Φdµ
)
,

∫
Φdν

〉
F

+ o
(∥∥∥ ∫

Φdν
∥∥∥

F

)
=

∫
G′[µ]dν + o(∥Φ∥∞∥ν∥).

For the regularity of µ 7→ G′[µ], we have for µ, ν ∈ M(Θ),

∥G′[µ] −G′[ν]∥Cp ≤ ∥Φ∥Cp(Θ,F) · Lip(∇R) · ∥Φ∥∞ · ∥µ− ν∥.

The smoothness inequality can be shown by bounding a 1-dimensional integral as in the Euclidean case [36,
Thm. 2.1.5]. Finally, L1(τ) ∋ f 7→ fτ ∈ M(Θ) is an isometry, so those results hold mutandis mutatis in
L1(τ). ◀

3.2 Bregman divergences
Let us consider η : R → [0,∞] a differentiable function that we will refer to as the distance-generating function.
For f ∈ L1(τ) we write η(f) := η ◦ f and we define

η(f) :=
∫

Θ
η(f(θ)) dτ(θ) =

∫
η(f)dτ.

Let Dη (resp. Dη) be the Bregman divergence associated to η (resp. η), given for f, g ∈ L1(τ) by

Dη(a, b) := η(a) − η(b) − η′(b)
(
a− b

)
and Dη(f, g) :=

∫
Θ
Dη(f(θ), g(θ))dτ(θ).

We consider the following assumptions on the distance-generating function η:
(A2). η : R → [0,∞] is strictly convex, l.s.c., continuously differentiable in int(dom η), such that η′(int(dom η)) =

R and for any c > 0 it holds η(cx) ≍ η(x) as x → ∞. Moreover, either:
(A2)+. dom η = [0,+∞[ and η(1) = η′(1) = 0, or
(A2)±. dom η = R, η is even and η(0) = η′(0) = 0.

Specifying the values of η and η′ at a point in int(dom η) is just for convenience and is not restrictive since
Dη is not affected by affine perturbations of η. Also, the assumption η(cx) ≍ η(x) is only needed to simplify
the statement of the results. Under assumption (A2)+, we have that η′(0) := limt→0+ η(t)/t = −∞ which
automatically enforces an nonnegativity constraint in the methods in the next section.

Here are examples of distance-generating functions that fall under these assumptions:
(Power functions ηp). Defined on R for p > 1 by ηp(s) := |s|p

p(p−1) , satisfy (A2)±;
(Shannon entropy ηent). Defined on R+ by ηent(s) := s log(s) − s+ 1, satisfies (A2)+;
(Hyperbolic entropy ηhyp). Defined on R by ηhyp := s arcsinh(s/β)−

√
s2 + β2 +β with β > 0, satisfies (A2)±

(introduced by [25]).
When η is smooth, it holds Dη(a, b) = η′′(b) · ∥a − b∥2/2 + o(∥a − b∥2) so locally, Dη is equivalent to a

squared Riemannian metric on the real axis given by η′′. For the examples listed above, it holds η′′
p (s) = |s|p−2,

η′′
ent(s) = s−1 and η′′

hyp(s) = (s2 + β2)−1/2, see Figure 2 for an illustration. The hyperbolic entropy ηhyp can be
interpreted as a “signed” version of ηent (see Proposition 7 for a precise version of this remark).

The next lemma states the strong convexity of these divergences with respect to the L1(τ) norm, which is
needed in the next section. It is a generalization of Pinsker inequality, recovered when K = 1 and with ηent.
Notice that when p < 2, the bound worsens as the norm increases.
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Figure 2 Divergence-generating functions (plain) and their second-order derivatives (dashed).

▶ Lemma 3 (Strong convexity of Bregman divergences). Assume that f, g have L1(τ)-norm bounded by K. Then
for p ∈ ]1, 2],

Dηp
(f, g) ≥ Kp−2

2 ∥f − g∥2
L1(τ).

The inequality also holds for ηent with p = 1 (assuming f, g ≥ 0). Finally for ηhyp, it holds

Dηhyp(f, g) ≥ (K + β)−1

2 ∥f − g∥2
L1(τ).

Proof. For β > 0 and p ∈ [1, 2], consider the function ηp,β : R → R+ satisfying ηp,β(0) = η′
p,β(0) = 0 and

η′′
p,β(s) = |s2 + β2|

p−2
2 . This function is smooth and, for p > 1, converges monotonously from below to ηp as

β → 0 (remember that ηp satisfies ηp(0) = η′
p(0) = 0 and η′′

p (s) = |s|p−2 ≥ η′′
p,β(s)). Our first step is to prove a

Pinsker-like inequality for the Bregman divergence Dηp,β
. For f, g ∈ L1(τ) such that ∥g∥L1(τ) = 1, it holds by

the Cauchy–Schwarz inequality

1 =
( ∫

|g|dτ
)2

=
( ∫

|g||f2 + β2|
p−2

4 |f2 + β2|
2−p

4 dτ
)2

≤
( ∫

|g|2|f2 + β2|
p−2

2 dτ
)( ∫

|f2 + β2|
2−p

2 dτ
)
.

But since 2 − p ≥ 0, we have |f2 + β2|
2−p

2 ≤ (|f | + β)2−p. Thanks to Jensen’s inequality for concave functions
(we use 2 − p ≤ 1), this leads to∫

|f2 + β2|
2−p

2 dτ ≤
∫

(|f | + β)2−pdτ ≤ (∥f∥L1 + β)2−p.

Combining these inequalities and by homogeneity, it follows that if ∥f∥L1(τ) ≤ K, then ∀ g ∈ L1(τ) it holds∫
|g|2|f2 + β2|

p−2
2 dτ ≥ (K + β)p−2∥g∥2

L1(τ).

This equation shows that f 7→ ηp,β(f) :=
∫
ηp,β(f)dτ is (K + β)p−2-strongly convex for the L1(τ)-norm over the

L1(τ)-ball of radius K, see e.g. [44, Thm. 3]. This means that for all f, g ∈ L1(τ) of norm smaller than K, it
holds

ληp,β(f) + (1 − λ)ηp,β(g) ≥ ηp,β(λf + (1 − λ)g) + (K + β)p−2

2 λ(1 − λ)∥f − g∥2
L1(τ), ∀ λ ∈ [0, 1].

By the monotone convergence theorem, we have when p > 1 that limβ→0 ηp,β(f) → ηp(f) and so strong convexity
also holds for ηp, taking the pointwise limit of the strong convexity inequality as β → 0.

It follows [44, Thm. 1] that, over this ball of functions, the Bregman divergence Dηp,β
(for p ∈ ]1, 2] and

β > 0 or for p = 1 and β > 0) satisfies the Pinsker-like inequality

Dηp,β
(f, g) ≥ (K + β)p−2

2 ∥f − g∥L1(τ). (4)

Specializing to p = 1 and β > 0 proves the Lemma for ηhyp and specializing to p > 1 and β = 0 proves the
Lemma for ηp with p ∈ ]1, 2]. It only remains to prove the case ηent, i.e. the classical Pinsker inequality. Note
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that here we cannot take the limit β → 0 because η1,β does not converge to ηent (in fact it diverges, except at
s = 0). One way to recover this case in an analogous way, is to define instead η1,β : R+ → R+ as the function
satisfying η1,β(1) = η′

1,β(1) = 0 and η′′
1,β(s) = |s2 +β2|−1/2. This function is smooth and converges monotonously

to ηent as β → 0 and η1,β is (K + β)−1 strongly convex. Thus we recover Pinsker’s inequality with an analogous
argument in the limit β → 0. ◀

3.3 Gradient methods and their classical guarantees
We now detail two classical algorithms that enjoy guarantees of the form Eq. (2) for a large class of composite
optimization problems. Algorithm 1 (PGM) is closely related to mirror descent [34] and is discussed in [2, 7].
Algorithm 2 (APGM) is taken from [40] who presents it as a generalization of [2] itself an extension of Nesterov’s
second method [35]. For the sake of concreteness, we instantiate these algorithms in the context of optimization
in the space of measures, where small adaptations have to be made.

Algorithm 1: (Bregman) Proximal Gradient Method (PGM)
Initialization: f0 ∈ domH, step-size s > 0
for k=0,1,. . . do

fk+1 = arg minf

{
G(fk) +

∫
G′[fk](f − fk)dτ +H(f) + 1

sDη(f, fk)
}

end
Output: fk+1

Algorithm 2: Accelerated (Bregman) Proximal Gradient Method (APGM)
Initialization: f0 = h0 ∈ domH, γ0 = 1, step-size s > 0
for k=0,1,. . . do

gk = (1 − γk)fk + γkhk

hk+1 = arg minf

{
G(gk) + ⟨∇G(gk), f − gk⟩ +H(f) + γk

s Dη(f, hk)
}

fk+1 = (1 − γk)fk + γkhk+1

γk+1 = 1
2
(√

γ4
k + 4γ2

k − γ2
k

)
end
Output: fk+1

In the next proposition, we verify that the updates are well-defined under suitable assumptions. Table 1 lists
some update formulas which are directly implementable, after discretization.

▶ Proposition 4 (Well-defined updates). Assume (A1) and (A2). If η′(hk) ∈ L∞(τ) and gk ∈ L1(τ), then there
exists a unique solution hk+1 ∈ L1(τ) to the optimization problem

min
f∈L1(τ)

∫
G′[gk]fdτ +H(f) + 1

s

( ∫
η(f)dτ −

∫
η′(hk)fdτ

)
which moreover satisfies η′(hk+1) ∈ L∞(τ). It is characterized by the fact that there exists ϕ ∈ ∂H(hk+1) ⊂ L∞(τ)
such that

G′[gk] + 1
s

(η′(hk+1) − η′(hk)) + ϕ = 0. (5)

Proof. Let Jk be the function to minimize. Thanks to our assumptions that η′(int(dom η)) = R and since
H is lower-bounded, by [39, Cor. 2B], the sublevels of Jk are compact with respect to the weak topology
(induced on L1(τ) by L∞(τ)). Moreover, Jk is convex and l.s.c. for the same topology; in particular because
G′[gk], η′(hk) ∈ L∞(τ) and for the term

∫
η(f)dτ , this follows from [39, Cor. 2A]. Thus by the direct method

of the calculus of variations, there exists a minimizer fk+1 ∈ L1(τ). Since η is strictly convex, so is Jk and
this minimizer is unique. The condition of Eq. (5) is always a sufficient optimality condition since, by the
subdifferential inclusion rule, it implies that 0 ∈ ∂Jk(f). It thus remain to show that it is also necessary, in
which case the property η′(hk+1) ∈ L∞(τ) immediately follows.
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Table 1 Update step hk+1 for APGM, and PGM (when fk = gk = hk) where sfthκ(a) = sign(a)(|a|−
κa) is a soft-thresholding. In (ii), κ ∈ R is the unique number such that the update satisfies the constraint.
In (iv), κ ≥ 0 is the smallest number such that the update satisfies the constraint (see [18] for efficient
algorithms to compute κ in practice).

H

η Assumption (A2)± (dom η = R) Assumption (A2)+ (dom η = R+)

(i) ιM+(Θ) + λ∥ · ∥ [η′]−1(
η′(hk) − sG′[gk] − sλ

)
+

[η′]−1(
η′(hk) − sG′[gk] − sλ

)
(ii) ιP(Θ) [η′]−1(

η′(hk) − sG′[gk] − κ
)

+
[η′]−1(

η′(hk) − sG′[gk] − κ
)

(iii) λ∥ · ∥ [η′]−1
(

sfthλs

(
η′(hk) − sG′[gk]

))
[η′]−1(

η′(hk) − sG′[gk] − sλ
)

(iv) ι{µ ;∥µ∥≤K} [η′]−1
(

sfthκ

(
η′(hk) − sG′[gk]

))
[η′]−1(

η′(hk) − sG′[gk] − κ
)

This is done on a case by case basis for the functions H admissible under Assumption (A1). Consider for
instance the nonnegativity constraint H = ιM+(Θ) and η that satisfies Assumption (A2)±. Then with the update
hk+1 given in Table 1 (take λ = 0), it holds

ϕ := 1
s
η′(hk) −G′[gk] − 1

s
η′(hk+1) = min{0, 1

s
η′(hk) −G′[gk]}.

Clearly ϕ ∈ L∞(τ), ϕ ≤ 0 and
∫
ϕhk+1dτ = 0 and thus ϕ ∈ ∂H(hk+1), which shows that hk+1 is a minimizer

and satisfies Eq. (5). The other cases for H and η that are admissible under (A1) and (A2) (such as those
listed in Table 1) can be treated similarly and follow computations which are standard in the finite dimensional
setting. ◀

Let us now recall the guarantees for these methods. We stress that, as discussed in Section 2, these guarantees
do not necessarily lead to convergence rates.

▶ Proposition 5. Assume (A1) and (A2) and that η satisfies the conclusion of Lemma 3 for some p ∈ [1, 2],
β ≥ 0. Consider an initialization f0 ∈ domH such that η′(f0) ∈ L∞(τ) and, for some K ≥ ∥f0∥L1(τ), a step-size
s ≤ (K + β)p−2(∥Φ∥2

∞ Lip(∇R))−1.
i. Let (fk)k∈N be generated by Algorithm 1 (PGM). If supk ∥fk∥L1(τ) ≤ K, then Eq. (2) holds with αk = 1/(sk),

i.e.

F (fk) − F (f) ≤ 1
sk
Dη(f, f0), ∀ f ∈ L1(τ),∀ k ≥ 1.

ii. Let (fk, gk, hk)k∈N be generated by Algorithm 2 (APGM). If supk ∥hk∥L1(τ) ≤ K, then Eq. (2) holds for fk

with αk = 4/((k + 1)2s), i.e.

F (fk) − F (f) ≤ 4
s(k + 1)2Dη(f, f0), ∀ f ∈ L1(τ),∀ k ≥ 1.

Moreover, it holds 0 < γk ≤ 1 and γk ≤ 2/(k + 2) ∀ k ≥ 0.

Proof. By Proposition 4, the updates are well-defined. The proof of [40, Thm. 1] goes through, in particular
thanks to Lemma 2 (smoothness) and since Dη/(K + β)p−2 is 1-strongly convex with respect to ∥ · ∥L1(τ)
whenever this property is needed in the proof. A particularly simple exposition of the proof for APGM can be
found in [19, Thm. 4.24]. ◀

▶ Remark 6. A difficulty in Proposition 5 is that when p < 2, one needs to assume a priori bounds on the
L1-norm of certain iterates to obtain convergence guarantees, because the metric induced by the divergence Dη

becomes weaker as the L1-norm increases. Since Algorithm 1 (PGM) is a descent method, ∥fk∥L1 is bounded,
uniformly in k, as soon as the objective is coercive for the L1-norm. But for Algorithm 2 (APGM), even if variants
exist where (F (fk))k is monotonous [19], this property does not seem to be sufficient to control ∥hk∥L1 , even
for coercive objectives. Of course, uniform bounds are always trivially satisfied when H includes the constraint
ι∥µ∥≤K or ιP(Θ).
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3.4 Reparameterized gradient descent as a Bregman descent
In this paragraph, we recall a link between Bregman gradient descent, a.k.a. mirror descent (an instance of
Algorithm 1) and L2 gradient descent dynamics on certain reparameterized objectives. The purpose is to show
that the convergence rates proved in Section 4 with ηent and ηhyp are also relevant to understand L2 gradient
descent in certain contexts. While these remarks are well-known [1, 3, 41], we find it instructive to state them
clearly in our context. In order to reduce the discussion to its simplest setting, we consider the continuous time
dynamics in the unregularized setting, and we assume that they are well-defined.

The optimality conditions of the update of Algorithm 1 (see Proposition 4) can be written as η′(fk+1)−η′(fk) =
−sF ′[fk]. As the step-size s vanishes, this leads to a continuous trajectory (ft)t≥0, which we refer to as the
η-mirror flow, that solves

d
dtη

′(ft) = −F ′[ft] ⇐⇒ d
dtft = −[η′′(ft)]−1F ′[ft]. (6)

▶ Proposition 7 (Reparameterized mirror flows as gradient flows).
i. (Square parameterization). Let (ft)t≥0 be the L2(τ) gradient flow of F̂ : f 7→ F (f2) initialized such that

log(f0) ∈ L∞(τ). Then ht := f2
t is the ηent-mirror flow of 4F .

ii. (Difference of squares parameterization). Let (ft, gt)t≥0 be the (L2(τ))2 gradient flow of F̂ : (f, g) 7→ F (f2−g2)
initialized such that log(f0g0) ∈ L∞(τ). Then ht := f2

t − g2
t is the ηhyp-mirror flow of 4F with parameter

β = 2f0g0 (here β is function instead of a scalar).

We can make the following remarks:
Combining (i) and (ii), we find that if (h+

t , h
−
t )t≥0 follows a ηent-mirror flow for (h+, h−) 7→ F (h+ −h−) then

h+
t − h−

t is a ηhyp-mirror flow for F . This confirms the interpretation of ηhyp as a “signed” version of the
entropy (see also [25, Thm. 23]).
These exact equivalences are lost in discrete time, with an error term that scales as the squared step-size. It
is thus difficult to convert the most efficient guarantees for (Bregman) PGM into guarantees with the same
convergence rate for gradient descent.

Proof.

i. The L2(τ) gradient flow of F̂ satisfies d
dtft = −F̂ ′[f2

t ] = −2fF ′[f2
t ]. Thus the function ht := f2

t evolves
according to

d
dtht = −2ft

d
dtft = −4f2

t F
′[f2

t ] = −4htF
′[ht]

which is precisely the ηent-mirror flow of 4F since η′′
ent(s) = s−1 for s > 0.

ii. The (L2(τ))2 gradient flow of F̂ satisfies d
dtft = −2ftF

′[f2
t − g2

t ] and d
dtgt = 2gtF

′[f2
t − g2

t ]. As a consequence,
we have for ht := f2

t − g2
t and h̃t := f2

t + g2
t that d

dtht = −4h̃tF
′[ht]. To conclude, it remains to show that

h̃t = [η′′
hyp(ht)]−1 = (h2

t + β2)1/2 for some β > 0. To prove this, observe that

d
dt (h̃

2
t − h2

t ) = d
dt (4f

2
t g

2
t ) = 8f ′

tftg
2
t + 8g′

tgtf
2
t = 0.

Hence h̃2
t − h2

t = h̃2
0 − h2

0 = 4f2
0 g

2
0 , which proves that h̃t = (h2

t + β2)1/2 with β = 2f0g0. ◀

4 Upper bounds on the convergence rates

This section contains the main result of this paper which is Theorem 8 and summarized in Table 2. As discussed
in Section 2 and thanks to Proposition 5, in order to derive convergence rates for Algorithms 1 and 2 it is
sufficient to control the function

ψ(α) := inf
f∈L1(τ)

{
F (f) − inf F + αDη(f, f0)

}
. (7)

For the class of problems we consider, the behavior of ψ highly depends on the context. The simplest situation
is when F admits a minimizer f∗ ∈ Lq(τ) with q > 1 (since τ is finite, it holds Lq(τ) ⊂ L1(τ)). Then for the
distance-generating functions ηp for 1 < p ≤ q or ηhyp, it is easy to see that Dη(f∗, f0) < +∞ (this further
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Table 2 (a) Upper bounds on the convergence rates of F (fk) − inf F for Algorithm 1 (PGM) and 2
(APGM). (b) The value of q that appears in the rate depends on the regularity of Φ and on whether
G′ vanishes at optimality or not. This defines 4 settings referred to as (I), (I*), (II) and (II*). Upper
bounds are derived in Theorem 8, lower bounds are proved in Section 5.

(a) Convergence rates

PGM APGM

ηent, ηhyp log(k)k−1 log(k)k−2

ηp, p > 1 k
− q

(p−1)d+q k
− 2q

(p−1)d+q

(b) Value of q

Φ Lipschitz ∇θΦ Lipschitz

G′[µ∗] arbitrary q = 1 (I) q = 2 (II)

G′[µ∗] = 0 q = 2 (I*) q = 4 (II*)

requires f∗ ≥ 0 for ηent). Thus by Proposition 1, it holds ψ(α) ≲ α and the convergence rates (αk) given in
Proposition 5 are preserved.

In the more subtle case where the minimizer of F is only assumed to be in M(Θ), the variety of behaviors is
captured by the following result.

▶ Theorem 8. Under Assumptions (A1) and (A2), let f0 be such that η′(f0) ∈ L∞(τ). Assume that there exists
µ∗ ∈ M(Θ) such that F (µ∗) = inf F . Under setting (A2)+ (i.e. dom η = R+) assume moreover µ∗ ∈ M+(Θ).
Then it holds

ψ(α) ≲ inf
ϵ>0

ϵq + αϵdη(ϵ−d). (8)

where q ∈ {1, 2, 4} is determined by Table 2(b) (the largest q, the strongest the bound). Namely, the bound holds:
with q = 1 if Φ is Lipschitz continuous;
with q = 2 if Φ is Lipschitz continuous and G′[µ∗] = 0, or if ∇θΦ is Lipschitz continuous;
with q = 4 if ∇θΦ is Lipschitz continuous and G′[µ∗] = 0.

Given the bound of Eq. (8), it is straightforward to compute the rates given in Table 2. The exponent
q ∈ {1, 2, 4} can be interpreted a follows: it is such that F (µϵ) − F (µ∗) ≲ ϵq where µϵ is the convolution of µ∗

with a box kernel of radius ϵ > 0. An asymptotic analysis leads to lower bounds for this exponent under several
assumptions (Table 2(b)), but in practice, non asymptotic effects may play an important role (see experiments
in Section 6.2).
▶ Remark 9 (Additive vs. Multiplicative updates). A consequence of Theorem 8 is that algorithms with “additive
updates” (obtained with η2 as a distance-generating function, e.g. ISTA, FISTA) suffer from the “curse of
dimensionality in the convergence rates, see Table 2(a). In comparison, algorithms with “multiplicative updates”
(obtained with ηent or ηhyp as a distance-generating function) always converge at a faster rate which is independent
of the dimension d. Note that Theorem 8 only proves upper bounds on the rates, but we will see that they are
tight in Section 5.

Proof. The upper-bound in Eq. (8) corresponds to an upper bound on F (fϵ) − inf F + αDη(fϵ, f0) for a specific
family of candidates fϵ ∈ L1(τ). A special case of this argument for sparse µ∗, ηent and q = 1 appeared in [16]
and extended to µ∗ ∈ M+(Θ) in [23]. In the following we write F,G,H for F ,G,H to lighten notations.

Step 1. Smoothing with a box kernel. For ϵ > 0 (smaller than the injectivity radius of the exponential map
in Θ) consider the transition kernel (γθ,ϵ)θ∈Θ where γθ,ϵ ∈ P(Θ) is proportional to the restriction of τ to the
closed geodesic ball Bϵ(θ) of radius ϵ centered at θ. We define γϵ ∈ M(Θ2) as γϵ(dθ, dθ′) := γθ,ϵ(dθ′)µ∗(dθ). By
construction, the first marginal of γϵ is µ∗ and we call µϵ its second marginal, which is absolutely continuous
with respect to τ with density fϵ = dµϵ

dτ . Since dγθ,ϵ

dτ (θ′) = τ(Bϵ(θ))−11Bϵ(θ)(θ′), it holds

µϵ(dθ′) =
∫

Θ
γθ,ϵ(dθ′)µ∗(dθ), and fϵ(θ′) =

∫
Θ

1Bθ,ϵ
(θ′)

τ(Bϵ(θ))
dµ∗(θ).

Note that τ(Bϵ(θ)) ≍ ϵd, see e.g. [26, Thm.3.3].

Step 2. Bounding F (µϵ) − F (µ∗). For our admissible regularizers, it is easy to verify that H(µϵ) ≤ H(µ∗). By
convexity of G, we have

F (µϵ) − F (µ∗) ≤ G(µϵ) −G(µ∗) ≤
∫
G′[µϵ]d[µϵ − µ∗] =

∫
Θ

(
G′[µϵ](θ) −G′[µϵ](θ′)

)
dγ(θ, θ′).
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It is clear that the magnitude and regularity of G′[µϵ] plays a role in the magnitude of this quantity. To go
further, let us consider the various cases in Table 2(b) successively.

(I). If Φ is Lipschitz then for θ, θ′ ∈ Θ it holds

|G′[µϵ](θ) −G′[µϵ](θ′)| ≤
∥∥∥∇R

( ∫
Φdµϵ

)∥∥∥
F

· Lip(Φ) · dist(θ, θ′).

Since ∇R is Lipschitz continuous, we deduce that there exists K > 0 such that |G′[µϵ](θ) − G′[µϵ](θ′)| ≤
K dist(θ, θ′). It follows

F (µϵ) − F (µ∗) ≤ K

∫
Θ×Θ

dist(θ, θ′)dγ(θ, θ′)

= K

∫
Θ

1
τ(Bϵ(θ))

∫
Bϵ(θ)

dist(θ, θ′)dτ(θ′)dµ⋆(θ) ≤ K · ϵ · ∥µ∗∥.

(I*). If Φ is Lipschitz and moreover G′[µ∗] = 0, it holds

G′[µϵ](θ) =
〈

∇R
( ∫

Φdµϵ

)
− ∇R

( ∫
Φdµ∗

)
,Φ(θ)

〉
F
.

Since ∇R is Lipschitz continuous, the first factor is bounded by Lip(∇R) · ∥
∫

Φd[µϵ − µ∗]∥ = Lip(∇R) ·
sup∥Φ̃∥≤1

∫
⟨Φ̃,Φ(θ)⟩d[µϵ −µ∗](θ). Under assumption (I*), the functions {θ 7→ ⟨Φ̃,Φ(θ)⟩ ; ∥Φ̃∥ ≤ 1} are uniformly

Lipschitz, so by the reasoning above, it follows that ∥
∫

Φd[µϵ − µ∗]∥ ≲ ϵ, so Lip(G′[µϵ]) ≲ ϵ. It follows that the
previous bound improves to F (µϵ) − F (µ∗) ≲ ϵ2.

(II). Here we have that G′[µϵ] ∈ C1(Θ;R) and ∇θG
′[µϵ] is Lipschitz. By the Mean Value Theorem on Riemannian

manifolds (see e.g. [27, Thm. 4.6]), there exists a constant K ′ ≥ 0 such that for all θ ∈ Θ∣∣∣ 1
τ(Bϵ(θ))

∫
Bϵ(θ)

G′[µϵ](θ′)dτ(θ′) −G′[µϵ](θ)
∣∣∣ ≤ K ′ϵ2.

It follows

F (µϵ) − F (µ∗) ≤
∫

dµ∗(θ)
∫ (

G′[µϵ](θ) −G′[µϵ](θ′)
)
dγθ,ϵ(θ′) ≤ K ′∥µ∗∥ϵ2.

(II*). If ∇Φ is Lipschitz and moreover G′[µ∗] = 0 then an improvement as in (I*) applies. The functions
{θ 7→ ⟨Φ̃,Φ(θ)⟩ ; ∥Φ̃∥ ≤ 1} are differentiable with a uniformly Lipschitz derivative so arguments as in the
previous paragraph show that ∥

∫
Φd[µϵ − µ∗]∥ ≲ ϵ2, so Lip(∇θG

′[µϵ]) ≲ ϵ2. Thus, going through the argument
for (II), with all the constants multiplied by ϵ2, we obtain that the bound improves to F (µϵ) − F (µ∗) ≲ ϵ4.

Step 3. Bounding Dη(fϵ, f0). It holds Dη(fϵ, f0) =
∫
η(fϵ)dτ −

∫
η(f0)dτ −

∫
η′(f0)(fϵ − f0)dτ . Since η′(f0) ∈

L∞, all these terms are bounded by a constant independent of ϵ except
∫
η(fϵ)dτ , so it remains to bound the

latter. If µ∗ = 0 then this quantity is bounded by a constant independent of ϵ and we are done. Otherwise let us
first assume that µ∗ ∈ M+(Θ). By Jensen’s inequality, one has ∀ θ′ ∈ Θ

η(fϵ(θ′)) = η
( ∫

Θ

µ∗(Θ)1Bϵ(θ)(θ′)
τ(Bϵ(θ))

dµ∗(θ)
µ∗(Θ)

)
≤

∫
Θ
η
(µ∗(Θ)1Bϵ(θ)(θ′)

τ(Bϵ(θ))

)dµ∗(θ)
µ∗(Θ) .

It follows, by Fubini’s theorem,∫
η(fϵ(θ′))dτ(θ′) ≤

∫
Θ

dµ∗(θ)
µ∗(Θ)

∫
Θ

dτ(θ′)η
(µ∗(Θ)1Bϵ(θ)(θ′)

τ(Bϵ(θ))

)
≤

(
sup

θ
τ(Bϵ(θ))

∣∣∣η( µ∗(Θ)
τ(Bϵ(θ))

)∣∣∣) + |η(0)|

Now we use the fact that supθ τ(Bϵ(θ)) ≍ ϵd and our assumption that η(cx) ≍ η(x) for any fixed c > 0 as x → ∞
to bound this quantity by O(ϵdη(ϵ−d)).

For the general case where µ∗ ∈ M(Θ) let µ∗
+, µ

∗
− ∈ M+(Θ) be the Jordan decomposition of µ∗ = µ∗

+ − µ∗
−.

It holds |fϵ(θ)| ≤ max{f+,ϵ(θ), f−,ϵ(θ)} where f+,ϵ and f−,ϵ are obtained by applying the smoothing procedure
of Step. 1 to µ∗

+ and µ∗
− respectively. Using the fact that under Assumption (A2)±, η is even and increasing on

R+, we obtain the bound∫
η(fϵ)dτ ≤

∫
η(f+,ϵ)dτ +

∫
η(f−,ϵ)dτ.

We finally bound each of these terms as when µ∗ ∈ M+(Θ) to conclude. ◀
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5 Lower bounds

We will consider two types of lower bounds: (i) lower bounds on ψ(α) in order to confirm that the analysis in
Theorem 8 is tight, and (ii) direct lower bounds on the convergence rates of Algorithms 1 and 2. Of course, the
latter imply the former, but studying ψ directly has its own interest and makes it simpler to cover all the cases.

5.1 Tight lower bounds on ψ

Let us show that the bounds on ψ in Theorem 8 cannot be improved without additional assumptions.

▶ Proposition 10 (Lower-bounds). For each of the 4 settings of Table 2(b) (determining the value of q ∈ {1, 2, 4}),
there exists an objective function F satisfying Assumption (A1) and inf F = F (µ∗) with µ∗ ∈ M+(Θ), such that
for any distance-generating function η satisfying Assumption (A2) and f0 such that η′(f0) ∈ L∞(τ), it holds

ψ(α) ≳ inf
ϵ>0

ϵq + αϵdη(ϵ−d). (9)

Proof. Let us build explicit objective functions with Θ = Td the d dimensional torus, F = R and H = ιP(Θ).
Let θ0 ∈ Td and for f ∈ L1(Θ) such that fτ ∈ P(Θ), let ϵf > 0 be such that

∫
Bϵf

(θ0) fdτ = 1
2 . Such an ϵf

exists because ϵ 7→
∫

Bϵ(θ0) fdτ continuously interpolates between 0 when ϵ = 0 and 1 when ϵ is large. For any η
satisfying Assumption (A2), using the fact that η ≥ 0 and Jensen’s inequality, it holds∫

η(f)dτ ≥
∫

Bϵf
(θ0)

η(f)dτ ≥ τ(Bϵf
(θ0))η

( 1
τ(Bϵf

(θ0))

∫
Bϵf

(θ0)
fdτ

)
≳ ϵdfη(ϵ−d

f ).

Thus for any f0 such that η′(f0) ∈ L∞(τ) it holds Dη(f, f0) ≳ ϵdfη(ϵ−d
f ).

(I). Consider G(µ) =
∫

Θ dist(θ0, θ)dµ(θ). This satisfies Assumption (A1)(I) with R the identity on R and
Φ(θ) = dist(θ0, θ) which is clearly Lipschitz. Since H = ιP(Θ), F admits a unique minimizer µ∗ = δθ0 and it
holds F (µ∗) = inf F = 0. For any f ∈ domH, we have the following lower bound where ϵf is defined above:

F (f) − inf F =
∫

Θ
dist(θ, θ0)f(θ)dτ(θ) ≥

∫
Θ\Bϵf

(θ0)
dist(θ, θ0)f(θ)dτ(θ) ≥ ϵf

2 .

This proves the lower bound of Eq. (9) with q = 1.

(II). Consider G(µ) =
∫

Θ Φ̃(θ)dµ(θ), where Φ̃ is any function which is continuously twice differentiable, coincides
with dist(θ0, ·)2 on B1/2(θ0) and is larger than 1/4 outside of this ball. We cannot directly take dist(θ0, ·)2

because this function is not smooth everywhere on Θ due to the existence of a cut locus, but it is smooth on
B1/2(θ0). Assumptions (A1)(II) are satisfied. Again µ∗ = δθ0 is the unique minimizer and F (µ∗) = 0. Analogous
computations show that F (f) − inf F ≥ min{ 1

4 , ϵ
2
f }. This proves the lower bound of Eq. (9) with q = 2.

(I*). Consider G(µ) = 1
2
( ∫

Φdµ
)2 where Φ(θ) = dist(θ, θ0). Clearly, µ∗ = δθ0 is the unique minimizer and

G′[µ∗] = 0 so Assumption (A1)(I*) is satisfied. By direct computations, it holds F (f) − inf F ≳ ϵ2f . This proves
the lower bound of Eq. (9) with q = 2.

(II*). Consider G(µ) = 1
2
( ∫

Φ̃dµ
)2 where Φ̃ is defined as in the analysis of (II). Again, µ∗ is the unique minimizer

and G′[µ∗] = 0 so Assumption (A1)(II*) is satisfied. By direct computations, it holds F (f) − inf F ≳ ϵ4f , which
proves the lower bound with q = 4. ◀

▶ Remark 11 (Exact decay of ψ for a natural class of problems.). There exists in fact a broad class of problems
satisfying Assumption (A1)(II) for which the bound on ψ with q = 2 is exact. These are problems with a sparse
solution µ∗ that satisfy an additional non-degeneracy condition at optimality, that appear naturally in certain
contexts [38]. For these problems, is it shown in [16, Prop. 3.2] that F (µ) − inf F ≳

(
supg

∫
gd[µ− µ∗]

)2 where
the supremum is over 1-Lipschitz functions g : Θ → R uniformly bounded by 1. Reasoning as in the proof of
Proposition 10, this implies F (f) − inf F ≳ ϵ2f which leads to

ψ(α) ≍ inf
ϵ>0

ϵ2 + αϵdη(ϵ−d).
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5.2 Direct lower bounds on the convergence rates
In this section, we directly lower-bound the convergence rates of Algorithm 1 and Algorithm 2. We focus on the
L2 geometry (η2) for which we prove all the lower bounds (there are 8 cases to consider) and on the relative
entropy geometry (ηent) for which we omit certain settings for the sake of conciseness. In all the cases considered,
the lower bounds match the upper bounds (up to logarithmic terms for ηent). Let us start with PGM and η2.

▶ Proposition 12. For each of the settings (I), (I*), (II) and (II*) under Assumption (A1), there exists a
function F such that the iterates of Algorithm 1 (PGM) (fk)k≥0 with the distance-generating function η2, and
initialized with f0 = 1, with any step-size s > 0, satisfy

F (fk) − inf F ≳ k− q
d+q

where q is the constant associated to the setting via Table 2(b).

Proof.

(I). As in the proof of Proposition 10, we consider Θ = Td, θ0 ∈ T, H = ιP(Θ) and G(µ) =
∫

Φdµ with
Φ(θ) = dist(θ, θ0). We set s = 1 as the step-size plays no role in what follows. In this case, the update equation of
Algorithm 1 writes fk+1 =

(
fk − Φ − κk

)
+ where κk ∈ R is such that fk+1 ∈ domH. Thanks to the symmetries

of the problem, a direct recursion shows that it holds

fk = (m(k) − kΦ)+

for some m(k) ∈ R+. Let r(k) := m(k)/k which is such that Br(k)(θ0) is the support of fk. We have

1 =
∫
fkdτ ≍

∫ r(k)

0
ud−1(m(k) − ku)du ≍ m(k)

d
r(k)d − 1

d+ 1k · r(k)d+1 ≍ m(k)d+1k−d

thus m(k) ≍ kd/(d+1) and r(k) ≍ k−1/(d+1). We can compute the objective

F (fk) ≍
∫ r(k)

0
ud−1u(m(k) − ku)du ≍ 1

d+ 1m(k)r(k)d+1 − k
1

d+ 2r(k)d+2 ≍ k−1/(d+1).

Which proves the case (I) (here q = 1) since inf F = 0.

(II). Consider a smooth function Φ̃ which equals dist(θ, θ0)2 on the ball B1/2(θ0) as in the proof of Proposition 10.
Again the iterates have the form fk = (m(k) − kΦ̃)+ and now let r(k)2 = m(k)/k. For k large enough, so that
Φ̃ = dist(·, θ0)2 over Br(k)(θ0), it holds

1 =
∫
fkdτ ≍

∫ r(k)

0
ud−1(m(k) − ku2)du ≍ m(k)

d
r(k)d − k

d+ 2 · r(k)d+2 ≍ m(k)(d+2)/2k−d/2

thus m(k) ≍ kd/(d+2) and r(k) ≍ k−1/(d+2). It also holds

F (fk) ≍
∫ r(k)

0
ud−1u2(m(k) − ku2)du ≍ m(k)

d+ 2r(k)d+2 − k

d+ 4r(k)d+4 ≍ k−2/(d+2)

Which proves the case (II) (here q = 2).

(I*). We consider the function G(µ) = 1
2 (

∫
Φdµ)2. Now the reasoning is slightly more subtle because of the

non-linearity. It holds fk = (m(k) − s(k)Φ)+ where s(k + 1) = s(k) +
∫

Φfkdτ . Again, m(k) is such that the
iterate is feasible. Our upper bounds imply that

∫
Φfkdτ ≲ k−1/(d+2), thus s(k + 1) − s(k) ≲ k−1/(d+2) and it

follows s(k) ≲ k
d+1
d+2 and F (fk) ≳ (s(k)−1/(d+1))2 ≍ k−2/(d+2) as desired.

(II*). For the case (II*) we combine the ideas from (II) and (I*), let us just emphasize on the differences. We take
the function G(µ) = 1

2 (
∫

Φ̃)2. For k large enough, it holds fk = (m(k)−s(k)Φ̃)+ and, thanks to our upper-bound,∫
Φ̃fkdτ ≲ k−2/(d+4). The recursion becomes s(k + 1) − s(k) ≲ k−2/(d+4) and it follows s(k) ≲ k(d+2)/(d+4) and

F (fk) ≳ (s(k)−2/(d+2))2 ≍ k−4/(d+4) as desired. ◀

Let us now prove similar lower bounds for APGM, again for the specific choice of distance-generating
function η2.
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▶ Proposition 13. For each of the settings (I), (II), (I*) and (II*) under Assumption (A1), there exists a
function F such that the iterates of Algorithm 2 (APGM) (fk)k≥0 with the distance-generating function η2, and
initialized with f0 = 1, with any step-size s > 0, satisfy

F (fk) − inf F ≳ k− 2q
d+q

where q is the constant associated to the setting via Table 2(b).
Proof. For (I), we consider the same set up as in the proof of Proposition 12(I) (also fixing s = 1 for conciseness).
Since G is linear, the update of hk reads hk+1 = (m(k) − s(k)Φ)+ with sk =

∑k
i=0

1
γi

where (γk)k is defined in
Algorithm 2. Since γk ≳ 1/k, we have s(k) ≍ k2 which implies that F (hk) ≳ k−2/(d+1). Finally, it is clear that
fk is in the convex hull of {h0, . . . , hk} and since G is linear, it holds F (fk) ≥ mini=1,...,k F (hk) ≳ k−2/(d+1).
The proof for the case (II) follows exactly the same scheme but with the function Φ̃ considered in the proof of
Proposition 12 and we omit the details.

In the case (I*), we have (m(k) − s(k)Φ)+ with s(k + 1) − s(k) = 1
γk

∫
Φgkdτ . Thanks to our upper-bounds,

we have
∫

Φfkdτ ≲ k−2/(d+2), and since γk → 0 and ∥hk∥L1 = 1, it follows
∫

Φgkdτ ≲ k−2/(d+2). Thus
s(k + 1) − s(k) ≲ kd/(d+2) which leads to s(k) ≲ k2(d+1)/(d+2). It follows F (hk) ≳ s(k)−2/(d+1) ≳ k−4/(d+2).
Since hk is optimal for F over the convex hull of {h0, . . . , hk}, which contains fk (it has the most mass in small
balls around θ0) we obtain the same lower bound on F (fk). The proof for the case (II*) follows the same scheme
but with the function Φ̃ and we omit the details. ◀

It is also instructive to look at lower bounds with the entropy ηent. We observe that here there exist cases
where the guarantee given by Proposition 5 is off by a log(k) factor (because this factor is present in the lower
bound of Proposition 10).
▶ Proposition 14. For the settings (I) and (II) under Assumption (A1), there exists a function F such that the
iterates of Algorithm 1 (PGM) (fk)k≥0 with the distance-generating function ηent, and initialized with f0 = 1,
with any step-size s > 0, satisfy

F (fk) − inf F ≍ k−1.

Proof. We consider the same setting as in the proof of Proposition 12(I) (and s = 1 for simplicity). In this
case, the update reads fk+1 ∝ exp(fk − Φ) so by an immediate recursion fk ∝ exp(−kΦ). This is essentially
a (multi-dimensional) Laplace distribution and when k is large, up to exponentially small terms in k, we can
compute the integrals over Rd instead of Td. For the normalizing factor, we have∫

Rd

exp(−k∥x∥2
2)dx ≍

∫ ∞

0
ud−1 exp(−ku)du = k2−d

∫ ∞

0
sd−1e−sds = k2−dΓ(d)

where Γ is the Gamma function. For the (unnormalized) value of F (fk), we have∫
Rd

∥x∥2 exp(−k∥x∥2
2)dx ≍

∫ ∞

0
ud exp(−ku)du = α1−d

∫ ∞

0
sde−sds = k1−dΓ(d+ 1).

By computing the ratio, it follows that F (fk) − inf F ≍ k−1. In Setting (II), we take the function Φ̃ as before
which is equal to dist(·, θ0)2 near θ0. Now fk ∝ exp(−kΦ̃) which is essentially, when k is large, a Gaussian
distribution of variance 1/k ≍ F (fk) − inf F . ◀

▶ Remark 15. Although the convergence rates obtained with ηent and ηhyp are independent of the dimension d

(see Table 2), this favorable behavior crucially relies on the assumption that F admits a minimizer µ∗ ∈ M(Θ).
When this is not the case, [42] show that there is an example where the continuous time dynamics induced by
ηent also suffer from the curse of dimensionality (our setting is slightly different but their argument would apply
here). In addition, the discrete time dynamics are not stable in this case because the norm of the iterates grows
unbounded, see Remark 6.

6 Numerical experiments

In this section we compare our theoretical rates with the practical behavior of PGM (Algorithms 1) and APGM
(Algorithm 2) on simple toy problems. The purpose is to show that, although our analysis is asymptotic (in
k and in the spatial discretization), it describes well the convergence of those algorithms in certain practical
scenarios. The code to reproduce these experiments can be found online3.

3 https://github.com/lchizat/2021-measures-PGM

https://github.com/lchizat/2021-measures-PGM
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Figure 3 Behavior of Algorithm 1 (PGM) for a nonnegative sparse deconvolution problem with
solution µ∗ = δ0, with d = 1 and for various Bregman divergences ηp (p = 1 stands for ηent). We plot
the function fk for k ∈ {0, 6, 62, 63, 64}, we use the same step-size and the same axes in all cases. The
associated convergence plots are in Figure 4.

(a) PGM (d = 1, q = 4) (b) APGM (d = 1, q = 4)

Figure 4 Convergence of PGM and APGM vs. theoretical rates (up to log factors) in a sparse
deconvolution problem with H = ιM+(Θ) and d = 1. Here p refers to the parameter of ηp and p = 1
refers to ηent. The objective has structure (II*) so q = 4 in the rates of Table 2.

(a) PGM (d = 1, q = 2) (b) APGM (d = 1, q = 2)

Figure 5 Convergence of PGM and APGM vs. theoretical rates (up to log factors) in a sparse
deconvolution problem with H = λ∥µ∥ and d = 1. Here p refers to the parameter of ηp and p = 1 refers
to ηhyp. The objective has structure (II) so q = 2 in the rates of Table 2.

6.1 Sparse deconvolution
We consider the sparse deconvolution problem introduced in Section 3.1 where ϕ is a Dirichlet kernel ϕ(θ) =∑

k∈{−2,1,0,1,2}d exp(2
√

−1πk⊤θ) and y∗(θ) = ϕ(θ) =
∫
ϕ(θ − θ′)dµ∗(θ′) with µ∗ = δ0. The domain T1 is

discretized into a regular grid of m = 300 points and T2 into a regular grid of m = 60 × 60 points. Figure 3
illustrates the behavior of the various Bregman divergences for this problem, where it is seen that the iterates fk

(weakly) converge faster to the Dirac solution as p is smaller (in the following discussion, we use p = 1 to refer to
the entropy or hypentropy distance-generating function).

Figures 4, 5, 6 and 7 report the convergence rates in a variety of settings, which we compare to our theoretical
predictions (without the logarithmic factors, since they do not change the asymptotic slope on a log-log plot). In
both cases, inf F admits a closed form so we can exactly plot F (fkτm) − minF and additionally observe the
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(a) PGM (d = 2, q = 4) (b) APGM (d = 2, q = 4)

Figure 6 Convergence of PGM and APGM vs. theoretical rates (up to log factors) in a sparse
deconvolution problem with H = ιM+(Θ) and d = 2. Here p refers to the parameter of ηp and p = 1
refers to ηent. The objective has structure (II*) so q = 4 in the rates of Table 2.

(a) PGM (d = 2, q = 2) (b) APGM (d = 2, q = 2)

Figure 7 Convergence of PGM and APGM vs. theoretical rates (up to log factors) in a sparse
deconvolution problem with H = λ∥µ∥ and d = 2. Here p refers to the parameter of ηp and p = 1 refers
to ηhyp. The objective has structure (II) so q = 2 in the rates of Table 2.

effect of the discretization (here τm is the discretized reference measure). Observe that in the 2D experiments,
APGM with p = 1 quickly reaches the discretization error, and on Figure 7(b), it does not have enough “time”
to attain the theoretical asymptotic rate before the effect of the discretization comes in. While our analysis is
asymptotic, it thus corresponds in practice to a non-asymptotic and transient behavior.

6.2 Two-layer neural networks
We consider a two-layer ReLU neural network with the objective function introduced in Section 3.1 where we
consider n = 10 input samples xi on a regular grid on [−1, 1] and observed variables yi = |xi| − 1

2 + Zi where Zi

are independent and uniform on [−1, 1] (see the samples on Figure 9(b)). The domain is S1 discretized into a
regular grid of m = 2000 points. This setting gives an example where Φ does not have a Lipschitz gradient and
is only Lipschitz (observe the irregularity of G′[µ∗] on Figure 9(a)). Since we use the regularization H = λ∥µ∥,
we are in the setting (I) from Table 2(b), and the parameter for the rate is q = 1.

Figure 8 shows the rates of convergence for PGM and APGM. Although the general picture is consistent with
the theory, we observe that our guarantees are a bit over-conservative. For PGM, we roughly measure (between
iteration k = 103 and k = 105) the rates exponents (−1.00,−0.72,−0.58) for respectively p = (1, 1.5, 2) which
corresponds to a parameter q ≈ 1.5 rather than q = 1. For APGM, we roughly measure the rates exponents
(−1.97,−1.71,−1.41) instead of the predicted (−2,−1.33,−1). Figure 9(a) helps understanding this discrepancy:
as can be seen from the proof of Theorem 8 what truly determines the asymptotic rate is how much the objective
function increases when µ∗ is mollified, and we quantified this using the regularity and magnitude of G′[µ] near
µ∗. Here it appears that G′[µ∗] is smooth near 2 out of the 3 points in the support of µ∗, while it is non-smooth
at the third point (the one in the middle). The fact that we have a mix of both levels of regularity (i.e. smooth
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(a) PGM (d = 2, q = 2) (b) APGM (d = 2, q = 2)

Figure 8 Convergence of PGM and APGM vs. theoretical rates (up to log factors) for a 2-layer
ReLU neural network with H = λ∥µ∥ and d = 1. Here p refers to the parameter of ηp and p = 1 refers
to ηhyp. The objective has structure (I) so q = 1 in the rates of Table 2.

(a) Densities fk for k ∈ {6, 62, 63, 64, 65}. (b) Regressor at k = 200.

Figure 9 Dynamics of PGM on a two-layer neural network, for various values of p (p = 1 corresponds
to ηhyp). Observe in (b) how the dynamics with ηhyp fits the kinks of the optimal regressor much faster
than with p > 1.

vs. merely Lipschitz) may explain why the convergence is a bit faster than with the parameter q = 1, which
corresponds to only taking into account the Lipschitz regularity.

7 Conclusion

We have studied the convergence rates of PGM and APGM for convex optimization in the space of measures. Our
analysis exhibits the influence of the regularity of the objective function on the convergence rates. It also confirms
that the geometry induced by ηent and ηhyp is better suited than the L2 geometry to solve such problems. An
important question for future research is to better understand the unregularized case, where the phenomenon of
algorithmic regularization is at play.

Acknowledgments

I am thankful to Adrien Taylor for fruitful discussions during the preparation of this paper. In particular, I
learnt about Algorithm 2 (APGM) from him.

References
1 Ehsan Amid and Manfred K. Warmuth. Winnowing with gradient descent. In Conference on Learning Theory,

pages 163–182. PMLR, 2020.
2 Alfred Auslender and Marc Teboulle. Interior gradient and proximal methods for convex and conic optimization.

SIAM J. Optim., 16(3):697–725, 2006.
3 Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake Woodworth, Nathan Srebro, Amir Globerson,

and Daniel Soudry. On the Implicit Bias of Initialization Shape: Beyond Infinitesimal Mirror Descent. https:
//arxiv.org/abs/2102.09769, 2021.

4 Francis Bach. Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Theory, 18(1):629–
681, 2017.

https://arxiv.org/abs/2102.09769
https://arxiv.org/abs/2102.09769


18 Optimization in the Space of Measures

5 Francis Bach. Learning Theory from First Principles Draft, 2021.
6 Heinz H. Bauschke, Jonathan M. Borwein, and Patrick L. Combettes. Essential smoothness, essential strict convexity,

and Legendre functions in Banach spaces. Commun. Contemp. Math., 3(04):615–647, 2001.
7 Heinz H. Bauschke, Jonathan M. Borwein, and Patrick L. Combettes. Bregman monotone optimization algorithms.

SIAM J. Control Optim., 42(2):596–636, 2003.
8 Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM

J. Imaging Sci., 2(1):183–202, 2009.
9 Yoshua Bengio, Nicolas Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte. Convex Neural Networks.

In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems, volume 18.
MIT Press, 2006.

10 Nicholas Boyd, Geoffrey Schiebinger, and Benjamin Recht. The alternating descent conditional gradient method for
sparse inverse problems. SIAM J. Optim., 27(2):616–639, 2017.

11 Kristian Bredies and Dirk A. Lorenz. Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl.,
14(5-6):813–837, 2008.

12 Kristian Bredies and Hanna Katriina Pikkarainen. Inverse problems in spaces of measures. ESAIM, Control Optim.
Calc. Var., 19(1):190–218, 2013.

13 Sébastien Bubeck. Convex Optimization: Algorithms and Complexity. Found. Trends Mach. Learn., 8(3-4):231–357,
2015.

14 Emmanuel J. Candès and Carlos Fernandez-Granda. Towards a mathematical theory of super-resolution. Commun.
Pure Appl. Math., 67(6):906–956, 2014.

15 Antonin Chambolle and Robert Tovey. "FISTA" in Banach spaces with adaptive discretisations. https://arxiv.
org/abs/2101.09175, 2021.

16 Lénaïc Chizat. Sparse optimization on measures with over-parameterized gradient descent. Math. Program., pages
1–46, 2021.

17 Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks trained with
the logistic loss. In Conference on Learning Theory, pages 1305–1338. PMLR, 2020.

18 Laurent Condat. Fast projection onto the simplex and the ℓ1 ball. Math. Program., 158(1):575–585, 2016.
19 Alexandre d’Aspremont, Damien Scieur, and Adrien Taylor. Acceleration methods. https://arxiv.org/abs/2101.

09545, 2021.
20 Yohann De Castro and Fabrice Gamboa. Exact reconstruction using Beurling minimal extrapolation. J. Math. Anal.

Appl., 395(1):336–354, 2012.
21 Quentin Denoyelle, Vincent Duval, Gabriel Peyré, and Emmanuel Soubies. The sliding Frank–Wolfe algorithm and

its application to super-resolution microscopy. Inverse Probl., 36(1), 2019.
22 Aymeric Dieuleveut. Stochastic approximation in Hilbert spaces. PhD thesis, PSL Research University, 2017.
23 Carles Domingo-Enrich, Samy Jelassi, Arthur Mensch, Grant Rotskoff, and Joan Bruna. A mean-field analysis of

two-player zero-sum games. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 20215–20226. Curran Associates, Inc., 2020.

24 Guillaume Garrigos, Lorenzo Rosasco, and Silvia Villa. Thresholding gradient methods in Hilbert spaces: support
identification and linear convergence. ESAIM, Control Optim. Calc. Var., 26, 2020.

25 Udaya Ghai, Elad Hazan, and Yoram Singer. Exponentiated gradient meets gradient descent. In Algorithmic
Learning Theory, pages 386–407. PMLR, 2020.

26 Alfred Gray and Lieven Vanhecke. Riemannian geometry as determined by the volumes of small geodesic balls.
Acta Math., 142(1):157–198, 1979.

27 Alfred Gray and Tom J. Willmore. Mean-value theorems for Riemannian manifolds. Proc. R. Soc. Edinb., Sect. A,
Math., 92(3-4):343–364, 1982.

28 Matt Jacobs, Flavien Léger, Wuchen Li, and Stanley Osher. Solving large-scale optimization problems with a
convergence rate independent of grid size. SIAM J. Numer. Anal., 57(3):1100–1123, 2019.

29 Chao Kan and Wen Song. The Moreau envelope function and proximal mapping in the sense of the Bregman
distance. Nonlinear Anal., Theory Methods Appl., 75(3):1385–1399, 2012.

30 Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Inf.
Comput., 132(1):1–63, 1997.

31 Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM J. Optim., 11(3):796–817,
2001.

32 Jingwei Liang, Jalal M. Fadili, and Gabriel Peyré. Local linear convergence of forward–backward under partial
smoothness. In Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume
2, pages 1970–1978, 2014.

33 Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layer neural
networks. Proc. Natl. Acad. Sci. USA, 115(33):E7665–E7671, 2018.

https://arxiv.org/abs/2101.09175
https://arxiv.org/abs/2101.09175
https://arxiv.org/abs/2101.09545
https://arxiv.org/abs/2101.09545


Lénaïc Chizat 19

34 Arkadij Semenovič Nemirovsky and David Borisovich Yudin. Problem complexity and method efficiency in optimiza-
tion. Wiley-Interscience series in discrete mathematics. John Wiley & Sons, 1983.

35 Yurii Nesterov. On an approach to the construction of optimal methods of minimization of smooth convex functions.
Ekonom. i. Mat. Metody, 24(3):509–517, 1988.

36 Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer, 2003.
37 Atsushi Nitanda, Denny Wu, and Taiji Suzuki. Particle Dual Averaging: Optimization of Mean Field Neural

Networks with Global Convergence Rate Analysis. https://arxiv.org/abs/2012.15477, 2020.
38 Clarice Poon, Nicolas Keriven, and Gabriel Peyré. The geometry of off-the-grid compressed sensing. https:

//arxiv.org/abs/1802.08464, 2018.
39 Ralph Rockafellar. Integrals which are convex functionals. II. Pac. J. Math., 39(2):439–469, 1971.
40 Paul Tseng. Approximation accuracy, gradient methods, and error bound for structured convex optimization. Math.

Program., 125(2):263–295, 2010.
41 Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit Regularization for Optimal Sparse Recovery.

In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
42 Stephan Wojtowytsch and Weinan E. Can shallow neural networks beat the curse of dimensionality? A mean field

training perspective. IEEE Trans. Artif. Intell., 1(2):121–129, 2020.
43 Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning. Computing,

26(2):289–315, 2007.
44 Yao-Liang Yu. The strong convexity of Von Neumann’s entropy, 2013. Unpublished note.

https://arxiv.org/abs/2012.15477
https://arxiv.org/abs/1802.08464
https://arxiv.org/abs/1802.08464

	Introduction
	Strategy to derive upper bounds on convergence rates
	Gradient methods for optimization in the space of measures
	 Objective function
	 Bregman divergences
	 Gradient methods and their classical guarantees
	 Reparameterized gradient descent as a Bregman descent

	Upper bounds on the convergence rates
	Lower bounds
	 Tight lower bounds on psi
	 Direct lower bounds on the convergence rates

	Numerical experiments
	 Sparse deconvolution
	 Two-layer neural networks

	Conclusion

