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Abstract
In this paper, we consider a robust combinatorial optimization problem with uncertain weights and propose an
uncertainty set that generalizes interval uncertainty by imposing lower and upper bounds on deviations of subsets of
items. We prove that if the number of such subsets is fixed and the family of these subsets is laminar, then the robust
combinatorial optimization problem can be solved by solving a fixed number of nominal problems. This result generalizes
a previous similar result for the case where the family of these subsets is a partition of the set of items.
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1 Introduction

We consider a combinatorial optimization problem

(CO) min
x∈X

cx,

where N = {1, . . . , n} is the ground set of items, X ⊂ {0, 1}n is the set of feasible solutions x with xi equal to 1
if item i ∈ N is part of the solution and 0 otherwise and c is the vector of weights (a row vector of size n). We
are interested in the case where the weights are not known with certainty; but an uncertainty set U , which is the
set of all possible realizations of weights (with no associated probability distribution), is available. The aim is to
find a robust solution, i.e., a feasible solution whose worst-case weight is minimum. So we would like to solve the
robust combinatorial optimization problem with uncertainty set U , which is defined as:

RCO(U) min
x∈X

max
c∈U

cx.

A common way of modeling uncertainty in robust optimization is defining a nonempty interval for each
unknown parameter. This is rather natural and easy compared to defining a set of discrete scenarios. In interval
uncertainty, we consider scenarios where the weight of item i ∈ N takes a value in a nonempty interval [li, ui],
independently of the weights of other items. Then, a worst-case scenario for any feasible solution is the scenario
in which all weights are equal to their upper bounds. However, this is an extreme scenario and making a decision
based solely on it is considered to be very conservative. Different uncertainty sets have been proposed with the
aim of limiting this conservatism. Our aim in this study is to propose a polyhedral uncertainty set, that we refer
to as “generalized deviation budgeted uncertainty set” and denote by UG−dev. This set is the set of all c that
satisfy

ci = li + δi i ∈ N, (1)∑
i∈Nk

δi ≤ Λk k ∈ K, (2)

∑
i∈Nk

δi ≥ λk k ∈ K, (3)

δi ≤ ui − li i ∈ N, (4)
δi ≥ 0 i ∈ N, (5)
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2 Robust Combinatorial Optimization

where K = {1, . . . , m}, m is a nonnegative integer, Nk ⊆ N , Λk ≥ λk ≥ 0 for all k ∈ K.
Set UG−dev generalizes the locally budgeted uncertainty model, UL−dev, proposed by Goerigk and Lendl [6].

More precisely, UL−dev corresponds to the special case of UG−dev with no lower bounds, i.e., λk = 0 for all k ∈ K.
Goerigk and Lendl study the case where N1, . . . , Nm is a partition of N . Set UL−dev is also used by Gounaris
et al. [8] to model the demand uncertainty in the robust capacitated vehicle routing problem.

Goerigk and Lendl prove that RCO(UL−dev) can be solved by solving 2m nominal problems when N1, . . . , Nm

is a partition of N . Consequently, if m is fixed and if CO can be solved in polynomial time, then RCO(UL−dev)
can be solved in polynomial time. The authors conclude their paper by noting that their positive results do not
translate directly to settings where N1, . . . , Nm is not necessarily a partition of N . In this study, we give another
positive result for the case where N1, . . . , Nm is a laminar set family. The family N1, . . . , Nm is called laminar
if for any k1 < k2 in K, either Nk1 and Nk2 are disjoint or one is a subset of the other, i.e., Nk1 ∩ Nk2 = ∅ or
Nk1 ⊂ Nk2 or Nk2 ⊂ Nk1 . Laminar families have already been studied in the context of uncertainty sets in robust
optimization. Indeed, Gounaris et al. [7] extend their study on the robust capacitated vehicle routing problem to
the case of inclusion-constrained budgeted uncertainty sets, i.e., the case in which the family of sets N1, . . . , Nm

is laminar. Wiesemann et al. [10] call the laminarity conditions as nesting conditions for the confidence sets in
their ambiguity set.

The uncertainty model UG−dev is interesting in modeling parameters correlated in a particular way. We
give two examples here. Suppose that we would like to locate blood collection points in such a way that the
population that can reach at least one of these points within a threshold walking distance is maximized. Let N

be the set of streets in the area and ci denote the population on street i ∈ N . It is difficult to come up with
exact populations as people move to different parts of a city depending on the hour of the day. Hence, it would
be natural to propose intervals rather than point estimates. But in addition to defining an interval for each ci,
we may also estimate lower and upper bounds on the population in neighborhoods composed of several streets
and in regions composed of several neighborhoods and this additional information can be used to limit the
conservatism. Consider another setting where N is a set of products and ci denotes the demand for product
i ∈ N . Products may be grouped into subsets based on their properties, such as color, model and year of release,
in such a way that products in the same group may be substitutes for each other. Then, the uncertainty set can
be improved by including lower and upper bounds on the aggregate demands.

To motivate the use of both lower and upper bounds on deviations, we provide a small example.

▶ Example. Let N = {1, . . . , 8}, l = (1, 1, 1, 1, 1, 1, 1, 1) and u = (4, 5, 4, 5, 4, 5, 4, 5). Suppose that we would like
to solve the selection problem where we choose four items with minimum weight.

First, we consider the simple interval uncertainty model and let U1 = {c : ci = li+δi, δi ∈ [0, ui−li] for i ∈ N}.
Problem RCO(U1) has a unique optimal solution (1, 0, 1, 0, 1, 0, 1, 0) with worst-case weight equal to 16. Next,
we add a budget constraint to U1 and obtain U2 = {c : ci = li + δi, δi ∈ [0, ui − li] for i ∈ N,

∑
i∈N δi ≤ 10}.

Now any solution with four items is optimal for RCO(U2). Note that, under both uncertainty sets, for any
feasible solution, there exists a worst-case scenario in which the weights of the items that are not part of the
solution are at their lower bounds. For instance, solution (1, 0, 1, 0, 1, 0, 1, 0) is optimal for RCO(U2) and its
worst-case weight is 14 with the weights of items 2, 4, 6 and 8 equal to 1.

Now suppose that we have additional information about the deviations. Let Nk = {2k −1, 2k} for k = 1, 2, 3, 4
and consider the uncertainty set

U3 =
{

c : ci = li + δi, δi ∈ [0, ui − li] for i ∈ N,
∑
i∈N

δi ≤ 10,
∑

i∈Nk

δi ≥ 2 for k = 1, 2, 3, 4
}

.

Under U3, solution (1, 0, 1, 0, 1, 0, 1, 0) has worst-case weight 14 whereas solution (1, 1, 1, 1, 0, 0, 0, 0) has worst-case
weight 10. Indeed the latter solution is optimal for RCO(U3). With U3, in the worst-case scenario for solution
(1, 1, 1, 1, 0, 0, 0, 0), items 5, 6, 7 and 8, the items that are not part of the solution, do not have their weights all
at their lower bounds; the weights of these four items have a deviation of at least four units in total.

Our main result in this paper is the following:

▶ Theorem 1. Problem RCO(UG−dev) can be solved by solving 2m nominal problems if the family of sets
N1, . . . , Nm is laminar.

Theorem 1 generalizes the result of Goerigk and Lendl for a partition to a laminar family of sets. We note later
that imposing lower bounds on deviations would play no role when N1, . . . , Nm is a partition (see Corollary 8).
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In the next section, we review other uncertainty sets and similar results obtained for them. Section 3 gives a
proof of Theorem 1. We conclude with some research directions in Section 4.

2 Related results and a compact formulation

The best-known uncertainty set with limited conservatism is the budgeted uncertainty set proposed by Bertsimas
and Sim [2],

Ucard = {c : ci = li + ξi(ui − li), ξi ∈ [0, 1] for i ∈ N,
∑
i∈N

ξi ≤ Γ},

where Γ ≤ n is a nonnegative integer. The extreme points of this uncertainty set correspond to the scenarios in
which Γ parameters take their highest values while the other n − Γ parameters take their lowest (estimated)
values. Bertsimas and Sim show that RCO(Ucard) can be solved by solving at most n + 1 nominal problems.
Note that there is a difference in the definition of the deviation compared to the one of Goerigk and Lendl [6]. In
the cardinality budgeted uncertainty of Bertsimas and Sim, the bound Γ is on the fraction deviations (of ui − li)
whereas Goerigk and Lendl impose the bound Λ on the actual deviations. This difference in the definition of
deviations is quite significant when one looks at the complexity of the resulting problems: for m = 1, solving
RCO(UL−dev) requires solving two nominal problems, whereas one may need to solve up to n + 1 nominal
problems to solve RCO(Ucard).

Poss [9] generalizes the cardinality budgeted uncertainty set by considering m knapsack constraints. The
knapsack uncertainty set is

Uknap = {c : ci = li + ξi(ui − li) for i ∈ N,
∑
i∈N

akiξi ≤ bk for k = 1, . . . , m, 0 ≤ ξ ≤ ξ̄},

where a ∈ Rm×n
+ , b ∈ Rm

+ and ξ̄ ∈ Rn
+. He proves that RCO(Uknap) can be solved in polynomial time if m is

fixed and CO can be solved in polynomial time. The set UG−dev does not generalize Uknap since a is arbitrary in
Uknap and Uknap does not generalize UG−dev since a ≥ 0 and constraints (3) cannot be modeled.

Similar uncertainty models have been previously used to model the uncertainty in the traffic demand between
origin-destination pairs in the context of a network design problem. Duffield et al. [4] and Fingerhut et al. [5]
propose the hose model that specifies aggregate bounds on the traffic adjacent at nodes rather than bounds
on pairwise traffic demands. The hose model is extended to a hybrid model by adding box constraints on the
individual traffic demands by Altın et al. [1]. Ambiguity sets used in distributionally robust optimization have
also been extended in similar ways, see, e.g., Wiesemann et al. [10] and Chan et al. [3].

Since UG−dev is polyhedral, we can easily obtain a compact mixed integer programming formulation for
RCO(UG−dev). With UG−dev, the worst-case weight for a solution x ∈ X can be computed by solving the linear
program∑

i∈N

lixi + max
∑
i∈N

xiδi

s.t. (2)–(5).

If UG−dev is not empty, then this linear program is feasible and bounded and hence has the same optimal value
as its dual. Consequently, the robust counterpart, denoted by RCO(UG−dev), can be stated as follows.

min
∑
i∈N

lixi +
∑
k∈K

(Λkσk − λkυk) +
∑
i∈N

(ui − li)ρi (6)

s.t. x ∈ X, (7)∑
k∈K

aki(σk − υk) + ρi ≥ xi i ∈ N, (8)

σ, υ, ρ ≥ 0, (9)

where, for i ∈ N and k ∈ K, aki = 1 if i ∈ Nk and 0 otherwise.
If K = ∅, then we get the interval uncertainty model. It is easy to see that in this case there is an optimal

solution in which ρi = xi for all i ∈ N , i.e., the robust problem is equivalent to the nominal problem with ci = ui

for all i ∈ N .
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3 Proof of Theorem 1

We prove a series of lemmas to prove Theorem 1. For k′ ∈ K, let Kk′ = {k ∈ K : Nk ⊂ Nk′} and for T ⊆ K, let
NT = ∪k∈T Nk. We first give a lemma that is used repeatedly in the proofs of the subsequent lemmas.

▶ Lemma 2. Let k′ ∈ K and T ⊆ Kk′ . If the family of sets N1, . . . , Nm is laminar, there exists a subset S ⊆ T

such that
∑

k∈S aki = 1 for all i ∈ NT and
∑

k∈S aki = 0 for all i ∈ Nk′ \ NT .

Proof. Let k′ ∈ K and T ⊆ Kk′ and suppose that the family of sets N1, . . . , Nm is laminar. Start with an empty
set S. Let k be an index in T with largest cardinality Nk (break ties arbitrarily). Add k to S and remove k and
all l with Nl ⊂ Nk from T . Continue until T is empty. It is easy to see that Nk1 and Nk2 are disjoint for any
distinct k1 and k2 in S. Moreover, since S ⊆ T , NS ⊆ NT . Let i ∈ Nk1 with k1 ∈ T . Either k1 ∈ S and i ∈ NS

or k1 ̸∈ S and there exists k2 ∈ S with Nk1 ⊂ Nk2 . In the latter case, i ∈ Nk2 ⊆ NS . Hence NT ⊆ NS . Overall,
NT = NS . This together with the fact that Nk1 and Nk2 are disjoint for any distinct k1 and k2 in S gives the
result. ◀

▶ Lemma 3. If the family of sets N1, . . . , Nm is laminar, then for k′ ∈ K and i ∈ Nk′ , constraint (8) is the
same as∑

k∈Kk′

aki(σk − υk) +
∑

k∈K:Nk′ ⊆Nk

(σk − υk) + ρi ≥ xi. (10)

Proof. Let k′ ∈ K and i ∈ Nk′ and suppose that the family of sets N1, . . . , Nm is laminar. Then, for any
k ∈ K \ {k′}, either Nk ⊂ Nk′ or N ′

k ⊂ Nk or Nk ∩ Nk′ = ∅. If k is such that N ′
k ⊂ Nk, then aki = 1 and if k is

such that Nk ∩ Nk′ = ∅, then aki = 0 since i ∈ Nk′ . ◀

Let P be the convex hull of the feasible set of RCO(UG−dev) as modeled above, i.e., P = conv({(x, σ, υ, ρ) :
(7)–(9)}). Let en

i be the i-th unit vector of size n and em
k be the k-th unit vector of size m. We will use the

properties of extreme points of P in proving our result. The first property is given without proof as it is easy to
demonstrate.

▶ Lemma 4. An extreme point (x, σ, υ, ρ) of P satisfies σkυk = 0 for all k ∈ K.

Different from the above property, the following ones rely on the family of sets N1, . . . , Nm being laminar.

▶ Lemma 5. If the family of sets N1, . . . , Nm is laminar, an extreme point (x, σ, υ, ρ) of P satisfies∑
k∈K:Nk′ ⊆Nk

(σk − υk) ≥ 0

for all k′ ∈ K.

Proof. Suppose that the family of sets N1, . . . , Nm is laminar and let p = (x, σ, υ, ρ) be an extreme point of P

and k′ ∈ K. We look at three cases:

Case 1: υk′ > 0. Assume, for the sake of deriving a contradiction, that
∑

k∈K:Nk′ ⊆Nk
(σk − υk) < 0. From

Lemma 4, we know that σk′ = 0. For i ∈ Nk′ , by Lemma 3, we know that p satisfies constraint (10). This
constraint can be rewritten as∑

k∈Kk′

akiσk + ρi ≥ xi +
∑

k∈Kk′

akiυk −
∑

k∈K:Nk′ ⊆Nk

(σk − υk).

Using x, υ ≥ 0 and
∑

k∈K:Nk′ ⊆Nk
(σk − υk) < 0, we see that the right hand side is positive. Hence for i ∈ Nk′ ,

we have
∑

k∈Kk′ akiσk + ρi > 0.
Let T = {k ∈ Kk′ : σk > 0}. Let i ∈ Nk′\NT . By definition of T ,

∑
k∈Kk′ akiσk = 0. Since

∑
k∈Kk′ akiσk+ρi >

0, we have ρi > 0. By Lemma 2, there exists a subset S ⊆ T such that
∑

k∈S aki = 1 for all i ∈ NT and∑
k∈S aki = 0 for all i ∈ Nk′ \ NT . Using this together with ρi > 0 for all i ∈ Nk′ \ NT , we see that there

exists a small positive ϵ such that the two points p1 = (x, σ +
∑

k∈S ϵem
k , υ + ϵem

k′ , ρ +
∑

i∈Nk′ \NT
ϵen

i ) and
p2 = (x, σ −

∑
k∈S ϵem

k , υ − ϵem
k′ , ρ −

∑
i∈Nk′ \NT

ϵen
i ) are both in P . In addition, p = 1

2 p1 + 1
2 p2. This is in

contradiction with p being an extreme point of P . Hence if υk′ > 0, then
∑

k∈K:Nk′ ⊆Nk
(σk − υk) ≥ 0.
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Case 2: υk′ = 0 and there exists k with Nk′ ⊂ Nk and υk > 0. Let k′′ be the index of the smallest cardinality set
containing set Nk′ and υk′′ > 0. Since the family of sets is laminar, any k ∈ K with Nk′ ⊂ Nk is such that
Nk ⊂ Nk′′ or Nk′′ ⊆ Nk. By the choice of Nk′′ , we know that υk = 0 for all k ∈ K with Nk′ ⊆ Nk ⊂ Nk′′ .
Hence

∑
k∈K:Nk′ ⊆Nk

(σk − υk) =
∑

k∈K:Nk′ ⊆Nk⊂Nk′′ σk +
∑

k∈K:Nk′′ ⊆Nk
(σk − υk). From case 1, since υk′′ > 0,

we know that
∑

k∈K:Nk′′ ⊆Nk
(σk − υk) ≥ 0. Using this together with σ ≥ 0, we have

∑
k∈K:Nk′ ⊆Nk⊂Nk′′ σk +∑

k∈K:Nk′′ ⊆Nk
(σk − υk) ≥ 0 and so

∑
k∈K:Nk′ ⊆Nk

(σk − υk) ≥ 0.

Case 3: υk′ = 0 and υk = 0 for all k with Nk′ ⊂ Nk. Then,∑
k∈K:Nk′ ⊆Nk

(σk − υk) =
∑

k∈K:Nk′ ⊆Nk

σk ≥ 0. ◀

▶ Lemma 6. Suppose that the family of sets N1, . . . , Nm is laminar and (x, σ, υ, ρ) is an extreme point of P .
For k′ ∈ K, if σk′ > 0 and

∑
k∈K:Nk′ ⊂Nk

(σk − υk) = 0, then σk′ = 1. If there exists k′′ with Nk′′ ⊂ Nk′ and
σk′′ + υk′′ > 0 and σk = υk = 0 for all k with Nk′′ ⊂ Nk ⊂ Nk′ , then υk′′ = 1 and σk′′ = 0.

Proof. Suppose that the family of sets N1, . . . , Nm is laminar and (x, σ, υ, ρ) is an extreme point of P . Let
k′ ∈ K be such that σk′ > 0 and

∑
k∈K:Nk′ ⊂Nk

(σk − υk) = 0. By Lemma 4, we know that υk′ = 0. Let
K1 = {k ∈ Kk′ : σk > 0}, K2 = {k ∈ Kk′ : υk > 0} and T = K1 ∪ K2. We know that

∑
k∈Kk′ akiσk = 0 and∑

k∈Kk′ akiυk = 0 for all i ∈ Nk′ \ NT . By Lemma 2, there exists a subset S ⊆ T such that
∑

k∈S aki = 1 for all
i ∈ NT and

∑
k∈S aki = 0 for all i ∈ Nk′ \ NT .

For i ∈ Nk′ , constraint (10) becomes σk′ +
∑

k∈Kk′ akiσk −
∑

k∈Kk′ akiυk + ρi ≥ xi. If i ∈ Nk′ \ NT , then
this constraint further becomes σk′ + ρi ≥ xi. If xi = 0, then the constraint cannot be tight since σk′ > 0 and
ρi ≥ 0. Let N ′ = {i ∈ Nk′ \ NT : xi = 1}. Suppose that N ′ = ∅ or ρi > 0 for all i ∈ N ′. Then, there exists a
small positive ϵ such that the two points p1 = (x, σ +

∑
k∈S∩K1 ϵem

k − ϵem
k′ , υ −

∑
k∈S∩K2 ϵem

k , ρ +
∑

i∈N ′ ϵen
i )

and p2 = (x, σ −
∑

k∈S∩K1 ϵem
k + ϵem

k′ , υ +
∑

k∈S∩K2 ϵem
k , ρ −

∑
i∈N ′ ϵen

i ) are both in P and p = 1
2 p1 + 1

2 p2.
This is in contradiction with p being an extreme point of P . Hence there exists i ∈ N ′ with ρi = 0. Then,
σk′ +ρi ≥ xi, xi = 1 and ρi = 0 give σk′ ≥ 1. If σk′ > 1, then there exists a small positive ϵ such that the two points
p1 = (x, σ+

∑
k∈S∩K1 ϵem

k −ϵem
k′ , υ−

∑
k∈S∩K2 ϵem

k , ρ) and p2 = (x, σ−
∑

k∈S∩K1 ϵem
k +ϵem

k′ , υ+
∑

k∈S∩K2 ϵem
k , ρ)

are both in P . Since p = 1
2 p1 + 1

2 p2, p cannot an extreme point of P . Thus we can conclude that if p is an
extreme point of P , then σk′ = 1.

Consider the same k′ and suppose that there exists k′′ with Nk′′ ⊂ Nk′ and υk′′ > 0, υk′′ ̸= 1 and
σk = υk = 0 for all k with Nk′′ ⊂ Nk ⊂ Nk′ . Let K1 = {k ∈ Kk′′ : σk > 0}, K2 = {k ∈ Kk′′ : υk > 0}
and T = K1 ∪ K2. By Lemma 2, there exists a subset S ⊆ T such that

∑
k∈S aki = 1 for all i ∈ NT and∑

k∈S aki = 0 for all i ∈ Nk′′ \ NT . For i ∈ Nk′′ \ NT , constraint (10) becomes σk′ − υk′′ + ρi ≥ xi and since
υk′′ ̸= σk′ , either ρi > 0 or σk′ − υk′′ + ρi > xi. Let N ′′ = {i ∈ Nk′′ \ NT : ρi > 0}. There exists a small
positive ϵ such that the two points p1 = (x, σ +

∑
k∈S∩K1 ϵem

k , υ + ϵem
k′′ −

∑
k∈S∩K2 ϵem

k , ρ +
∑

i∈N ′′ ϵen
i ) and

p2 = (x, σ −
∑

k∈S∩K1 ϵem
k , υ − ϵem

k′′ +
∑

k∈S∩K2 ϵem
k , ρ −

∑
i∈N ′′ ϵen

i ) are both in P and p = 1
2 p1 + 1

2 p2. Hence
for p to be an extreme point, we need υk′′ = 1.

Now suppose that there exists k′′ with Nk′′ ⊂ Nk′ and σk′′ > 0 and σk = υk = 0 for all k with Nk′′ ⊂ Nk ⊂ Nk′ .
As we have done above, define K1 = {k ∈ Kk′′ : σk > 0}, K2 = {k ∈ Kk′′ : υk > 0} and T = K1 ∪ K2. For i ∈
Nk′′ \NT , constraint (10) is σk′ +σk′′ +ρi ≥ xi and is never tight since the left hand side is larger than 1. Since there
exists a subset S ⊆ T such that

∑
k∈S aki = 1 for all i ∈ NT and

∑
k∈S aki = 0 for all i ∈ Nk′′ \ NT by Lemma 2,

one can find a small positive ϵ such that the two points p1 = (x, σ +
∑

k∈S∩K1 ϵem
k − ϵem

k′′ , υ −
∑

k∈S∩K2 ϵem
k , ρ)

and p2 = (x, σ −
∑

k∈S∩K1 ϵem
k + ϵem

k′′ , υ +
∑

k∈S∩K2 ϵem
k , ρ) are both in P . Since p = 1

2 p1 + 1
2 p2, p cannot be an

extreme point, proving that such k′′ does not exist. ◀

▶ Lemma 7. Suppose that the family of sets N1, . . . , Nm is laminar and (x, σ, υ, ρ) is an extreme point of P .
For k′ ∈ K, if

∑
k∈K:Nk′ ⊂Nk

(σk − υk) = 0, then υk′ = 0 and σk′ is 0 or 1 and if
∑

k∈K:Nk′ ⊂Nk
(σk − υk) > 0,

then σk′ = 0 and υk′ is 0 or 1. Also
∑

k∈K aki(σk − υk) ∈ {0, 1} for all i ∈ N .

Proof. Let k′ ∈ K. If
∑

k∈K:Nk′ ⊂Nk
(σk−υk) = 0, then, as

∑
k∈K:Nk′ ⊆Nk

(σk−υk) ≥ 0 by Lemma 5 and σk′υk′ = 0
by Lemma 4, we know that υk′ = 0. Also, by Lemma 6, we have σk′ is 0 or 1. If

∑
k∈K:Nk′ ⊂Nk

(σk − υk) > 0,
then let k1, . . . , kt be such that Nk′ ⊂ Nkt

⊂ . . . , Nk1 with σkj
+ υkj

> 0 for all j = 1, . . . , t and σk = υk = 0
for all k with Nk′ ⊂ Nk and k ̸= kj for all j ∈ {1, . . . , t}. Since

∑
k∈K:Nk1 ⊂Nk

(σk − υk) = 0, we have σk1 = 1
and υk1 = 0. Then, by Lemma 6, σk2 = 0 and υk2 = 1. Repeating this argument, we can show that if∑

k∈K:Nk′ ⊂Nk
(σk − υk) = 0, then υk′ = 0 and σk′ is 0 or 1 and if

∑
k∈K:Nk′ ⊂Nk

(σk − υk) > 0, then σk′ = 0 and
υk′ is 0 or 1. Finally

∑
k∈K aki(σk − υk) ∈ {0, 1} for all i ∈ N follows as a consequence. ◀
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Before proceeding to the proof of Theorem 1, we have a corollary that states that if N1, . . . , Nm is a partition
of N in UG−dev, then we obtain the locally budgeted uncertainty set proposed by Goerigk and Lendl [6].

▶ Corollary 8. If N1, . . . , Nm is a partition of N , then the lower bounds λk for k ∈ K are redundant in
RCO(UG−dev).

Proof. Suppose that N1, . . . , Nm is a partition of N and let (x, σ, υ, ρ) be an extreme point of P . For any k′ ∈ K

we have
∑

k∈K:Nk′ ⊂Nk
(σk − υk) = 0 since no subset is contained in another one. Then, by Lemma 7, υk′ = 0

and σk′ is 0 or 1. Hence RCO(UG−dev) has an optimal solution with υ = 0. This implies that the lower bounds
λk for k ∈ K play no role and can be dropped. ◀

Proof of Theorem 1. Suppose that the family of sets N1, . . . , Nm is laminar and let p = (x, σ, υ, ρ) be an
extreme point of P . Let K+ = {k ∈ K : σk + υk > 0}. Let k′ ∈ K+ be such that there exists no k ∈ K+ with
Nk′ ⊂ Nk. Then, by Lemma 7, we know that σk′ = 1 and υk′ = 0. Let k′′ ∈ K+ be such that Nk′′ ⊂ Nk′ and
there exists no k ∈ K+ with Nk′′ ⊂ Nk ⊂ Nk′ . Then, again by Lemma 7, we know that σk′′ = 0 and υk′′ = 1.
Using Lemma 7 in this way, we can identify the values of all σ and υ. Hence, the number of possible choices for
σ and υ at an extreme point is 2m.

When σ and υ are fixed, model (6)–(9) reduces to∑
k∈K

(Λkσk − λkυk) + min
∑
i∈N

lixi +
∑
i∈N

(ui − li)(xi −
∑
k∈K

aki(σk − υk))+

s.t. x ∈ X,

since there exists an optimal solution in which ρi = (xi −
∑

k∈K aki(σk − υk))+ for all i ∈ N . Let i ∈ N . From
Lemma 7, we know that

∑
k∈K aki(σk−υk) ∈ {0, 1}. If

∑
k∈K aki(σk−υk) = 1, then (xi−

∑
k∈K aki(σk−υk))+ = 0

since xi ≤ 1. If
∑

k∈K aki(σk − υk) = 0, then (xi −
∑

k∈K aki(σk − υk))+ = xi. Then, the remaining problem is
the nominal problem where, for i ∈ N , ci = li if

∑
k∈K aki(σk − υk) = 1 and ci = ui otherwise. ◀

4 Concluding Remarks

We conclude with two remarks: First, the structure of the constraints that relate the dual variables σ, υ and ρ

and the original variables x is much easier to study when we impose bounds on the actual deviations rather
than imposing them on the cardinality of items whose weights deviate. Second, imposing lower bounds on the
deviations in addition to the upper bounds can play a more important role when one wants to minimize the
worst-case regret rather than an absolute measure as we have done here. However the robust counterpart becomes
much more challenging in that case.
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