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Abstract
Frank and Wolfe’s celebrated conditional gradient method is a well-known tool for solving smooth optimization problems
for which minimizing a linear function over the feasible set is computationally cheap. However, when the objective
function is nonsmooth, the method may fail to compute a stationary point. In this work, we show that the Frank–Wolfe
algorithm can be employed to compute Clarke-stationary points for nonconvex and nonsmooth optimization problems
consisting of minimizing upper-C1,α functions over convex and compact sets. Furthermore, under more restrictive
assumptions, we propose a new algorithm variant with stronger stationarity guarantees, namely directional stationarity
and even local optimality.
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1 Introduction

The conditional gradient method [11], also known as Frank–Wolfe (FW) algorithm, is one of the simplest and
oldest iterative methods for minimizing a (sufficiently) smooth function over a convex and compact set. Despite
its modest convergence rate of O(1/

√
k) for nonconvex objectives [18], the algorithm is particularly attractive

when minimizing linear functions over the feasible set is computationally cheap. That is the case of several
modern large-scale optimization problems from machine learning and data science, which have revitalized the
interest and research on first-order optimization methods. We refer the reader to [1, 6, 12, 16, 18] and references
therein for recent developments on the FW algorithm.

In the convex setting, it is well known that the FW algorithm may fail to converge to a stationary point
if the objective function is nonsmooth [15, 25]. Approaches for coping with such a shortcoming consist of
(a) approximating the objective function with a smooth one, obtained by standard smoothing techniques such as
the Moreau–Yosida regularization [24] and randomized rules employing probability densities [10]; (b) considering
(when possible) an epigraphic reformulation by adding a new variable and moving the source of nonsmoothness to
the constraint [9]; (c) assuming stronger assumptions than a simple oracle that provides an arbitrary subgradient,
so that a descent direction can be computed by solving a complex subproblem per iteration [4, 19, 25]. Furthermore,
when the objective is the sum of two convex functions h and c, with h smooth and c having a simple structure
(e.g., piece-wise linear), then the FW algorithm in its generalized form given in [14] (and revisited in many recent
publications) is convergent at the cost of solving a more involving subproblem per iteration.

Without relying on smoothing techniques, particular choices of subgradients, restrictive oracles, or other
reformulation tricks that are only applicable in certain particular cases, we show that the classic FW algorithm
computes Clarke-stationary points for the broad class of nonconvex and nonsmooth problems of the form

min
x∈X

f(x), (1)

where X ̸= ∅ is a convex and compact subset of an open set O ⊂ ℜn, and f : O → ℜ can be expressed, over X,
as a minimum of a compactly parametrized family of α-Hölder smooth functions (see Definition 1 below). Such a
class of functions is denoted by upper-C1,α as −f is lower-C1,α, a family of functions introduced in [7].
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2 FW algorithm for minimizing upper C1,α functions

Contributions and organization
Despite nonsmoothness of the objective function, we show that under standard rules for defining stepsizes, the
classic FW algorithm applied to (1) computes Clarke-stationary points and possesses a convergence rate of
O(1/k

α
α+1 ), matching the one known for the smooth (but nonconvex) setting (take α = 1 and compare with [18,

Table 2]). Furthermore, for applications in which f is the point-wise minimum of finitely many α-Hölder smooth
functions Fi : O → ℜ (i = 1, . . . , q) we propose a new variant of the FW algorithm with stronger stationarity
guarantees, namely directional stationarity. The latter is the sharpest kind among the various stationary concepts
in nonsmooth and nonconvex optimization. Furthermore, we show that the concept of d-stationarity is equivalent
to local optimality when all functions Fi are convex.

The remainder of this work is organized as follows. First, in Section 2 we recall some basic definitions and
provide implementable formulations for two stationarity conditions. Next, the FW algorithm is revisited in
Section 3 as well as its convergence analysis for the setting under consideration. The new algorithm variant able
to compute directional stationary points is presented in Section 4.

Notation
Throughout this work, O is an open set of ℜn and ∅ ≠ X ⊂ O is a convex and compact set. Given a point
x ∈ O, we denote by Vx ⊂ O an open neighborhood of x, that is, the set Vx := {y ∈ O : ∥y − x∥ < δ} for some
δ > 0, where ∥ · ∥ is the Euclidean norm. We denote by NX(x) the normal cone to the set X at the point x:
NX(x) = {p : ⟨p, y − x⟩ ≤ 0 ∀ y ∈ X} if x ∈ X and NX(x) = ∅ otherwise. The indicator function is iX(x) = 0 if
x ∈ X and +∞ otherwise. The notation α is reserved for scalars in [0, 1].

2 Main definitions, subdifferentiability and stationarity

In this section we present some key definitions and stationary conditions.

▶ Definition 1 (UC1,α functions). Let α ∈ [0, 1]. A function f : O → ℜ is called upper-C1,α (or UC1,α for short)
on O if on some open neighborhood Vx̄ of each x̄ ∈ O there exist a non-empty compact set U , a constant ℓ > 0,
and a continuous function F : Vx̄ × U → ℜ that is differentiable with respect to the x-variable, such that

f(x) := min
u∈U

F (x, u) for all x ∈ Vx̄, (2a)

where ∇xF (x, u) is jointly continuous and satisfies, for I(x) := arg minu∈U F (x, u), the Hölder condition

∥∇xF (y, u) − ∇xF (x, u)∥ ≤ ℓ∥y − x∥α for all x, y ∈ Vx̄ and u ∈ I(y) ∪ I(x). (2b)

If α = 0, then f is said to be upper-C1 (i.e, UC1 = UC1,0): condition (2b) becomes superfluous and can be
omitted. If α = 1, then f is upper-C2 in view of [7, Rem. 3.3]: F (·, u) are indeed of class C2, with F and its
x-partial derivatives of first and second order jointly continuous on (x, u) ∈ Vx̄ × U . A function φ is said to be
lower-C1 (LC1), or lower-C1,α (LC1,α), or lower-C2 (LC2) if f = −φ is UC1, or UC1,α, or UC2, respectively.
The class of LC1 functions was introduced in [23], LC2 in [20], and LC1,α in [7]. The authors of the latter
reference show that, for α ∈ (0, 1), LC2 = LC1,1 ⊊ LC1,α ⊊ LC1,0 = LC1. It follows from an analogous
argument that UC2 = UC1,1 ⊊ UC1,α ⊊ UC1,0 = UC1. We care to mention that UC1,α forms a broad class
containing all the functions that can be expressed as f = h − c, with h : O → ℜ α-Hölder and c : O → ℜ convex
(possibly nonsmooth) [7, Prop. 3.5]. In particular, all Difference-of-Convex (DC) functions [8] with h being
α-Hölder are upper-C1,α; as a result, all concave functions over X are upper-C1,α.

Under the compactness assumption on X the local representation (2) can indeed be extended to a common
representation (the same function F , set U , and Lipschitz constant ℓ) for all points in a bounded open set
containing X [22, Eq. 10(12)]. Hence, once we assume X compact, there exists a bounded open set O′ ⊂ O

containing X such that the following common representation does not represent a loss of generality with respect
to Definition 1: F : O′ × U → ℜ is jointly continuous,

f(x) := min
u∈U

F (x, u), and ∥∇xF (y, u) − ∇xF (x, u)∥ ≤ ℓ∥y − x∥α for all x, y ∈ O′ and u ∈ I(y) ∪ I(x). (3)

From now on we will only consider such a representation for f .
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Let f : O → ℜ be upper-C1,α. It follows from definition that f is locally Lipschitz (see [22, Thm. 10.31] for
the Lipschitz constant). Therefore, the Clarke-directional derivative

f◦(x; d) := lim sup
x′→x, τ↓0

f(x′ + τd) − f(x′)
τ

exists and is finite for all x ∈ O in every direction d ∈ ℜn [5, Prop. 2.1.1(a)]. Such a mathematical concept
permits to define the Clarke subdifferential of f at x ∈ O, ∂Cf(x) := {g : ⟨g, d⟩ ≤ f◦(x; d) for all d ∈ ℜn},

which is a nonempty, convex and compact subset of ℜn [5, Prop. 2.1.2(a)]. For φ = −f , it follows from (3)
that φ(x) = maxu∈U −F (x, u) for all points x ∈ O′ ⊃ X. Given this structure, Theorem 7.3 of [21] asserts
that ∂Cφ(x) = co {−∇xF (x, u) : u ∈ I(x)} for all x ∈ O′. Furthermore, Proposition 2.3.1 in [5] ensures that
∂Cf(x) = −∂Cφ(x) (because f = −φ), and thus

∂Cf(x) = co {∇xF (x, u) : u ∈ I(x)} ≠ ∅ for all x ∈ O′ ⊃ X. (4)

Furthermore, it follows from [5, Prop. 2.1.2(b)] that, for all x ∈ O′,

f◦(x; d) = max
g∈∂Cf(x)

⟨g, d⟩, and thus f◦(x; d) = max
u∈I(x)

⟨∇xF (x, u), d⟩ for all d ∈ ℜn. (5)

The class of LC1,α functions is Clarke regular (because LC1 is; [20, Thm. 1]), that is, the Clarke-directional
derivative coincides with the ordinary directional derivative from Convex Analysis

f ′(x; d) := lim
τ↓0

f(x + τd) − f(x)
τ

.

Unfortunately, this is not the case for UC1,α functions as we may have the strict inequality f◦(x; d) > f ′(x; d).

▶ Proposition 2. Let f : O → ℜ be upper-C1,α. Then f ′(x; d) = ming∈∂Cf(x)⟨g, d⟩ for all x ∈ O and ∈ ℜn.

Proof. Let φ = −f . As φ is LC1,α and x ∈ O, it holds that φ◦(x; d) = φ′(x; d) for all d ∈ ℜn [20, Thm. 1].
Therefore, the limit limτ↓0(φ(x + τd) − φ(x))/τ exists. Note that φ′(x; d) = limτ↓0 − −φ(x+τd)−(−φ(x))

τ =
− limτ↓0

f(x+τd)−f(x)
τ , showing that f ′(x; d) also exists and equals −φ◦(x; d). Then, f ′(x; d) = −φ◦(x; d) =

− max−g∈∂Cφ(x)⟨−g, d⟩ = − maxg∈∂Cf(x)⟨−g, d⟩ = ming∈∂Cf(x)⟨g, d⟩. ◀

Assuming the common representation (3), Proposition 2 and (4) yield that, for all x ∈ O′,

f ′(x; d) = min
u∈I(x)

⟨∇xF (x, u), d⟩ for all and d ∈ ℜn. (6)

Non-regularity of UC1,α functions is now evident: compare formulæ (5) and (6). Given the two derivatives f◦

and f ′, we can define two stationary conditions for (1).
(C-stationarity.) A point x̄ ∈ X is said to be a C(larke)-stationary for problem (1) if 0 ∈ ∂Cf(x̄) + NX(x̄). In
other words, there exists g ∈ ∂Cf(x̄) such that −g ∈ NX(x̄), i.e., ⟨g, x − x̄⟩ ≥ 0 for all x ∈ X. We can thus
say that x̄ is C-stationary for (1) if

0 = min
z∈X

⟨g, z − x̄⟩ for at least one vector g ∈ ∂Cf(x̄). (7)

By adopting the representation (3) for f , C-stationarity becomes

min
z∈X

⟨∇xF (x̄, ū), z − x̄⟩ = 0 for at least one index ū ∈ I(x̄). (8)

(d-stationarity.) A point x̄ ∈ X is said to be a d(irectional)-stationary for problem (1) if f ′(x̄; x − x̄) ≥ 0 for
all x ∈ X. It follows from Proposition 2 that d-stationarity means

0 = min
z∈X

⟨g, z − x̄⟩ for all g ∈ ∂Cf(x̄). (9)

By adopting the representation (3) for f , d-stationarity becomes

0 = min
z∈X

⟨∇xF (x̄, ū), z − x̄⟩ for all ū ∈ I(x̄). (10)
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Equations (7) and (9) show that d-stationarity is a much stronger condition than C-stationarity. Indeed,
d-stationarity is the sharpest kind among the various stationary concepts in nonsmooth and nonconvex op-
timization [17]. Both conditions coincide when f is smooth at the point under consideration: in this case,
∂Cf(x̄) = {∇f(x̄)}.

▶ Example 3. Let f : ℜ → ℜ be defined as f(x) = min{(x + 2)2, (x − 2)2} and X = [0, 4]. Note that f is UC2

(thus UC1,α): F1(x) := F (x, 1) = (x + 2)2, F2(x) := F (x, 2) = (x − 2)2 are C2 and U = {1, 2}. Furthermore, f is
nondifferentiable at x̄ = 0: equation (4) gives ∂Cf(0) = [−4, 4], (5) yields f◦(0; ±1) = 4, however, f ′(0; ±1) = −4.
Hence f is not regular at x̄ = 0, a point that is C-stationary (in fact a global maximizer) but not d-stationary.
Indeed, for all g ∈ [0, 4] ⊂ ∂Cf(0) we get 0 = minx∈[0,4] g · (x − 0).

The following result shows that if a d-stationary point lies in the interior of X, then f is smooth at this point.

▶ Proposition 4. Let f : O → ℜ be an upper-C1,α function, and x̄ ∈ int(X) be a d-stationary point for (1).
Then ∂Cf(x̄) = {0}.

Proof. Let g ∈ ∂Cf(x̄) be an arbitrary subgradient. Since x̄ ∈ int(X), there exists ϵ > 0 such that x = x̄−ϵ g
∥g∥ ∈

X. The assumption of d-stationarity implies that 0 ≤ ⟨g, x − x̄⟩ = ⟨g, −ϵ g
∥g∥ ⟩ = −ϵ∥g∥, showing that g = 0. ◀

A word of caution may be necessary: the above result does not imply that the index set I(x̄) is a singleton.
It implies that ∇xF (x̄, ū) = 0 for all ū ∈ I(x̄). (As an example, take f(x) = min{x2, 2x2} and x̄ = 0.)

3 Revisiting the Frank–Wolfe algorithm for UC1,α functions

The alternative representation of C-stationarity condition given by (7) motivates us to apply the FW algorithm
of [11] to problem (1). In Algorithm 1 we assume the existence of an oracle that, for any given point x ∈ X,
provides us with the value f(x) and an arbitrary Clarke-subgradient g ∈ ∂Cf(x).

Algorithm 1 The Frank–Wolfe Algorithm
1: Let x0 ∈ X and Tol ≥ 0 be given
2: for k = 0, 1, 2, . . . do
3: Call the oracle to obtain an arbitrary subgradient gk ∈ ∂Cf(xk) and compute zk ∈ arg minz∈X ⟨gk, z⟩
4: Set dk = zk − xk and θk = −⟨gk, dk⟩
5: Stop if θk ≤ Tol: xk is a C-stationary point within tolerance Tol
6: Choose τk ∈ (0, 1] and set xk+1 = xk + τkdk

7: end for

Algorithm 1 is interesting in situations where minimizing a linear function over X is computationally cheap.
We refer the interested reader to [12] and references therein for several optimization problems arising from
machine learning and data science that are suitable for the FW algorithm. Differently from [12] that deals
with smooth problems, the recent work [19] also gives a list of nonsmooth but convex optimization problems
that can be solved by a variant of the FW algorithm tailored to a particular structure of nonsmoothness. The
main idea in [19], that dates back to [25], is to work with well-chosen approximate subgradients of f . More
precisely, instead of computing an arbitrary subgradient, the method requires at every iteration the construction
of a set Tk ⊂ ℜn containing all the subgradients of f in a neighborhood of xk and defines zk by solving the
more involving subproblem minz∈X maxs∈Tk

⟨s, z⟩, which is implementable only in some particular (convex)
cases [4, 19, 25].

Under the assumption that f is smooth, then Algorithm 1 is the classic conditional gradient method of [11].
The sole contribution of this section is the proof that the algorithm (asymptotically) computes a C-stationary
point of (1) provided f is UC1,α with α ∈ (0, 1]. To this end, we assume that Tol = 0 and the algorithm does not
stop. (If Algorithm 1 stops at iteration k, then θk = 0 because θk ≥ 0 for all k: in this case, 0 = minz∈X ⟨gk, z−xk⟩
and thus xk is C-stationary; cf. (7).) We start our analysis with the following key result. Once the inequality in
Lemma 5 is established, convergence analysis follows the same techniques found in the (smooth) FW algorithm’s
literature.

▶ Lemma 5. Consider problem (1) with f : O → ℜ satisfying (3), α ∈ (0, 1], and X ⊂ O a convex and compact
set. Then, for the (possibly unknown) constant ℓ given in (3)

f(xk+1) ≤ f(xk) − τkθk + ℓ

α + 1τα+1
k ∥dk∥α+1, ∀ k = 0, 1, 2 . . .
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Proof. Let I(xk) = {u ∈ U : F (xk, u) = f(xk)}. It follows from the Hölder condition in (3) (see also [15,
Eqs. (2.4) and (2.5)]) that, for all u ∈ I(xk), F (xk+1, u) ≤ F (xk, u)+⟨∇F (xk, u), xk+1−xk⟩+ ℓ

α+1 ∥xk+1−xk∥α+1.

The Carathéodory Theorem [22, Thm. 2.29] ensures that every g ∈ ∂Cf(xk) = co
{

∇xF (xk, u) : u ∈ I(xk)
}

can be written as a convex combination of no more than n + 1 vectors ∇xF (xk, u), u ∈ I(xk). Therefore, by
replicating ui ∈ I(xk) and assigning λk

i = 0 if necessary, the subgradient gk at iteration k of Algorithm 1 can
be expressed as gk =

∑n+1
i=1 λk

i ∇xF (xk, ui),with λk ∈ ℜn+1
+ s.t.

∑n+1
i=1 λk

i = 1, and ui ∈ I(xk). We get from the
above inequality that, for ui ∈ I(xk),

n+1∑
i=1

λk
i F (xk+1, ui) ≤

n+1∑
i=1

λk
i F (xk, ui) + ⟨gk, xk+1 − xk⟩ + ℓ

α + 1∥xk+1 − xk∥α+1.

Recall that
∑n+1

i=1 λk
i F (xk, ui) = f(xk) because ui ∈ I(xk). Furthermore,

n+1∑
i=1

λk
i F (xk+1, ui) ≥

n+1∑
i=1

λk
i min

u∈U
F (xk+1, u) = f(xk+1).

We have thus shown that f(xk+1) ≤ f(xk) + ⟨gk, xk+1 − xk⟩ + ℓ
α+1 ∥xk+1 − xk∥α+1. The result follows from

definitions xk+1 = xk + τkdk and θk = −⟨gk, dk⟩. ◀

The next two theorems follow from simple adjustments (to the configuration under consideration) of known
results found in the FW algorithm’s literature for smooth problems, see e.g. [2, Chap. 13] and [13, §B.2.1]. For
this reason, we move their proofs to the Appendix.

▶ Theorem 6. Under the setting of Lemma 5, let θk := minj≤k θj and f∗ := minx∈X f(x). Then,

θk ≤
f(x0) − f∗ + ℓ

α+1 Diam(X)α+1 ∑k
j=0 τα+1

j∑k
j=0 τj

. (11)

If {τk} satisfies
∑∞

k=0 τk = ∞ and limk→∞ τk = 0, then limk→∞ θk = 0. Furthermore, let j(k) ∈ {1, . . . , k} be
such that θk = θj(k). Then any cluster point of the sequence {xj(k)} is a C-stationary point for (1).

The sequence {f(xk)} can be made monotone upon more strict rules to define stepsizes. The following result
is an adaptation of [2, Thm. 13.9] (that considers α = 1 and f to be ℓ-smooth).

▶ Theorem 7. Consider Algorithm 1 with Tol = 0 applied to problem (1), with f : O → ℜ satisfying (3),
α ∈ (0, 1], and X ⊂ O a convex and compact set. Again, let θk := minj≤k θj and f∗ := minx∈X f(x). Then,
under the stepsize rule (i) τk = min

{(
θk

ℓ∥dk∥α+1

) 1
α , 1

}
or (ii) τk ∈ arg minτ∈[0,1] f(xk + τdk), we have that

0 ≤ θk ≤


α+1

α [f(x0)−f∗]
k+1 if k <

( α+1
α [f(x0)−f∗]

ℓDiam(X)α+1

)
− 1(

α+1
α [f(x0)−f∗]ℓ

1
α Diam(X)

α+1
α

k+1

) α
α+1

otherwise.

In particular, limk→∞ θk = 0 at rate of O
(

1
k

α
α+1

)
.

This result is a conceptual one because the Lipschitz constant ℓ in (i) is in general unknown and rule (ii)
amounts to globally solving a uni-dimensional function over the interval [0, 1]. Less stringent schemes that work
well in practice employ inexact line-searches (e.g. [18] and the Armijo rule).

Let us consider again Example 3, and apply Algorithm 1. If we start with x0 = 0 and the oracle returns
g0 = ∇F1(x0) = 4, then we get θ0 = 0: the algorithm stops at iteration k = 0 with the C-stationary point x0

that is a global maximizer. This fact motivates the following section.

4 Directional stationarity via a modified FW algorithm

Ideally, for nonsmooth minimization problems, one wants to design an algorithm that will compute a stationary
point that has the best chance to be a local minimum [17]. However, without further structure, having guarantees
of computing a d-stationary point is out of reach. One special structure arises when X has finitely many known
vertices, a setting exploited in [3] for more structured functions and briefly adapted to our framework in the
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Appendix. We now propose a new variant of the FW algorithm for computing d-stationary points upon the
following additional assumption on the objective function: f is given by

f(x) = min
i=1,...,q

Fi(x), with every Fi : O → ℜ known and α-Hölder smooth, (12)

i.e, U in (3) is the finite index set {1, . . . , q}. Accordingly, it follows from (9) that x̄ ∈ X is a d-stationarity point
of problem (1) if

0 = min
x∈X

⟨∇Fi(x̄), x − x̄⟩ for all i ∈ I(x̄) := {j ≤ q : Fj(x̄) = f(x̄)}. (13)

Based on this fact, Algorithm 2 seeks, at every iteration, for a descent direction by checking the gradient of
all functions Fi that are ϵ-active. To be more precise, we define the following index set, with ϵ > 0 a small
tolerance Iϵ(x) = {i ≤ q : f(x) ≥ Fi(x) − ϵ}. We say that Fi is ϵ-active at x if i ∈ Iϵ(x). If q = 1 in (12), then

Algorithm 2 d-stationary Frank–Wolfe Algorithm
1: Let x0 ∈ X, Tol ≥ 0, and ϵ > 0 be given
2: for k = 0, 1, 2, . . . do
3: for i ∈ Iϵ(xk) do
4: Let zi,k ∈ X be a solution of minx∈X ⟨∇Fi(xk), x − xk⟩
5: Set di,k = zi,k − xk. Choose τi,k ∈ (0, 1] if ⟨∇Fi(xk), di,k⟩ < 0; otherwise di,k = 0 and τi,k = 0
6: Define xi,k = xk + τi,kdi,k and θi(xk) = −⟨∇Fi(xk), di,k⟩
7: end for
8: Stop if maxi∈I(xk) θi(xk) ≤ Tol: xk is a d-stationary point within tolerance Tol
9: Define i∗ ∈ arg mini∈Iϵ(xk) f(xi,k) and set xk+1 = xi∗,k

10: end for

Algorithm 2 boils down to the classic FW algorithm. Again aligned with the main motivation from [4, 19, 25],
when q > 1 Algorithm 2 searches for a subgradient in ∂Cf yielding maximum descent. In order to provide an
asymptotic analysis, we must allow the possibility of employing “approximate” subgradients yielded by ∇Fi(xk)
with i in Iϵ(xk)\I(xk). This is in the same vein as the proximal method of [17] for DC programming. Note that
θi(x) is nonnegative for all i ∈ Iϵ(x) and all x ∈ X. Naturally, if at iteration k we have θi(xk) = 0 for all active
index i ∈ I(xk), then x̄ = xk is, from (13), d-stationary for problem (1) and the algorithm should halt. This
explains why the stopping test above employs the set I(xk) instead of Iϵ(xk). Indeed, the alternative stopping
test maxi∈Iϵ(xk) θi(xk) ≤ Tol may never be triggered even when Tol > 0: we may find a direction dj,k that is of
descent for some Fj with j ∈ Iϵ(xk)\I(xk) but not for f .

In what follows we analyze the convergence properties of Algorithm 2. To this end, we need to assert on
the continuity of the function θi(x). Let ωi : O × O → ℜ be given by ωi(x, y) := ⟨∇Fi(y), x − y⟩. Since ∇Fi is
continuous by assumption, ωi(x, y) is continuous on both arguments. Then, Theorem 1.17(c) from [22] ensures
that θi(y) = − minx∈X ωi(x, y) is a continuous function.

▶ Theorem 8. Let f : O → ℜ be given by (12) and X ⊂ O a convex and compact set. Consider Algorithm 2
with ϵ > 0 applied to problem (1) and suppose that the sequence of stepsizes is defined by one of the following
rules1 (i) τi,k = min

{( θi(xk)
ℓ∥di,k∥α+1

) 1
α , 1

}
or (ii) τi,k ∈ arg minτ∈[0,1] f(xk + τdi,k). Then every cluster point of the

sequence {xk} generated by the algorithm is d-stationary for (1).

Proof. Let us define Gi(xk) = α
α+1 θi(xk) min

{
θi(xk)

1
α

ℓ
1
α Diam(X)

α+1
α

, 1
}

≥ 0. Clearly, Gi(xk) = 0 if, and only if,

θi(xk) = 0. If θi(xk) > 0 we can proceed as in Lemma 12 (Appendix) with f replaced by Fi to conclude
that Fi(xi,k) ≤ Fi(xk) − Gi(xk) under both rules (i) and (ii). If θi(xk) = 0, then Gi(xk) = 0. In both cases,
Fi(xk) − Gi(xk) ≥ Fi(xi,k) ≥ f(xi,k) ≥ f(xk+1) for all i ∈ Iϵ(xk), showing that the sequence {f(xk)} is
nonincreasing (because Fi(xk) = f(xk) for i ∈ I(xk)). Let x̄ ∈ X be an arbitrary cluster point of {xk} and {xkl}
be a subsequence such that liml→∞ xkl = x̄. It follows from continuity of Fi, i = 1, . . . , q, that I(x̄) ⊂ Iϵ(xkl) for
all l large enough. Then, by working with such indexes we obtain Fi(xkl) − Gi(xkl) ≥ f(xkl+1) ≥ · · · ≥ f(xkl+1)
for all i ∈ I(x̄). By taking the limit with l going to infinite we get from continuity that Fi(x̄) − f(x̄) ≥
liml→∞ Gi(xkl) = Gi(x̄) ≥ 0 for all i ∈ I(x̄). Recall that Fi(x̄) = f(x̄) for i ∈ I(x̄) and thus Gi(x̄) = 0.

1 ℓ > 0 is the maximum among the Lipschitz constants of functions Fi, i = 1, . . . , q.
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Furthermore, it follows from the definition of Gi that 0 = θi(x̄) = − minx∈X ⟨∇Fi(x̄), x − x̄⟩ for all i ∈ I(x̄), i.e.,
x̄ is a d-stationary point. ◀

We highlight that the convergence rate of Theorem 7 applies.

▶ Example 9. Let F1(x) := F (x, 1) = x2/2 + x, F2(x) := F (x, 2) = x2/2, and f(x) = min{F1(x), F2(x)}. As for
the feasible set, let us take X = [−4, 2]. Suppose we employ Algorithm 1 with x0 = −3 and τ0 = 3/5. In this
case, f(−3) = F1(−3) = 3/2 and ∇F1(−3) = −2. It is easy to see that the algorithm defines d0 = 2 − (−3) = 5
and, thus, x1 = x0 + τ0d0 = −3 + (3/5)5 = 0. At this point, f(0) = F1(0) = F2(0) = 0 and f is non-differentiable:
∂Cf(0) = [0, 1]. If the oracle returns g1 = ∇F2(0) = 0 ∈ ∂Cf(x1), then θ1 = 0 and the algorithm stops at the
C-stationary point x1 = 0 after one iteration. It is clear that x1 is not d-stationary (f is non-differentiable at
x1 ∈ int(X), cf. Prop. 4). Suppose now we employ Algorithm 2 with the same starting point and ϵ = 0.1. In
this case, the first iteration coincides with that of Algorithm 1 (because Iϵ(x0) = I(x0) = {1}). Thus x1 = 0 and
Iϵ(x1) = I(x1) = {1, 2}. Algorithm 2 considers the two subgradients (of f) ∇F1(0) = 1 and ∇F2(0) = 0. With
the first choice, the algorithm computes a descent direction and escapes from the C-stationary point x1 = 0.

The next result shows how sharp the d-stationary concept is for the problems of interest.

▶ Theorem 10. Let x̄ ∈ X be d-stationary for (1) with f given by (12). In addition, assume that there exists
δ > 0 such that Fi in (12) is convex over B(x̄, δ) for all i ∈ I(x̄). Then x̄ is a local solution of problem (1).

Proof. Since x̄ is d-stationary, if all functions Fi are active at x̄, that is, {1, . . . , q} = I(x̄), then ⟨∇Fi(x̄), x−x̄⟩ ≥ 0
for all x ∈ X and all i ∈ {1, . . . , q}. In particular, ⟨∇Fi(x̄), x − x̄⟩ ≥ 0 for all x ∈ X ∩ B(x̄, δ) and the local
convexity of Fi yields that x̄ minimizes Fi over X ∩ B(x̄, δ). Hence, Fi(x̄) ≤ Fi(x) for all x ∈ X ∩ B(x̄, δ) and all
i ∈ {1, . . . , q}, resulting in f(x̄) ≤ f(x) for all x ∈ X ∩ B(x̄, δ), i.e., x̄ is a local solution of (1).

Suppose now that I(x̄) ⊊ {1, . . . , q}, and let j ∈ {1, . . . , q}\I(x̄), i.e., Fj(x̄) > f(x̄). Set ϵj = (Fj(x̄) −
f(x̄))/2 > 0. Continuity of Fj ensures that there exists δj > 0 such that x ∈ B(x̄, δj) implies Fj(x) ≥
Fj(x̄) − ϵj > f(x̄). As there are only finitely many functions Fj , we conclude that ϵ̄ = minj∈{1,...,q}\I(x̄) ϵj

is a strictly positive constant. Again, continuity ensures the existence of δ̃ > 0 such x ∈ B(x̄, δ̃) implies
Fj(x) ≥ Fj(x̄) − ϵ̄ > f(x̄) for all j ∈ {1, . . . , q}\I(x̄). Moreover, convexity of Fi over B(x̄, δ) for i ∈ I(x̄), and
d-stationarity of x̄ yields that Fi(x) ≥ Fi(x̄) = f(x̄) for all x ∈ X ∩ B(x̄, δ). Let δ̄ = min{δ, δ̃} > 0. By combining
the last two inequalities we conclude that, for all x ∈ X ∩ B(x̄, δ̄), Fi(x) ≥ f(x̄) for all i ∈ {1, . . . , q}, which gives
f(x) ≥ f(x̄) for all x ∈ X ∩ B(x̄, δ̄), i.e., x̄ is a local solution for (1). ◀

▶ Corollary 11. If all Fi in (12) are convex, then every d-stationary point of problem (1) is a local solution.

This corollary, apparently innocuous, conveys an original result in the area of DC programming [8]. Indeed,
if all functions Fi in (12) are convex, then f can be decomposed as a DC function f(x) = f1(x) − f2(x), with
f1(x) =

∑m
i=1 Fi(x) and f2(x) = maxj=1,...,m

∑
ℓ̸=j Fℓ(x). In this setting, the concept of d-stationarity of a point

x̄ ∈ X to problem minx∈X f1(x) − f2(x) is equivalent to the inclusion ∂f2(x̄) ⊂ ∂[f1(x̄) + iX(x̄)]. Hence, all local
minimizers must satisfy this condition. However, the reverse implication is only known to hold if f2 is (locally)
polyhedral. Corollary 11 gives another framework where d-stationarity implies local optimality without needing
f2 to be locally polyhedral.
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A Appendix

A.1 Proof of Theorem 6.
It follows from Lemma 5 (and the fact that ∥dk∥α+1 = ∥zk − xk∥α+1 ≤ Diam(X)α+1) that

∑k
j=0 τjθj ≤∑k

j=0[f(xj) − f(xj+1) + ℓ
α+1 τα+1

j Diam(X)α+1] = f(x0) − f(xk+1) + ℓ
α+1 Diam(X)α+1 ∑k

j=0 τα+1
j . Since f∗ ≤

f(xk) for all k, (11) holds. Our assumptions on {τk} yields
( ∑k

j=0 τα+1
j

)
/
( ∑k

j=0 τj

)
→ 0 as k → ∞ [13, §B.2.1]

and thus 0 ≤ limk→∞ θk ≤ limk→∞
(
f(x0) − f∗ + ℓ

α+1 Diam(X)α+1 ∑k
j=0 τα+1

j

)
/
( ∑k

j=0 τj

)
= 0. Furthermore,
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let j(k) ∈ {1, . . . , k} be s.t. θk = θj(k). Then, ⟨gj(k), x − xj(k)⟩ ≥ ⟨gj(k), dj(k)⟩ = −θj(k) = −θk for all x ∈ X.
Recall that ∂Cf is closed and locally bounded over O. It thus follows from boundedness of {xj(k)} ⊂ X that
gj(k) is bounded as well. Let x̄ ∈ X be an arbitrary cluster point of {xj(k)}; by extracting subsequences if
necessary, we get two convergent subsequences {xj(k′)} and {gj(k′)}: xj(k′) → x̄ ∈ X and gj(k′) → ḡ ∈ ∂Cf(x̄) [5,
Prop. 2.1.5(c)]. It is clear from the above development that ⟨gj(k′), x − xj(k′)⟩ ≥ −θk′ for all x ∈ X. By passing
to the limit as k′ goes to infinity, and recalling that θk′ → 0, we conclude that ⟨ḡ, x − x̄⟩ ≥ 0 for all x ∈ X.
Hence, it follows from (7) that x̄ ∈ X is a C-stationary point for problem (1).

A.2 Proof of Theorem 7.
We first prove the following auxiliary result, which is an adaption of [2, Lem. 13.8].

▶ Lemma 12. Under the assumptions of Lemma 5, suppose that the sequence of stepsizes is defined by one of
the following rules (i) τk = min

{(
θk

ℓ∥dk∥α+1

) 1
α , 1

}
or (ii) τk ∈ arg minτ∈[0,1] f(xk + τdk). Then the sequence of

function values satisfies

f(xk+1) ≤ f(xk) − α

α + 1θk min
{

θ
1
α

k

ℓ
1
α Diam(X) α+1

α

, 1
}

∀ k = 0, 1, 2 . . . (14)

Proof. Let us define the following uni-dimensional function w(τ) := f(xk) − τθk + ℓ
α+1 τα+1∥dk∥α+1, which is

well defined and strictly convex over [0, ∞). By solving the problem minτ∈[0,∞) w(τ) we get as solution the point
τ̄k satisfying 0 = −θk + ℓτ̄α

k ∥dk∥α+1, i.e., τ̄k = ( θk

ℓ∥dk∥α+1 ) 1
α > 0. By evaluating w at τ̄k we get

w(τ̄k) = f(xk) −
θ

α+1
α

k

ℓ
1
α ∥dk∥ α+1

α

+ ℓ

α + 1
θ

α+1
α

k

ℓ
α+1

α ∥dk∥
(α+1)2

α

∥dk∥α+1

= f(xk) −
θ

α+1
α

k

ℓ
1
α ∥dk∥ α+1

α

+ 1
α + 1

θ
α+1

α

k

ℓ
1
α ∥dk∥ α+1

α

= f(xk) − α

α + 1
θ

α+1
α

k

ℓ
1
α ∥dk∥ α+1

α

.

We now take τk = min{τ̄k, 1} for all k, which corresponds to rule (i), and analyze the following two cases:

τk < 1. In this case, τk = τ̄k and thus f(xk+1) ≤ w(τk) = f(xk) − α
α+1

θ
α+1

α
k

ℓ
1
α ∥dk∥

α+1
α

from Lemma 5.

τk = 1. Then f(xk+1) ≤ w(τk) = w(1) = f(xk) − θk + ℓ
α+1 ∥dk∥α+1. Observe that τk = 1 implies θ

1
α

k ≥
(ℓ∥dk∥α+1) 1

α , which in turn gives θk ≥ ℓ∥dk∥α+1 because all these variables and parameters are non-negative.
Therefore, f(xk+1) ≤ f(xk) − θk + ℓ

α+1 ∥dk∥α+1 ≤ f(xk) − α
α+1 θk.

In both cases we have

f(xk+1) ≤ w(τk) = f(xk) − α

α + 1θk min
{

θ
1
α

k

ℓ
1
α ∥dk∥ α+1

α

, 1
}

≤ f(xk) − α

α + 1θk min
{

θ
1
α

k

ℓ
1
α Diam(X) α+1

α

, 1
}

,

as stated. The analysis for item (ii) is straightforward: as (14) holds for the non-optimal rule of item (i), then it
must hold for the rule of item (ii) because f(xk+1) = minτ∈[0,1] f(xk + tdk) ≤ f(xk + min{τ̄k, 1}dk). ◀

We now proceed to the proof of Theorem 7. Regardless the stepsize rule (i) or (ii), Lemma 12 ensures that

f∗ − f(x0) ≤ f(xk+1) − f(x0) =
∑k

j=0[f(xj+1) − f(xj)] ≤ −
∑k

j=0
α

α+1 θk min
{

θ
1
α

k

ℓ
1
α Diam(X)

α+1
α

, 1
}

, showing that

(k + 1)θk min
{

θ
1
α

k

ℓ
1
α Diam(X) α+1

α

, 1
}

≤ α + 1
α

[f(x0) − f∗]. (15)

Suppose that θ
1
α

k > ℓ
1
α Diam(X) α+1

α . Then (15) yields θk ≤
α+1

α [f(x0)−f∗]
k+1 . Combining these two last inequalities

we conclude that the former cannot hold for k ≥
( α+1

α [f(x0)−f∗]
ℓDiam(X)α+1

)
− 1. Therefore, after finitely many steps we

have that θ
1
α

k ≤ ℓ
1
α Diam(X) α+1

α for all k large enough. In this case, (15) gives θ
α+1

α
k

ℓ
1
α Diam(X)

α+1
α

≤
α+1

α [f(x0)−f∗]
k+1 ,

i.e., θk ≤
(

α+1
α [f(x0)−f∗]ℓ

1
α Diam(X)

α+1
α

k+1

) α
α+1

. This inequality proves that limk→∞ θk = 0 at convergence rate of

O
(

1
k

α
α+1

)
. ◀
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A.3 Computing d-stationary points when the feasible set has known vertices
▶ Proposition 13. Let f : O → ℜ be an upper-C1,α function and suppose that X has finitely many vertices
v1 . . . , vm. Then x̄ is a d-stationary point of problem (1) if and only if f ′(x̄; vι − x̄) ≥ 0 for all ι = 1, . . . , m.

Proof. The first implication follows directly from the definition of d-stationarity: f ′(x̄; x − x̄) ≥ 0 for all
x ∈ X. To prove the converse implication, note that for every x ∈ X = co

{
v1 . . . , vm

}
, there exists a vector

λx ∈ ℜm
+ such that

∑m
ι=1 λι

x = 1 and x =
∑m

ι=1 λι
xvι. Furthermore, recall that the directional derivative is

positively homogeneous, i.e., rf ′(x; d) = f ′(x; rd) for all r ≥ 0. Then, using the expression in (6) we get 0 ≤∑m
ι=1 λι

xf ′(x̄; vι−x̄) =
∑m

ι=1 f ′(x̄; λι
x(vι−x̄)) =

∑m
ι=1 ming∈∂Cf(x̄)⟨g, λι

x(vι−x̄)⟩ ≤ ming∈∂Cf(x̄)⟨g,
∑m

ι=1 λι
xvι−x̄⟩.

The latter is equal to ming∈∂Cf(x̄)⟨g, x − x̄⟩ = f ′(x̄; x − x̄). As x ∈ X is arbitrary, d-stationarity of x̄ to (1)
holds. ◀

This fact, already exploited in [3] for more structured functions, motivates the following escaping procedure
to prevent Algorithm 1 from stopping at a C-stationary point that is not d-stationary: (i) let x̃ be given by
Algorithm 1; (ii) check if there exists a vertex vι of X such that f ′(x̃; vι − x̃) < 0 (such a derivative can be
approximated by finite difference formulas); (iii) if such a vertex does not exist then stop (x̃ is d-stationary),
otherwise provide the descent direction vι − x̃ of f at x̃ to the algorithm so that it can continue its iterative
process. This approach is a roundabout for the more difficult task (already investigate in [4, 19, 25] using different
strategies and convexity assumption): choose g̃ ∈ ∂Cf(x̃) such that the FW subproblem provides a direction of
maximum descent for f at x̃.
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