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Abstract
A memory-efficient solution framework is proposed for the cardinality-constrained structured data-fitting problem.
Dual-based atom-identification rules reveal the structure of the optimal primal solution from near-optimal dual solutions,
which allows for a simple and computationally efficient algorithm that translates any feasible dual solution into a primal
solution satisfying the cardinality constraint. Rigorous guarantees bound the quality of a near-optimal primal solution
given any dual-based method that generates dual iterates converging to an optimal dual solution. Numerical experiments
on real-world datasets support the analysis and demonstrate the efficiency of the proposed approach.
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1 Introduction

Consider the problem of fitting a model to data by building up model parameters as the superposition of
a small set atomic elements taken from a given dictionary. Versions of this cardinality-constrained problem
appear in a number of statistical-learning applications in machine learning [5, 49, 57, 62], data mining, and signal
processing [15]. In these applications, common atomic dictionaries include the set of one-hot vectors or matrices
(i.e., vectors and matrices that contain only a single nonzero element) and rank-1 matrices. The elements chosen
from the given dictionary encode a notion of parsimony in the definition of the model parameters.

The cardinality-constrained formulation that we consider aims to

find x ∈ X such that f(b−Mx) ≤ α and cardA(x) ≤ k, (P)

where f : Rm → R is an L-smooth and convex function, M : X → Rm is a linear operator, b ∈ Rm is the
observation vector, and A ⊆ X is the atomic dictionary. The cardinality function

cardA(x) := inf
{

nnz(c)

∣∣∣∣∣x =
∑
a∈A

caa, ca ≥ 0
}

(1)

measures the complexity of x with respect to the dictionary A. When A = {±e1,±e2, . . . ,±en}, for example, is
the set of signed canonical unit vectors, the function cardA(x) simply counts the number of nonzero elements in
x. The loss term f(b−Mx) measures the quality of the fit. Typically k ≪ n, which indicates that we seek a
feasible model parameter x with an efficient representation in terms of k atoms from the dictionary A.

For the application areas that we target, the two characteristics of this feasibility problem that pose the
biggest challenge to efficient implementation are the combinatorial nature of the cardinality constraint and the
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2 Cardinality-constrained structured data-fitting problems

high-dimensionality of the parameter space. To address the combinatorial challenge, we follow van den Berg and
Friedlander [9, 10] and Chandrasekaran et al. [21], and use the convex gauge function

γA(x) = inf
{∑

a∈A
ca

∣∣∣∣∣x =
∑
a∈A

caa, ca ≥ 0
}

(2)

as a tractable proxy for the cardinality function (1); see Section 3. In tandem with the convexity of the loss
function, the gauge function allows us to formulate three alternative relaxed convex optimization problems that,
under certain conditions, have approximate solutions satisfying the feasibility problem; see problems (P1), (P2),
and (P3) in Section 4.

The high-dimensionality of the parameter space may imply, however, that it is inefficient (and maybe
even practically impossible) to solve these convex relaxations because it may be infeasible to directly store
the approximations to a feasible solution x. Instead, we wish to develop methods that leverage the efficient
representation that low-cardinality solutions have in terms of the atoms in the dictionary A. For example,
consider the case in which the dictionary is the set of symmetric n× n rank-one matrices, and M is the trace
linear operator that maps these matrices into m-vectors. Any method that iterates directly on the parameters x

requires O(n2 + m) storage for the iterates and the data. An alternative is the widely-used conditional gradient
method [31], which requires O(nt + m) storage after t iterations [41], but also often requires a substantial number
of iterations t to converge. Instead of storing x directly, however, our approached is based on applying a dual
method to one of the convex relaxations (P1), (P2), and (P3) (defined below); first-order dual methods typically
require only O(m) storage, and still allow us to collect information on which atoms in A participate in the
construction of a feasible x. One of the aims of this paper is to describe how to collect and use this information.

1.1 Approach
We propose a unified algorithm-agnostic strategy that uses any sequence of improving dual solutions to one of
the convex relaxations. This dual sequence identifies an essential subset of atoms in A needed to construct an
ϵ-infeasible solution x that satisfies the conditions

f(b−Mx) ≤ α + ϵ and cardA(x) ≤ k

for any positive tolerance ϵ. These atomic-identification rules, described in Section 5, derive from the polar-
alignment property and apply to arbitrary dictionaries A [28]. These atom-identification rules generalize earlier
approaches described by El Ghaoui [26] and Hare and Lewis [36]. Once an essential subset of k atoms is identified,
an ϵ-feasible solution x can be computed by optimizing over all positive linear combinations of this subset. This
relatively small k-variable problem can often be solved efficiently.

We prove that when the atomic dictionary is polyhedral, we can set ϵ to zero and still identify in polynomial
time a set of feasible atoms; see Corollary 9. When the atomic dictionary is spectrahedral, we prove that an
ϵ-feasible set of atoms can be identified also in polynomial time; see Corollary 15.

We demonstrate via numerical experiments on real-world datasets that this approach is effective in practice.
There are three important elements in our primal-retrieval algorithm. The first element is an atom-identifier

function EssConeA,k that maps the product M∗y, where y is any feasible dual variable, to a cone generated by k

atoms that are essential. These atoms have the property that

EssConeA,k(M∗y) ⊆ {x | cardA(x) ≤ k}.

The explicit definition of the essential cone depends on the particular dictionary A. In Section 6, we make it
explicit for dictionaries that are discrete or polyhedral (Section 6.1) and spectral (Section 6.2).

The second element is an arbitrary function oraclef,A,M,b (such as an appropriate first-order iterative
method) that generates dual iterates y(t) converging to the optimal dual variable y∗ of any of the dual problem
(Di). It is this oracle that generates the dual estimates subsequently used by EssConeA,k.

The third algorithmic component is the reduced convex optimization problem

x(t) ∈ arg min
x

{
f(b−Mx)

∣∣∣x ∈ EssConeA,k(M∗y(t))
}

, (PR)

which at each iteration constructs a primal estimate x(t) using the atoms identified through the dual estimate
y(t). The detailed algorithm is shown in Algorithm 1. Note that our primal-retrieval strategy does not aim to
recover the optimal solutions to (P1), (P2), or (P3), which only serve as guidance for our atom-identification
rule. The final output of Algorithm 1 may be different from the solution of these optimization problems.



Zhenan Fan, Huang Fang & Michael P. Friedlander 3

Algorithm 1: primal-retrieval algorithm
1 Input: data-fitting tolerance α, cardinality constraint k, dictionary A, loss function f , linear operator

M , observation b, and tolerance ϵ ≥ 0
2 Initialize dual feasible vector y(0)

3 for t = 1, 2, . . . do
4 y(t) ← oraclef,A,M,b(y(t−1))
5 x(t) ← solution to (PR)
6 if f(b−Mx(t)) ≤ α + ϵ then
7 break

8 Return: x(t)

2 Related work

Many recent approaches for atomic-sparse optimization problems are based on algorithms [23,29]. These methods,
however, still need to retrieve at some point a primal solution x, which may require a prohibitive amount of
memory for its storage. For example, when the constraint in (P) is a rank constraint, a widely used heuristic
applies the truncated singular value decomposition to obtain low-rank solutions, but this heuristic is unreliable
in minimizing the model misfit [28, Algorithm 6.4]. Memory-efficient atomic-sparse optimization thus requires
efficient and reliable methods to retrieve an atomic-sparse primal solution.

Dual approaches for nuclear- or trace-norm regularized problems are attractive because they enjoy optimal
storage, which means that they have space complexity O(m) instead of O(n2) [23, 32]. For example, the bundle
method for solving the Lagrangian dual formulation of semi-definite programming [37], and the gauge dual
formulation of general atomic sparse optimization problem [29], exhibit promising results in practice. Similarly,
there are dual approaches for one-norm regularized problems that enjoy better convergence rates than primal
approaches [2, 43].

A related line of research uses memory-efficient primal-based algorithms based on hard-thresholding. Some
examples include gradient hard-thresholding [63], periodical hard-thresholding [1], and many proximal-gradient
or ADMM-based hard-thresholding algorithms [40,46,48]. These approaches are primal-based and tangential to
our purposes. We do not include them in our discussion.

The theoretical analysis of our primal-retrieval approach is related to optimal atom identification [14, 35, 36],
and especially to recently developed safe-screening rules for various sparse optimization problems [6,7,13,26,
39, 45, 47, 51, 54, 59–61]. One of our main results, given by Theorem 5, generalizes the gap safe-screening rule
developed by Ndiaye et al. [50] to general atomic-sparse problems and to more general problem formulations.
Some of the techniques used in our analysis are related to the facial-reduction strategy advocated by Krislock
and Wolcowicz [44].

3 Preliminaries

We introduce in this section the main tools of convex analysis used to understand atomic sparsity.
The gauge function (2) is always convex, nonnegative, positively homogeneous, and finite only at points

contained within the cone

cone(A) :=
{

x =
∑
a∈A

caa

∣∣∣∣∣ ca ≥ 0
}

generated from the elements of the set A. The gauge is not necessarily a norm because it may not be symmetric
(unless A is centrosymmetric), may vanish at points other than the origin, and may not be finite valued (unless
A contains the origin in the interior of its convex hull). Throughout, we make the blanket assumption that the
dictionary A ⊆ X is compact, and that the origin is contained in its convex hull. The assumption on the origin
ensures that the gauge function is continuous. The compactness assumption isn’t strictly necessary for many of
our conclusions, but does considerably simplify the analysis. The set A may be nonconvex, which is the case, for
example, if it consists of a discrete set of two or more items.
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Table 1 Commonly used atomic sets and the corresponding gauge and support functions [29]. The
indicator function δC(x) is zero if x is in the set C and +∞ otherwise. The commonly used group-norm
is also an atomic norm [28, Example 4.7]. The functions ∥X∥∗ and ∥X∥2, respectively, correspond to
the nuclear norm (sum of singular values) and spectral norm (maximum singular value) of a matrix X.

Atomic sparsity A γA(x) SA(x) σA(z)

non-negative cone({e1, . . . , en}) δ≥0 cone({ei | xi > 0}) δ≤0

element-wise {±e1, . . . , ±en} ∥ · ∥1 {sign(xi)ei | xi ̸= 0} ∥ · ∥∞

element-wise & non-negative {e1, . . . , en}
∑

j
( · )j + δ≥0 {ei | xi > 0} ∥ · ∥∞

low rank {uvT | ∥u∥2 = ∥v∥2 = 1} ∥ · ∥∗ singular vectors of x ∥ · ∥2

PSD & low rank {uuT | ∥u∥2 = 1} tr +δ⪰0 eigenvectors of x max{λmax, 0}

The definition of the gauge function makes explicit this function’s role as a convex penalty for atomic sparsity.
The atomic support of a vector x to be the collection of atoms a ∈ A that contribute positively to the conic
decomposition implied by the value γA(x) [28, Definition 2.1].

▶ Definition 1 (Atomic support). A subset of atoms SA(x) ⊂ A is a support set for x with respect to A if SA(x)
satisfies

γA(x) =
∑

a∈SA(x)

ca, x =
∑

a∈SA(x)

caa, and ca > 0 ∀ a ∈ SA(x).

For example, the support set SA(x) for the atomic set of 1-hot unit vectors A = {ei | i = 1, 2, . . . , n}
coincides with the nonzero elements of x with positive entries. The support function to the set A is given by
σA(z) := supa∈A⟨a, z⟩. Because A is compact, every direction z ∈ X generates a supporting hyperplane to the
convex hull of A. The atoms contained in that supporting hyperplane are said the be exposed by the direction z.
The following definition also includes the notion of atoms that are approximately exposed.

▶ Definition 2 (Exposed and ϵ-exposed atoms). The exposed atoms and ϵ-exposed atoms, respectively, of a set
A ⊆ X in the direction z ∈ X are defined by the sets

EA(z) := {a ∈ A | ⟨a, z⟩ = σA(z)} and EA(z, ϵ) := {a ∈ A | ⟨a, z⟩ ≥ σA(z)− ϵ},

where σA(z) := supa∈A⟨a, z⟩ is the support function with respect to A.

When ϵ = 0, the ϵ-exposed atoms coincide with the exposed atoms.
We list in Table 1 commonly used atomic sets, their corresponding gauge and support functions, and atomic

supports.

4 Atomic-sparse optimization

We introduce in this section convex relaxations to the structured data-fitting problem (P). In particular, we
consider the following three related gauge-regularized optimization problems:

minimize
x∈X

p1(x) := f(b−Mx) + λγA(x), (P1)

minimize
x∈X

p2(x) := f(b−Mx) subject to γA(x) ≤ τ, (P2)

minimize
x∈X

p3(x) := γA(x) subject to f(b−Mx) ≤ α. (P3)

It is well known that under mild conditions, these three formulations are equivalent for appropriate choices of
the positive parameters λ, τ , and α [33]. Practitioners often prefer one of these formulations depending on their
application. For example, tasks related to machine learning, including feature selection and recommender systems,
typically feature one of the first two formulations [49,57,62]. On the other hand, applications in signal processing
and related fields, such as compressed sensing and phase retrieval, often use the third formulation [9, 15].

Our primal-retrieval strategy relies on the hypothesis that the atomic-sparse optimization problems (P1), (P2)
and (P3) are reasonable convex relaxations to the structured data-fitting problem (P), in the sense that the
corresponding optimal solutions are feasible for (P). We formalize this in the following assumption.
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▶ Assumption 3. Let x∗
i denote an optimal solution to (Pi), i = 1, 2, 3. Then x∗

i is feasible for (P), i.e.,
f(b−Mx∗

i ) ≤ α and there exists a support SA(x∗
i ) with size less than k.

Assumption 3 does not hold in general. However, there are many important applications in practice where
Assumption 3 does hold, including sparse signal recovery [19,24,25], low-rank matrix recovery [17,18], structured
signal decompostion [16,27], and general structured signal reconstruction [21,58].

As described in Section 1, the Fenchel–Rockafellar duals for these problems have typically smaller space
complexity. These dual problems can be formulated as

minimize
y∈Rm

d1(y) := f∗(y)− ⟨b, y⟩ subject to σA(M∗y) ≤ λ, (D1)

minimize
y∈Rm

d2(y) := f∗(y)− ⟨b, y⟩+ τσA(M∗y), (D2)

minimize
y∈Rm

inf
β>0

d3(y, β) := β (f∗ (y/β) + α)− ⟨b, y⟩ subject to σA(M∗y) ≤ 1, (D3)

where f∗(y) = supw⟨y, w⟩ − f(w) is the convex conjugate function of f , and M∗ : Rm → Rn is the adjoint
operator of M , which satisfies ⟨Mx, y⟩ = ⟨x, M∗y⟩ for all x ∈ X and y ∈ Rm. The derivation of these dual
problems can be found in Appendix A.

5 Atom identification

We demonstrate in this section how an optimal dual solution can be used to identify essential atoms that form
the support of a primal solution. In order to develop atomic-identification rules that apply to arbitrary atomic
sets A ⊆ X (even those that are uncountably infinite) we require generalized notions of active constraint sets. In
linear programming, for example, the simplex multipliers give information about the optimal primal support.
By analogy, our atomic-identification rules give information about the essential atoms that participate in the
support of the primal optimal solutions. In addition, we extend the identification rules to approximate the
essential atoms from approximate dual solutions.

We build on the following result, due to Fan et al. [28, Proposition 4.5 and Theorem 5.1].

▶ Theorem 4 (Atom identification). Let x∗ and y∗ be optimal primal-dual solutions for problems (Pi) and (Di),
with i = 1, 2, 3. Then

SA(x∗) ⊆ EA(M∗y∗). (3)

The following theorem generalizes this result to show similar atomic support identification properties that
also apply to approximate dual solutions. In particular, given a feasible dual variable y close to y∗, the support
of x∗ is contained in the set of ϵ-exposed atoms that includes EA(M∗y∗).

▶ Theorem 5 (Generalized atom identification). Let xi and yi be feasible primal and dual vectors, respectively for
problems (Pi) and (Di), with i = 1, 2, 3. Then

SA(x∗
i ) ⊆ EA(M∗yi, ϵi), (4)

where each ϵi is defined for problem i by
a. ϵ1 = ∥M∥A

√
2L (d1(y1)− d1(y∗

1)),
b. ϵ2 = 2∥M∥A

√
2L (d2(y2)− d2(y∗

2)),
c. ϵ3 = 2∥M∥A

√
2βL(max{d3(y3, β), d3(y3, β)} − d3(y∗

3 , β∗)),
where β and β are positive lower and upper bounds, respectively, for β∗, and ∥M∥A := maxa∈A ∥Ma∥2 is the
induced atomic operator norm.

Theorem 5 asserts that the underlying atomic support of x∗
i is contained in the set of the ϵ-exposed atoms

of M∗yi. Moreover, when yi → y∗
i (and, for problem (D3), the bounds β → β∗ and β → β∗), each ϵi → 0, and

thus (4) implies that we have a tighter containment for the optimal atomic support. The proofs for parts a.
and b. of Theorem 5 depend on the strong convexity of f∗, which is implied by the Lipschitz smoothness of
f [38, Theorem 4.2.1]. This convenient property, however, is not available for part c. because the dual objective
of (D3) is the perspective map of f∗ + α, which is not strongly convex [3]. We resolve this technical difficulty
by instead imposing the additional assumption that bounds are available on the dual optimal variable β∗.
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Appendix C describes how to obtain these bounds during the course of the level-set method developed by Aravkin
et al. [4].

The gap safe-screening rule developed by Ndiaye et al. [51] is a special case of Theorem 5 that applies only
to (P1) for the particular case in which γA is the one-norm.

6 Primal retrieval

Theorem 5 serves mainly as a technical tool for error bound analysis, in particular because it is impractical to
compute or approximate ϵi. However, the inclusions (3) and (4), respectively, of Theorems 4 and 5 motivate us
to define an atom-identifier function EssConeA,k that depends on the dual variable y and satisfies the inclusions

cone(EA(M∗y)) ⊆ EssConeA,k(M∗y) ⊆ cone(EA(M∗y, ϵ)).

The next two sections demonstrate how to construct such a function for polyhedral and spectral atomic sets,
which are two important examples that appear frequently in practice. With this function we can thus implement
the primal-recovery problem required by Step 5 of Algorithm 1. Moreover, we show how to use the error bounds
of Theorem 5 to analyze the atomic-identification properties of the resulting algorithm.

6.1 Primal-retrieval for polyhedral atomic sets
We formalize in this section a definition for the function EssConeA,k for the case in which A is a finite set of
vectors, which implies that the convex hull is polyhedral. Given a feasible dual vector y, consider the top-k atoms
in A with respect to the inner product with the vector M∗y:

Ak := {a1, . . . , ak} ⊆ A such that ⟨M∗y, ai⟩ ≥ ⟨M∗y, a⟩ ∀ i ∈ [k] and a ∈ A \ {a1, . . . , ak}. (5)

Note that there may be many sets of k atoms that satisfy this property. We then construct the cone of essential
atoms as the convex conic hull generated from this set of top-k atoms:

EssConeA,k(M∗y) := coneAk.

Thus, the primal-retrieval computation in Step 5 of Algorithm 1 is given by

x̂ =
k∑

i=1
ĉiai,

where

ĉ ∈ arg min
c∈Rk

+

fk(c), withfk(c) := f

(
b−M

k∑
i=1

ciai

)
, (6)

is the k-vector of coefficients obtained by minimizing the reduced objective over a k-dimensional polyhedron
defined by the top-k atoms.
▶ Example 6 (Sparse vector recovery). Consider the problem of recovering a sparse vector x♮ from noisy observations
b := Mx♮ + η, where M : Rn → Rm is a given measurement matrix and η ∈ Rm is standard Gaussian noise. For
some expected noise level α > 0, the sparse recovery problem can be formulated as

find x ∈ Rn such that ∥b−Mx∥2 ≤ α and nnz(x) ≤ k,

which corresponds to (P) with f = ∥ · ∥2 and with the atomic set

A = {±e1, . . . ,±en}, (7)

where each ei is the ith canonical unit vector. The basis pursuit denoising (BPDN) approach approximates this
problem by replacing the cardinality constraint with an optimization problem that minimizes the 1-norm of the
solution:

minimize
x∈Rn

∥x∥1 subject to ∥Mx− b∥2 ≤ α; (8)
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see Chen et al. [22]. This convex relaxation corresponds to problem (P3).
There are many dual methods that generate iterates y(t) converging to the optimal dual solution to (8),

including the level-set method coupled with the dual conditional-gradient suboracle, as described by [4, 28]. The
resulting primal-retrieval strategy for Step 5 of Algorithm 1 can thus be implemented by executing the following
steps:
1. (Top-k atoms) Find the top k indices {i1, . . . , ik} ⊂ [n] of the vector M∗y(t) with largest absolute value

and gather their corresponding signs si := sign([M∗y(t)]i) for i ∈ {i1, . . . , ik}. The top-k atoms are thus
Ak = {si1ei1 , . . . , sik

eik
}; see (5).

2. (Retrieve coefficients) Solve the reduced problem (6), where in this case,

c(t) ∈ arg min
c∈Rk

+

fk(c), wherefk(c) = ∥M [si1ei1 . . . sik
eik

]c− b∥2.

This is a nonnegative least-squares problem for which many standard algorithms are available. For example,
an accelerated projected gradient descent method requires O(mk log(1/ϵ)) iterations when the matrix
M [si1ei1 . . . sik

eik] has full column rank.
3. (Termination) Step 6 of the Algorithm 1 is implemented simply by verifying that fk(c(t)) ≤ α. (As verified by

Corollary 9, we may take ϵ = 0 in this polyhedral case.) Thus, we can terminate the algorithm and return
the primal variable

x(t) = [si1ei1 . . . sik
eik]c(t),

which is the superposition of the top-k atoms. Otherwise, the algorithm proceeds to the next iteration.
We describe numerical experiments for the sparse vector recovery problem in Section 7.1. ◀

6.1.1 Iteration complexity
In order to guarantee the quality of the recovered solution, we rely on a notion of degeneracy introduced by
Nutini et al. [52].

▶ Definition 7. Let x∗ and y∗, respectively, be optimal primal and dual solutions for problems (Pi) and (Di),
where A is polyhedral. Let δ be a positive scalar. The problem pair ((Pi), (Di)) is δ-nondegenerate if for any
a ∈ A, either a ∈ SA(x∗) or ⟨a, M∗y∗⟩ ≤ σA(M∗y∗)− δ.

The next proposition guarantees a finite-time atom identification property when the atomic set is polyhedral.

▶ Proposition 8 (Finite-time atom-identification). For each problem i = 1, 2, 3, let {y(t)
i }∞

t=1 be a sequence that
converges to an optimal dual solution y∗

i . If the atomic set A is polyhedral and the problem pair ((Pi), (Di)) is
δ-nondegenerate, then there exists T > 0 such that

EssConeA,k(M∗y(t)) ⊇ EA(M∗y∗
i ) and x(t) is feasible for (P) ∀ t > T.

It follows that Algorithm 1 will terminate in T iterations regardless of the tolerance ϵ.

Proposition 8 ensures that the atom-identification property described by Theorem 5 is guaranteed to discard
superfluous atoms in a finite number of iterations as long as we have available an iterative solver that generates
dual iterates converging to a solution. Thus, Algorithm 1 is guaranteed to generate a feasible solution to (P).
The following corollary characterizes a bound on T in terms of the convergence rate of the dual method.

▶ Corollary 9. For each problem i = 1, 2, 3, suppose the dual oracle generates iterates y(t) converging to optimal
variable y∗

i with rate

di(y(t)
i )− di(y∗

i ) ∈ O
(
t−p
)

for some p > 0. If the atomic set A is polyhedral and the problem pair ((Pi), (Di)) is δ-nondegenerate, then
Algorithm 1 with ϵ = 0 terminates in O

(
δ−2/p

)
iterations.
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6.1.2 Centrosymmetry and unconstrained primal recovery
Further computational savings are possible when the atomic set A is centrosymmetric, i.e.,

a ∈ A ⇐⇒ −a ∈ A. (9)

Centrosymmetry is a common property, and perhaps the prototypical example is the set of signed canonical unit
vectors given by the set (7). Whenever centrosymmetry holds, coneA = spanA. This motivates us to replace
the function EssCone with the function

EssSpanA,k(M∗y) := spanAk,

where Ak is the collection of top-k atoms defined by (5). Thus, the primal-retrieval optimization problem (6)
reduces to the unconstrained version

ĉ ∈ arg min
c∈Rk

fk(c).

The following corollary simply asserts that the complexity results described in Section 6.1.1 continue to hold
for centrosymmetric atomic sets when using the essential span function.

▶ Corollary 10 (Atom identification under centrosymmetry). If the atomic set A is centrosymmetric and polyhedral,
then Proposition 8 and Corollary 9 hold with EssCone replaced by EssSpan.

6.2 Primal-retrieval for spectral atomic sets
We formalize in this section a definition for the function EssConeA,k for the case in which A is a collection of
rank-1 matrices, either asymmetric or symmetric, respectively:

A = {uvT |u ∈ Rm, v ∈ Rn, ∥u∥2 = ∥v∥2 = 1}, (10)

A = {vvT | v ∈ Rn, ∥v∥2 = 1}. (11)

We mainly focus on the former atomic set of asymmetric matrices because all of our theoretical results easily
specialize to the symmetric case. Note that this atomic set is centrosymmetric (cf. (9)), and as we’ll see below,
the recovery problem is unconstrained. Later in Section 6.2.2 we’ll describe the recovery problem for the atomic
set of symmetric matrices, which is in fact a not centrosymmetric.

For this section only, we work with the linear operator M : Rm×n → Rp×q, and replace the vector of
observations b with the p-by-q matrix B. In this context, the dual variables for one of the corresponding dual
problems is a matrix of the same dimension.

Fix a feasible dual variable Y and define the singular value decomposition (SVD) for its product with the
adjoint of M by

M∗(Y ) =
[
Uk U−k

] [Σk

Σ−k

] [
V T

k

V T
−k

]
, (12)

where Σk is the diagonal matrix consisting of top-k singular values of M∗(Y ), the matrices Uk and Vk contain
the corresponding left and right singular vectors, and the matrices U−k, V−k, and Σ−k contain the remaining
singular vectors and values. Then the reduced dictionary implied by Uk and Vk can be expressed as

Ak = {uvT |u ∈ range(Uk), v ∈ range(Vk), ∥u∥2 = ∥v∥2 = 1} ⊂ A.

We construct the cone of essential atoms as the convex cone generated from the reduced dictionary Ak, i.e.,

EssConeA,k(M∗(Y )) := cone(Ak) = {UkCV T
k |C ∈ Rk×k}. (13)

Thus, the primal-retrieval computation in Step 5 of Algorithm 1 is then given by

X̂ = UkĈV T
k (14)

where

Ĉ ∈ arg min
C∈Rk×k

fk(C), withfk(C) := f
(
B −M(UkCV T

k )
)

, (15)

is a k× k matrix obtained by solving the reduced problem (PR), which is defined over the cone generated by the
essential atoms identified through the top-k singular triples of M∗(Y ), described by (13).
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▶ Example 11 (Low-rank matrix completion). The low-rank matrix completion (LRMC) problem aims to recover
a low-rank matrix from partial observations, which arises in many real applications such as recommender
systems [55] and in a convex formulation of the phase retrieval problem [20]. The LRMC problem can be
expressed as

find X ∈ Rm×n such that
∑

(i,j)∈Ω

1
2 (Xi,j −Bi,j)2 ≤ α and rank(X) ≤ k, (16)

where {Bi,j | (i, j) ∈ Ω} is the set of observations over the index set Ω. Problem (16) corresponds to (P) with the
objective f = 1

2∥ · ∥
2
2, the dictionary A given by (10), and the linear operator M defined by the mask

M(X)i,j =
{

Xi,j (i, j) ∈ Ω,

0 otherwise.

Fazel [30] popularized the convex relaxation of (16) that minimizes the sum of singular values of X:

minimize
X∈Rm×n

∥X∥∗subject to
∑

(i,j)∈Ω

1
2 (Xi,j −Bi,j)2 ≤ α. (17)

This problem corresponds to formulation (P3). As with Example 6, there are many dual methods that can
generate dual feasible iterates Y (t) converging to the dual solution of (17), such as a dual bundle method [29].
The resulting primal-retrieval strategy for Step 5 of Algorithm 1 can be implemented by executing the following
steps:
1. (Top-k atoms) Compute the leading k singular vectors of the matrix M∗(Y (t)), given by U

(t)
k ∈ Rm×k and

V
(t)

k ∈ Rn×k as defined by the SVD (12).
2. (Retrieve coefficients) Solve the reduced problem (15), where in this case,

C(t) ∈ arg min
C∈Rk×k

fk(C), withfk(C) :=
∑

(i,j)∈Ω

1
2

(
[U (t)

k C(V (t)
k )⊺]i,j −Bi,j

)2
.

This least-squares problem can be solved to within ϵ-accuracy in O((k|Ω|+ (m + n)k + k3)ϵ−0.5) iterations,
for example, with the FISTA algorithm [8]. Typically, k ≪ min{m, n}, and so we expect that this reduced
problem is significantly cheaper to solve than the original problem (17).

3. (Termination) Step 6 of Algorithm 1 terminates when the value of the reduced objective satisifes the condition
fk(C(t)) ≤ α + ϵ, where ϵ is some pre-defined tolerance. In that case, the algorithm returns with the primal
estimate constructed from the left and right singular vectors:

X(t) = U
(t)
k C(t)(V (t)

k )⊺.

We describe numerical experiments for the low-rank matrix completion problem in Section 7.2. ◀

6.2.1 Iteration complexity
In the polyhedral case, we were able to assert through Proposition 8 that the optimal primal variable’s atomic
support could be identified in finite time. As we show here, however, finite-time identification is not possible for
the spectral case. The following counterexample shows that the partial SVD of M∗(Y ), which we used in (12), is
not able to give us a safe cover of the essential atoms in EA(M∗(Y ∗)) even when this set is a singleton and Y

arbitrarily close to a dual solution Y ∗.
▶ Example 12 (Limitation of Partial SVD). Consider the problem

minimize
X∈Rn×n

1
2∥X −B∥2

F subject to ∥X∥∗ ≤ 1, (18)

where

B = U Diag(2, 0.1, . . . , 0.1)V T and U = V =


√

1− ϵ 0 . . . −
√

ϵ

0 1 . . .
...

. . .√
ϵ 0

√
1− ϵ


n×n
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for some fixed ϵ ∈ (0, 1). The dual problem is

minimize
Y ∈Rn×n

1
2∥Y −B∥2

F − 1
2∥B∥

2
F + ∥Y ∥2. (19)

The solutions for the dual pair (18) and (19) are

X∗ = U Diag(1, 0, . . . , 0)V T and Y ∗ = B −X∗ = U Diag(1, 0.1, . . . , 0.1)V T .

In this pair of problems, the linear operator M is simply the identity map, and the cone of essential atoms
described by (13) depends only on the dual variable Y . Let u1 and v1, respectively, be the first columns of U

and V . Evidently, the support of X∗ coincides with the essential atoms of Y ∗, and moreover, the support is a
unique singleton. In other words,

SA(X∗) = EA(Y ∗) = {u1vT
1 }.

We construct the following dual feasible solution

Ŷ = Diag(1, 0.1, . . . , 0.1).

Because Ŷ is diagonal, its left and right singular vectors Û and V̂ are given by Û = V̂ = I = [e1, e2, . . . , en].
Note also that the top singular vector u1 = [

√
1− ϵ, 0, . . . ,

√
ϵ]T lies in the span of the basis vectors e1 and en

that constitute the top and bottom singular vectors of Ŷ . Therefore, any top-r SVD of Ŷ , with r < n, cannot
be used to recover exactly a primal solution X∗. Moreover, ∥Ŷ − Y ∗∥F = O(

√
ϵ) for any ϵ ∈ (0, 1), which in

effect implies that it is impossible to recover exactly the true solution even with an arbitrarily accurate dual
approximation Ŷ . ◀

This last example motivates our study of the quality with which a partial SVD of a given feasible dual
solution M∗(Y ) can be used to approximate the support EA(M∗(Y ∗)). The next result measures the difference
between SA(x∗) and EssConeA,k(M∗(Y )) using one-sided Hausdorff distance.

▶ Proposition 13 (Error in truncated SVD). Let Y be feasible for one of the dual problems (Di) for i = 1, 2, 3.
Let {σj}min{n,m}

j=1 be the singular values satisfying σ1 ≥ · · · ≥ σmin{n,m}, where we assume σ1 > σk+1. Let
Z := M∗(Y ) and let EssConeA,k(Z) denote the cone generated according to equation (13). Then

dist(SA(X∗), EssConeA,k(Z)) ≤ dist(EA(Z, ϵi), EssConeA,k(Z))

≤

√
2 min

{
ϵi

σ1 − σk+1
, 1
}

,

where each ϵi is defined in Theorem 5 and the function

dist(A1,A2) := sup
a1∈A1

inf
a2∈A2

∥a1 − a2∥F .

is the one-sided Hausdorff distance between sets A1 and A2.

Oustry [53, Theorem 2.11] developed a related result based on the two-sided Hausdorff distance. Directly
applying Oustry’s result to our context results in a bound on the order O(

√
ϵ/(σk − σk+1)), which is looser than

the bound shown in Proposition 13 because σ1 ≥ σk ≥ σk+1.
Finally, we show the error bound for primary recovery.

▶ Proposition 14. Assume that f ≥ 0 and f(0) = 0. Let X∗ and Y , respectively, be primal optimal and dual
feasible for one of the primal-dual pairs (Pi) and (Di), for i = 1, 2, 3. Let {σj}min{n,m}

j=1 be the singular values
satisfying σ1 ≥ · · · ≥ σmin{n,m}, where we assume σ1 > σk+1. Let EssConeA,k(M∗(Y )) denote the cone generated
according to equation (13). Let X̂ be the solution recovered via (14). Then

f(B −M(X̂)) ≤ f(B −M(X∗)) +O
(√

ϵi

σ1 − σk+1

)
,

where each ϵi is defined in Theorem 5.

Proposition 14 characterizes the error bound for our primal-retrieval strategy when A is spectral. Our next
corollary shows that Algorithm 1 can terminate in polynomial time with any tolerance ϵ > 0.
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▶ Corollary 15. For one of the problems (Di), i = 1, 2, 3, suppose that a dual oracle generates iterates Y (t)

converging to optimal variable Y ∗ with convergence rate

di(Y (t))− di(Y ∗) ∈ O
(
t−p
)

for some p > 0. If the atomic set A is spectral then Algorithm 1 with ϵ > 0 will terminate in O
(
ϵ−4/p

)
iterations.

6.2.2 Non-centrosymmetry and constrained primal recovery
We now consider the case in which the atomic set A given by (11), which is not centrosymmetric. As we show
below, the corresponding primal recovery problem is constrained.

Fix a feasible dual variable Y and define the eigenvalue decomposition for its product with the adjoint of
M by

M∗(Y ) =
[
Vk V−k

] [Σk

Σ−k

] [
V ⊺

k

V ⊺
−k

]
,

where Vk and the diagonal matrix Σk, respectively, contain the top-k eigenvectors and eigenvalues of M∗(Y ),
and V−k and the diagonal matrix Σ−k, respectively, contain the remaining eigenvectors and eigenvalues. Then
the reduced dictionary implied by Vk can be expressed as

Ak = {vv⊺ | v ∈ range(Vk), ∥v∥2 = 1} ⊂ A.

The convex cone of essential atoms generated from the reduced dictionary Ak is given by

EssConeA,k(M∗(Y )) := cone(Ak) = {VkCV ⊺
k |C ∈ Rk×k, C ⪰ 0}.

The recovery problem (15) then becomes constrained, i.e.,

Ĉ ∈ arg min
C∈Rk×k, C⪰0

fk(C).

7 Numerical experiments

We conduct several numerical experiments on both synthetic and real-world datasets to empirically verify the
effectiveness of our proposed primal-retrieval strategy. In Section 7.1, we describe experiments on the basis
pursuit denoising problem (Example 6), which shows the performance of our strategy on polyhedral atomic set.
In Section 7.2, we apply our primal-retrieval technique to the low-rank matrix completion problem (Example 11)
and test the effectiveness of our proposed method on the spectral atomic set. In Section 7.3, we describe
experiments on a image preprocessing problem, where the dictionary A is the sum of a polyhedral atomic set
and a spectral atomic set. This shows that our strategy can be applied to more complicated cases. For all
experiments, we implement the level-set method proposed by Aravkin et al. [4] where we only store the dual
variable y. We implement the level-set method and our primal-retrieval strategy in the Julia language [12] and
our code is publicly available at https://github.com/MPF-Optimization-Laboratory/AtomicOpt.jl. All the
experiments are carried out on a Linux server with 8 CPUs and 64 GB memory.

7.1 Basis pursuit denoising
The experiments in this section include a selection of five relevant basis pursuit problems from the Sparco
collection [11] of test problems. The chosen problems are all real-valued and suited to one-norm regularization.
Each problem in the collection includes a linear operator M : Rn → Rm and a right-hand-side vector b ∈ Rm.
Table 2 summarizes the selected problems. We compare the results with SPGL1 [9]. In all problems, we set
α = 10−3 · ∥b∥. The results are shown in Table 3 where nMat denotes the total number of matrix-vector products
with M or M∗. As we can observe from Table 3, the level-set algorithm equipped with our primal-retrieval
technique can obtain an ϵ-feasible solution within a small number of iterations, which is consistent with the
finite-time identification property described by Proposition 8. We also observe that level-set method coupled with
the primal-retrieval strategy can converge faster than SPGL1 with its default stopping criterion. This suggests
that our primal-retrieval technique is both a memory-efficient method for obtaining approximal primal solutions
with provable error bounds, and is also a practical technique that allow the optimization algorithm to stop early.

https://github.com/MPF-Optimization-Laboratory/AtomicOpt.jl
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Table 2 The Sparco test problems used.

Problem ID m n ∥b∥ M

blocksig 2 1024 1024 7.9e+1 wavelet
cosspike 3 1024 2048 1.0e+2 DCT
gcosspike 5 300 2048 8.1e+1 Gaussian ensemble + DCT
sgnspike 7 600 2560 2.2e+0 Gaussian ensemble
spiketrn 903 1024 1024 5.7e+1 1D convolution

Table 3 Basis pursuit denoising comparisons.

Problem nnz(x) nMat(SPGL1) nMat(level-set+PR)

blocksig 71 22 5
cosspike 113 77 71
gcosspike 113 434 141
sgnspike 20 44 21
spiketrn 35 4761 1888

7.2 Low-rank matrix completion
For this atomic set, we conduct an experiment similar to that carried out by Candés and Plan [17]. We retrieved
from the website of National Centers for Environmental Information1 a 6798-by-366 matrix X whose entries
are daily average temperatures at 6798 different weather stations throughout the world in year 2020. The
temperature matrix X is approximately low rank in the sense that ∥X −X5∥F /∥X∥F ≈ 24%, where X5 is the
matrix created by truncating the SVD after the top 5 singular values.

To test the performance of our matrix completion algorithm, we subsampled 50% of X and then recovered
an estimate X̂. The solution gives a relative error of ∥X − X̂∥F /∥X∥F ≈ 30%. The result is shown in Figure 1a.
As we can see from Figure 1a, the recovery error exhibits a positive correlation with the duality gap, both the
duality gap and the recovery gap decrease as the number of iteration increase. The observation in this experiment
is consistent with our theory (Proposition 14).

To further demonstrate the efficiency of our primal-retrieval method, we conducted an experiment to compare
the performance of the level-set method with and without primal retrieval on randomly generated low-rank
matrices of sizes ranging from 50 × 50 to 500 × 500. For each problem size, we generated observations from
n log(n)2 sampled entries with standard Gaussian noise, and repeated the experiment for 10 times. The error
was defined as ∥X∗ −X∥F /∥X∥F , where X∗ is the recovered matrix and X is the ground truth matrix. The
results, as summarized in the Table 4, demonstrate that the level-set method with primal retrieval consistently
required fewer iterations than the method without primal retrieval while achieving the same error level. These
findings suggest that primal retrieval can significantly improve the efficiency of the level-set method, making it a
more effective tool for low-rank matrix recovery tasks.

7.3 Robust principal component analysis
In this section we show that our primal-retrieval strategy can be applied to more complicated atomic sets besides
polyhedral and spectral. We conduct a similar experiment as in Candès et al. [16]. Face recognition algorithms
are sensitive to shadows on faces, and therefore it is necessary to remove illumination variations and shadows
on the face images. We obtained face images from the Yale B face database [34]. We show the original faces in
Figure 1b, where each face image was of size 192× 168 with 64 different lighting conditions. The images were
then reshaped into a matrix M ∈ R32256×64. Because of the similarity between faces and the sparse structure of
the shadow, the matrix M can be approximately decomposed into two components, i.e.,

M ≈ L + S,

where L is a low-rank matrix corresponding to the clean faces and S is sparse matrix corresponding to the
shadows. Based on the work by Fan et al. [27], we know that such decomposition can be obtained via solving the

1 https://www.ncei.noaa.gov

https://www.ncei.noaa.gov
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Table 4 Comparison of level-set method with primal-retrieval (wPR) and level-set method without
primal-retrieval (woPR) for different problem sizes. The table shows the means and standard deviations
of relative solution errors and number of iterations.

Size Relative solution error Number of iterations
wPR woPR wPR woPR

50 × 50 7 × 10−2 ± 4 × 10−4 9 × 10−2 ± 2 × 10−3 2 ± 0 2787 ± 375
100 × 100 9 × 10−2 ± 3 × 10−3 9 × 10−2 ± 1 × 10−3 415 ± 675 6839 ± 1022
150 × 150 9 × 10−2 ± 1 × 10−3 9 × 10−2 ± 1 × 10−3 219 ± 175 12889 ± 1652
200 × 200 9 × 10−2 ± 1 × 10−3 9 × 10−2 ± 1 × 10−3 274 ± 375 16217 ± 3489
250 × 250 9 × 10−2 ± 3 × 10−4 9 × 10−2 ± 2 × 10−4 7105 ± 1220 18264 ± 7008
300 × 300 9 × 10−2 ± 4 × 10−4 9 × 10−2 ± 4 × 10−4 8177 ± 3372 22028 ± 4103
350 × 350 9 × 10−2 ± 2 × 10−4 9 × 10−2 ± 2 × 10−4 15829 ± 1186 29652 ± 2073
400 × 400 9 × 10−2 ± 4 × 10−4 9 × 10−2 ± 4 × 10−4 20126 ± 3153 31515 ± 4096
450 × 450 8 × 10−2 ± 5 × 10−4 8 × 10−2 ± 6 × 10−4 23807 ± 5356 37065 ± 10058
500 × 500 8 × 10−2 ± 5 × 10−4 8 × 10−2 ± 5 × 10−4 30069 ± 4111 51373 ± 15287

(a) Recovery error curve. (b) Original faces. (c) Shadow-removed faces.

Figure 1 The left figure (1a) shows the result of the matrix completion experiment. The middle and
right figures (1b, 1c) are for the robust principal component analysis experiment.

following convex optimization problem:

min
L,S

max{∥L∥∗, λ∥S∥1} subject to ∥L + S −M∥ ≤ α. (20)

By Fan et al. [28, Proposition 7.3], we know that (20) is equivalent to

min
X

γA(X) subject to ∥X −M∥ ≤ α,

with X = L + S and where A = λA1 + A2, A1 = {uv⊺ |u ∈ Rm, v ∈ Rn, ∥u∥2 = ∥v∥2 = 1} and A2 =
{±eie

⊺
j | i ∈ [m], j ∈ [n]}. The recovered low-rank component is shown in Figure 1c. As we can see from the

figure, most of the shadow are successfully removed. This experiment suggests that our primal-retrieval technique
can potentially be used for more complex atomic set and allow the underlying the dual-algorithm to produce
satisfactory result within a reasonable number of iterations.

8 Conclusion

In this work, we proposed a simple primal-retrieval strategy for atomic-sparse optimization. We demonstrate both
theoretically and empirically that our proposed strategy can obtain good solutions to the cardinality-constrained
problem given a dual-based algorithm converging to the optimum dual solution.
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Further research opportunities remain, particularly for designing meaningful primal-retrieval strategies for
non-polyhedral and non-spectral atomic sets. The primal-retrieval technique developed in this work is algorithm-
agnostic, and it is an open question if it is possible to develop more efficient primal-retrieval approaches tailored
to specific optimization algorithms, such as the conditional-gradient method.

Appendix

A Derivation of duals

We derive the dual problems (D1), (D2) and (D3) using the Fenchel–Rockafellar duality framework. We use the
following result.

▶ Theorem 16 ([56, Corollary 31.2.1]). Let f1 : Rn → R and f2 : Rm → R be two closed proper convex functions
and let M be a linear operator from Rn to Rm, then

inf
x∈Rn

f1(x) + f2(Mx) = inf
y∈Rm

f∗
1 (M∗y) + f∗

2 (−y).

If there exist x in the interior of dom f1 such that Mx is in the interior of dom f2, then strong duality holds,
namely both infima are attained.

We also need a result that describes the relationship between gauge, support, and indicator functions.

▶ Proposition 17 ([28, Proposition 3.2]). Let C ⊂ Rn be a closed convex set that contains the origin. Then

γC = σC◦ = δ∗
C◦ .

For problem (P1), let

f1 := λγA and f2 := f(b− · )

By the properties of conjugate functions and Proposition 17, we obtain

f∗
1 = δ( 1

λ A)◦ = δ{x | σA(x)≤λ} and f∗
2 = ⟨b, · ⟩+ f∗(− · ).

Then by Theorem 16, we can get the dual problem for (P1) as

minimize
y∈Rm

f∗(y)− ⟨b, y⟩ subject to σA(M∗y) ≤ λ.

For (P2),

f1 = δ{x | γA(x)≤τ} = δτA and f2 = f(b− · ).

By the properties of conjugate functions and Proposition 17, we obtain

f∗
1 = στA = τσA and f∗

2 = ⟨b, · ⟩+ f∗(− · ).

Then by Theorem 16, it follows that the dual problem for (P2) is

minimize
y∈Rm

f∗(y)− ⟨b, y⟩+ τσA(M∗y).

For (P3),

f1 = γA and f2 = δ{x | f(b−x)≤α}.

By the properties of conjugate functions and Proposition 17, we can get that

f∗
1 = δ{x | σA(x)≤1} and f∗

2 = σ{f(b−x)≤α}.

Then by [38, Example E.2.5.3], we know that the support function of the sublevel set is

f∗
2 = σ{x | f(b−x)≤α} = min

β>0
β

(
f∗
(
− ·

β

)
+ α

)
+ ⟨b, · ⟩.

Finally, by Theorem 16, we can get the dual problem for (P3) as

minimize
y∈Rm, β>0

β

(
f∗
(

y

β

)
+ α

)
− ⟨b, y⟩ subject to σA(M∗y) ≤ 1.
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B Proof of Theorem 5

The proof of this Theorem relies on the following duality property between smoothness and strong convexity.

▶ Lemma 18 ([42, Theorem 6]). If f is L-smooth, then f∗ is 1
L -strongly convex.

Proof of Theorem 5.

a. Let y∗ denote the optimal dual variable for D1. First, we show that ∥y − y∗∥ can be bounded by the duality
gap. Let g(y) := f∗(y)− ⟨b, y⟩. By Lemma 18, f∗ is 1

L -strongly convex, and it follows that g is also 1
L -strongly

convex. By the definition of strong convexity,

∀ s ∈ ∂g(y∗), g(y) ≥ g(y∗) + ⟨s, y − y∗⟩+ 1
2L
∥y − y∗∥2.

Optimality requires that

∃ s ∈ ∂g(y∗), ⟨s, y − y∗⟩ ≥ 0 ∀ y s.t. σA(M∗y) ≤ λ.

Therefore, reordering the inequality gives

∥y − y∗∥ ≤
√

2L(g(y)− g(y∗)) ∀ y ∈ Rm.

Next, we show that EA(M∗y∗) ⊆ EA(M∗y, ϵ1). For any a ∈ EA(M∗y∗),

⟨a, M∗y⟩ = σA(M∗y∗) + ⟨Ma, y − y∗⟩

≥ σA(M∗y∗)−
(

max
a∈A
∥Ma∥

)
∥y − y∗∥

≥ σA(M∗y∗)−
(

max
a∈A
∥Ma∥

)√
2L(g(y)− g(y∗))

≥ σA(M∗y)− ϵ1,

where the last inequality follows from the definition of ϵ1 in Theorem 5 and the fact that σA(M∗y∗) = λ and y is
feasible for (D1).

b. Let y∗ denote the optimal dual variable for D2. First, we show that ∥y − y∗∥ can be bounded by the duality
gap. Let g(y) := f∗(y)− ⟨b, y⟩+ τσA(M∗y). By Lemma 18, f∗ is 1

L -strongly convex, and it follows that g is also
1
L -strongly convex. By the definition of strongly convex,

∀ s ∈ ∂g(y∗), g(y) ≥ g(y∗) + ⟨s, y − y∗⟩+ 1
2L
∥y − y∗∥2.

By optimality, 0 ∈ ∂g(y∗). Reordering the inequality to deduce that

∥y − y∗∥2 ≤
√

2L(g(y)− g(y∗)).

Next, we show that EA(M∗y∗) ⊆ EA(M∗y, ϵ2). For any a ∈ EA(M∗y∗),

⟨a, M∗y⟩ ≥ σA(M∗y∗)−
(

max
a∈A
∥Ma∥

)
∥y − y∗∥

= σA(M∗y)− (σA(M∗y)− σA(M∗y∗))−
(

max
a∈A
∥Ma∥

)
∥y − y∗∥

≥ σA(M∗y)− 2
(

max
a∈A
∥Ma∥

)
∥y − y∗∥

≥ σA(M∗y)− ϵ2,

where the last inequality follows from the definition of ϵ2 in Theorem 5.

c. Let (y∗, β∗) denote the optimal dual variables for D3. First, we show that ∥y − y∗∥ can be bounded by the
duality gap. Let

g(y) := β∗f∗
(

y

β∗

)
+ β∗α− ⟨b, y⟩.
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By Lemma 18, f∗ is 1
L -strongly convex, and it is not hard to check that g is 1

β∗L -strongly convex. By the
definition of strongly convex,

∀ s ∈ ∂g(y∗), g(y) ≥ g(y∗) + ⟨s, y − y∗⟩+ 1
2β∗L

∥y − y∗∥2.

By optimality,

∃ s ∈ ∂g(y∗), ⟨s, y − y∗⟩ ≥ 0 ∀ y s.t. σA(M∗y) ≤ 1.

Reorder the inequality to deduce that

∥y − y∗∥ ≤
√

2β∗L(g(y)− g(y∗)).

Because β∗ is unknown to us, we will then get an upper bound for d3(y, β∗). Fix y, let h(β) = d3(y, β). By
the property of perspective function, we know that h is convex. Then it follows that

d3(y, β∗) ≤ max{d3(y, β), d3(y, β)}.

Therefore,

∥y − y∗∥ ≤
√

2βL
(
max{d3(y, β), d3(y, β)} − d3(y∗, β∗)

)
.

Finally, we show that EA(M∗y∗) ⊆ EA(M∗y, ϵ3). For any a ∈ EA(M∗y∗),

⟨a, M∗y⟩ ≥ σA(M∗y∗)−
(

max
a∈A
∥Ma∥

)
∥y − y∗∥

= σA(M∗y)− (σA(M∗y)− σA(M∗y∗))−
(

max
a∈A
∥Ma∥

)
∥y − y∗∥

≥ σA(M∗y)− 2
(

max
a∈A
∥Ma∥

)
∥y − y∗∥

≥ σA(M∗y)− ϵ3. ◀

C Upper and lower bound for β∗beta

First, we consider (D3). Let w = y/β, then (D3) can be equivalently expressed as

minimize
w

inf
β>0

β(f∗(w)− ⟨b, w⟩+ α) subject to σA(M∗w) ≤ β.

Fix β = β∗, then (D3) can be expressed as

minimize
w

f∗(w)− ⟨b, w⟩ subject to σA(M∗w) ≤ β∗. (21)

Now compare (21) with (D1) to conclude that they are equivalent when λ = β∗. It thus follows that (P3) is
equivalent to

minimize
x

f(b−Mx) + β∗γA(x).

Next, consider using the level-set method [4] with bisection to solve (P3). There exists τ∗ > 0 such that (P3)
is equivalent to

minimize
x

f(b−Mx) subject to γA(x) ≤ τ∗.

With the level-set method, we are able to get (x1, τ1) and (x2, τ2) such that τ1 ≤ τ∗ ≤ τ2 and xi is the optimum
for

minimize
x

f(b−Mx) subject to γA(x) ≤ τi,

for i = 1, 2. Then there exits β1 and β2 such that β1 ≥ β∗ ≥ β2 and xi is optimal for

minimize
x

f(b−Mx) + βiγA(x),
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for i = 1, 2.
Finally, by [28, Theorem 5.1] we can conclude that

βi = σA(M∗∇f(b−Mxi))fori = 1, 2.

Therefore, we can get upper and lower bounds for β∗ via level-set method with bisection. Moreover, by strong
duality and convergence of the bisection method, the gap between β1 and β2 will converge to zero.

D Proof of Proposition 8

First, we show that for any yi such that ∥yi − y∗
i ∥ ≤ δ

4∥M∥A
, the condition

FA(M∗y∗
i ) ⊆ EssCone(A, M, yi, k)

holds. By Assumption 3 and the definition of δ-nondegeneracy, we know that

|FA(M∗y∗
i )| = k, and ⟨Ma, y∗

i ⟩ ≤ σA(M∗y∗
i )− δ ∀ a /∈ FA(M∗y∗

i ). (22)

For any a ∈ FA(M∗y∗
i ), we have

⟨a, M∗yi⟩ ≥ ⟨a, M∗y∗
i ⟩ − |⟨Ma, y∗

i − yi⟩|

≥ σA(M∗y∗
i )− ∥M∥A

δ

4∥M∥A

(
by the condition ∥yi − y∗

i ∥ ≤
δ

4∥M∥A

)
≥ σA(M∗y∗

i )− δ

4 .

On the other hand, for any a′ /∈ FA(M∗y∗
i ), we have

⟨a′, M∗yi⟩ ≤ ⟨a′, M∗y∗
i ⟩+ |⟨Ma′, y∗

i − yi⟩|

≤ ⟨a′, M∗y∗
i ⟩+ δ

4

≤ σA(M∗y∗
i )− δ + δ

4 (By (22))

= σA(M∗y∗
i )− 3δ

4 .

Therefore,

⟨a, M∗yi⟩ > ⟨a′, M∗yi⟩ ∀ a ∈ FA(M∗y∗
i ) and a′ /∈ FA(M∗y∗

i ).

Note that EssCone(A, M, yi, k) contains only the atoms that corresponds to the k largest ⟨a, M∗yi⟩. Therefore
FA(M∗y∗

i ) ⊆ EssCone(A, M, yi, k).
By the assumption y

(t)
i → y∗

i . For i ∈ {1, 2, 3}, we know there exist Ti > 0 such that ∥y(t)
i − y∗

i ∥ < δ
4∥M∥A

for
all t > Ti. Therefore FA(M∗y∗

i ) ⊆ EssCone(A, M, y
(t)
i , k) ∀ t > Ti, which completes the proof.

E Proof for Corollary 9

By Theorem 5, we know that

SA(x∗
i ) ⊆ EA(M∗yi, ϵi)withϵi ∈ O(

√
di(y(t)

i )− di(y∗
i )).

By the assumption that di(y(t)
i )− di(y∗

i ) ∈ O (t−p) and the problem pair is δ-nondegenerate, it is easy to verify
that there exist T ∈ O(δ−2/p) such that the algorithm will terminate in T iterations.

F Proof for Proposition 13

First, we derive a monotonicity property of dist( · , · ). By the definition of dist( · , · ), it follows that

dist(A, C) ≤ dist(B, C) ∀ A, B, C ⊆ Rn×m such that A ⊆ B. (23)
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For any i ∈ {1, 2, 3}, we know that SA(X∗) ⊆ EA(Z, ϵi) by Theorem 5. Then by (23), we have

dist(SA(X∗), EssConeA,k(Z)) ≤ dist(EA(Z, ϵi), EssConeA,k(Z)).

For any A1,A2 ⊆ A,

ρ(A1,A2) =
√

sup
a1∈A1

inf
a2∈A2

∥a1 − a2∥2
F =

√
2− 2

(
inf

a1∈A1

sup
a2∈A2

⟨a1, a2⟩
)

,

where the second equality holds since ∥a1∥F = ∥a2∥F = 1 by the definition of A. Define A1 = EA(Z, ϵi) and
A2 = EssConeA,k(Z) =

{
UrpqT V T

r |∥p∥2 = ∥q∥2 = 1
}

, where Ur, Vr are the top-r singular vectors of M∗y. Let
k := min{n, m}, C1 = {(p, q) |

∑k
i=1 σipiqi ≥ σ1 − ϵi, ∥p∥2 = ∥q∥2 = 1, p, q ∈ Rk} and C2 = {(p̂, q̂) | ∥p̂∥2 =

∥q̂∥2 = 1, p̂, q̂ ∈ Rr}, then

ρ(A1,A2) =

√
2− 2

(
min

p,q∈C1
max

p̂,q̂∈C2
⟨UpqT V T , Urp̂q̂T V T

r ⟩
)

=

√√√√2− 2
(

min
p,q∈C1

max
p̂,q̂∈C2

(
r∑

i=1
pip̂i

)(
r∑

i=1
qiq̂i

))

=

√
2− 2

(
min

p,q∈C1
∥p1:r∥2∥q1:r∥2

)
. (24)

Now we consider the subproblem in (24):

minimize
p,q

∥p1:r∥2∥q1:r∥2 (Psub)

subject to
k∑

i=1
σipiqi ≥ σ1 − ϵi, ∥p∥2 = ∥q∥2 = 1, p, q ∈ Rk.

If p∗ and q∗ is a solution of the problem (Psub), then it is easy to verify that

p̃ =
[
∥p∗

1:r∥2, 0, . . . , ∥p∗
r+1:k∥2, 0, . . . , 0

]
and q̃ =

[
∥q∗

1:r∥2, 0, . . . , ∥q∗
r+1:k∥2, 0, . . . , 0

]
is also a valid solution. Therefore there must exist solution p∗, q∗ such that pi = qi = 0 ∀ i /∈ {1, r + 1}, that is
only p∗

1, q∗
1 and p∗

r+1 and q∗
r+1 are greater or equal than 0. This allow us to further reduce the problem to

minimize
p1,q1,pr+1,qr+1

p1q1

subject to σ1p1q1 + σr+1pr+1qr+1 ≥ σ1 − ϵi,

p2
1 + p2

r+1 = q2
1 + q2

r+1 = 1, p1, q1, pr+1, qr+1 ≥ 0.

It is easy to verify that when σ1 − σr+1 ≥ ϵi, the above problem attains solution at

p1 = q1 =
√

σ1 − σr+1 − ϵi

σ1 − σr+1
and pr+1 = qr+1 =

√
1− p2

1.

When σ1 − σr+1 < ϵi, the solution is simply p1 = q1 = 0, pr+1 = qr+1 = 1. Therefore the optimal value of (Psub)
is max{1− ϵi/(σ1 − σr+1), 0}, plug this into (24) and we finish the proof.

G Proof of Proposition 14

We describe the following lemma before proceeding to the proof of Proposition 14.

▶ Lemma 19 (Hausdorff error bound). Given Â ⊆ A, there exists X ∈ cone(Â) such that

∥X −X∗∥F ≤ dist(SA(X∗), Â) ·
√
| SA(X∗)| · ∥X∗∥F . (25)
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Proof. Let X∗ =
∑

a∈SA(X∗) caa, ca > 0. By the definition of the one-sided Hausdorff distance dist( · , · ), for any
a ∈ SA(X∗), there exist a corresponding â ∈ Â such that

∥â− a∥F ≤ dist(SA(X∗), Â).

Let X̂ =
∑

a∈SA(X∗) caâ. It is straighforward to verify that X̂ ∈ cone(Â) and

∥X −X∗∥F ≤ dist(SA(X∗), Â)
∑

a∈SA(X∗)

ca

(∗)
≤ dist(SA(X∗), Â)

√
| SA(X∗)|∥X∗∥F ,

where (∗) follows from the orthonormal decomposition x∗ =
∑

a∈SA(X∗) caa, ca > 0 and ∥X∗∥2
F =

∑
c2

a when
our atomic set is the set of rank-one matrices. ◀

Proof of Proposition 14. By Lemma 19, we know that there exist X̃ that satisfies (25). Then by the L-
smoothness of f ,

f(b−MX̃) ≤ f(b−MX∗) + ⟨∇f(b−MX∗), M(X∗ − X̃)⟩+ L

2 ∥M(X∗ − X̃)∥2
F

≤ f(b−MX∗) + ∥∇f(b−MX∗)∥F ∥M(X∗ − X̃)∥F + L

2 ∥M(X∗ − X̃)∥2
F . (26)

By the smoothness and convexity of f , we further have

∥∇f(b−MX∗)−∇f(0)∥2
F ≤ 2L(f(b−MX∗)− f(0)).

Note we assume f(0) = 0 and ∇f(0) = 0, the above reduces to ∥∇f(b−MX∗)∥F ≤
√

2Lα. Combining with
(26), we obtain

f(b−MX̃) ≤ f(b−MX∗) +
√

2Lα∥M(X∗ − X̃)∥F + L

2 ∥M(X∗ − X̃)∥2
F

≤ f(b−MX∗) +
√

2Lα∥M∥ dist(SA(X∗), Â) ·
√
| SA(X∗)| · ∥X∗∥F

+ L∥M∥2

2 dist(SA(X∗), Â)2| SA(X∗)|∥X∗∥2
F ,

where the last inequality is by Lemma 19. Combining the above with Proposition 13 leads to the desired
result. ◀
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