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Abstract
We consider the problem of linearizing a pseudo-Boolean function f : {0, 1}n → R by means of k Boolean functions. Such
a linearization yields an integer linear programming formulation with only k auxiliary variables. This motivates the
definition of the linearization complexity of f as the minimum such k. Our theoretical contributions are the proof that
random polynomials almost surely have a high linearization complexity and characterizations of its value in case we do or
do not restrict the set of admissible Boolean functions. The practical relevance is shown by devising and evaluating
integer linear programming models of two such linearizations for the low auto-correlation binary sequences problem. Still,
many problems around this new concept remain open.
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1 Introduction

We consider pseudo-Boolean functions, i.e., f : {0, 1}n → R. Such functions arise at the intersection of Constraint
Programming and Operations Research. The corresponding pseudo-Boolean optimization problem of minimizing f

over {0, 1}n is known to be NP-hard since it subsumes the maximum cut problem [8, 27]. Besides being subject to
minimization, pseudo-Boolean functions appear frequently in problem constraints, e.g., in satisfiability problems.
It is known well that every pseudo-Boolean function has a unique representation by means of a multilinear
polynomial. Above-mentioned optimization problems can be reduced to integer linear programming problems
by introducing auxiliary variables, e.g., for every monomial of its multilinear representation. Since there may
be a huge number of monomials, the natural question for alternative ways of linearizing using fewer auxiliary
variables arises. The main research question addressed by this paper is that for the minimum number of such
auxiliary variables under the additional restriction that these are binary variables.

To this end, a linearization of f is defined by functions g1, g2, . . . , gk : {0, 1}n → R and parameters a ∈ Rn,
β ∈ R and bi ∈ R for i = 1, 2, . . . , k such that

f(x) = a⊺x + β +
k∑

i=1
bigi(x) (1)

holds for all x ∈ {0, 1}n. Its size is the number k of such functions. The linearization complexity of f with respect
to a family G of functions is defined as the minimum size of a linearization with gi ∈ G for all i, and is denoted
by lcG(f).

In this paper we focus on binary linearizations, which are those where each function g ∈ G is Boolean, i.e.,
g : {0, 1}n → {0, 1} holds. For a binary linearization of size k there exists an integer linear programming (IP)
formulation for modeling the relationship of x and f(x) with n + k variables which works as follows. In addition
to the variables x ∈ {0, 1}n we introduce the binary variables y ∈ {0, 1}k that shall represent the values gi(x).
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2 The Binary Linearization Complexity of Pseudo-Boolean Functions

By substituting gi(x) with yi, the function value f(x) is expressed as an affine function in the variables (x, y).
The following constraints ensure that yi = gi(x) holds:∑

j:x̄j=0
xj +

∑
j:x̄j=1

(1 − xj) + yi ≥ 1 ∀ x̄ ∈ {0, 1}n : gi(x̄) = 1, (2a)

∑
j:x̄j=0

xj +
∑

j:x̄j=1
(1 − xj) + (1 − yi) ≥ 1 ∀ x̄ ∈ {0, 1}n : gi(x̄) = 0. (2b)

Note that (2) consists of 2n inequalities. The associated separation problem can be solved with linearly many
evaluations of gi plus linear computation time by computing, for given x̂ ∈ [0, 1]n the closest vertex x̄0 ∈ {0, 1}n

of the cube and all vectors x̄j ∈ {0, 1}n that can be obtained from x̄0 by flipping coordinate j, computing gi(x̄j)
and testing (2) for j = 0, 1, 2, . . . , n. However, it is worth noting that the LP bounds obtained from such a
formulation are typically very weak. A special case in which (2) yields a perfect formulation is that of a parity
indicator variable, that is, if g1(x) = 1 holds if and only if

∑n
i=1 xi is odd [26]. Here, perfect means that the

convex hull of {(x, g1(x)) : x ∈ {0, 1}n} is described by (2) and 0 ≤ xi ≤ 1 for i = 1, 2, . . . , n. Such variables have
applications in integer programming approaches for decoding of binary codes [35]. For now, the main purpose
of (2) is to guarantee the existence of integer programming formulations. Once a more specific family of functions
is identified to yield small linearizations for a certain application, improved integer programming relaxations can
be developed for this family. We will later see an example for this proposed approach. We denote by B the set of
all Boolean functions. An interesting constrained subclass is the family C ⊆ B of functions of the form

gI,J(x) :=
∏
i∈I

xi ·
∏
j∈J

(1 − xj), (3)

i.e., products of potentially complemented variables. Even more restricted is the family M ⊆ C of monomials,
i.e., functions gI,∅ for all I.

There often exist smaller and stronger formulations than (2), e.g., if gi(x) does not depend on all x-variables.
For instance, for each function gI,J ∈ C, a perfect IP formulation is known, which is due to Fortet [19, 20],
namely

yI,J ≤ xi ∀ i ∈ I, (4a)
yI,J ≤ 1 − xj ∀ j ∈ J, (4b)

1 − yI,J ≤
∑
i∈I

(1 − xi) +
∑
j∈J

xj , (4c)

yI,J ≥ 0. (4d)

On the one hand, the interplay of multiple simultaneous linearizations has been investigated by many
researchers. This includes mainly results about the quadratic case, e.g., for products of binary and continuous
variables or products of binary variables and linear combinations of binary variables [22]. Worth mentioning
is also the relaxation-linearization technique due to Adams and Sherali [1, 2, 3], which was also applied to
polynomial optimization [34]. The strength of such alternative formulations for quadratic polynomials is compared
theoretically and in practice in [21]. However, we are not aware of any research about their size.

On the other hand, the minimum number of additional quadratization variables was investigated by Anthony
et al. [4]. These are variables y ∈ {0, 1}k such that for all x ∈ {0, 1}n

f(x) = min{g(x, y) : y ∈ {0, 1}k} (5)

holds for a quadratic polynomial g : {0, 1}n+k → R. This approach is not directly related to the linearization
complexity, but similar properties of pseudo-Boolean functions are exploited. Besides establishing first results on
the linearization complexity with respect to different function families we showcase the use of a new alternative
linearization technique for an application. Most importantly, we present open problems and interesting research
questions to stimulate further research in this direction. Before presenting the outline of the paper, the potential
of using various linearizations is exemplified.

Example

Consider f(x) = x1x2 + x1x3 + x2x3 − x1x2x3. Since it is the sum of four binary (non-affine) terms it has
lcC(f) ≤ lcM = 4. However, it turns out that lcC(f) ≤ 1 holds: consider g1(x) = (1 − x1)(1 − x2)(1 − x3) and
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observe that f(x) = x1 + x2 + x3 − 1 + g1(x), which yields lcC(f) ≤ 1. It is also not hard to see that lcC(f) ≥ 1
holds (see Proposition 2), which establishes lcC(f) = 1.

Clearly, this example can be extended to an arbitrary degree, showing that lcM(f) can be exponentially
larger (in n) than lcC(f).

The paper is structured as follows. In Section 2 we present theoretical results about the linearization complexity
for various families G of Boolean functions. Section 3 is about the low auto-correlation binary sequences problem,
which is an optimization problem that arises in theoretical physics, and for which we present a new linearization
and evaluate it computationally. We conclude the paper with several open problems in Section 4 and hope that
some of them will be addressed by researchers in the future.

2 Basic results

We first introduce an auxiliary function with the purpose of removing the linear part of a given function. For a
function f : {0, 1}n → R we denote by f̃ the function defined by

f̃(x) := f(x) − f(O) −
n∑

i=1

(
f(ei) − f(O)

)
xi,

which we call the nonlinear part of f . Here, O and e
i denote the zero vector and the i-th standard unit vector,

respectively. The following proposition makes clear why the nonlinear portion is useful.

Proposition 1. Let f : {0, 1}n → R. Then its nonlinear part satisfies the following properties.
1. f̃(O) = 0 and f̃(ei) = 0 holds for i = 1, 2, . . . , n.
2. lcG(f̃) = lcG(f) holds for any family G of functions.

Proof. To verify the first property it suffices to plug in the zero vector and the unit vectors. Now observe that
f̃(x) = a⊺x + β + f(x) where ai = f(O) − f(ei) and β = −f(O) holds. With this in mind, the second property
follows readily from the definition of linearization complexity. ◀

The result implies that we only need to analyze linearization complexities of functions f with f(O) = f(ei) = 0
for i = 1, 2, . . . , n.

2.1 Linearization complexity
We continue with simple properties of the linearization complexity. Our first observation is that for arbitrary
G ⊆ B, lcG(f) > 0 indicates that f is actually nonlinear over {0, 1}n.

Proposition 2. For G ⊆ B, a function f has lcG(f) = 0 if and only if f is affine.

We can rephrase the result in terms of the nonlinear part of f as follows. It holds lcG(f̃) = 0 if and only if f̃

is the zero function.
The second property is the monotonicity of lcG(f) with respect to the family G, which also follows from the

definition.

Proposition 3. Let G′ ⊆ G and consider f : {0, 1}n → R. Then lcG′(f) ≥ lcG(f).

The third property is a characterization the linearization complexity for G = M by means of a polynomial
representation of f . In fact, the following result follows readily from the well-known fact that every pseudo-
Boolean function has a unique multilinear polynomial representation [24, 25] (see also Proposition 2 in [8]). It
also yields finiteness of the linearization complexity for all G ⊇ M.

Proposition 4. Let f : {0, 1}n → R. Then lcM(f) is equal to the number of monomials (with a nonzero
coefficient) of degree at least 2 of the (unique) multilinear polynomial p with p(x) = f(x) for all x ∈ {0, 1}n. In
particular, lcM(f) ≤ 2n − n − 1 holds.

Proof. For a function f : {0, 1}n → R the mentioned polynomial can be defined as

p(x) :=
∑

X⊆{1,2,...,n}

f(χ(X)) ·
∏
i∈X

xi ·
∏
i/∈X

(1 − xi),
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where χ(X) ∈ {0, 1}n denotes the characteristic vector of X, defined via χ(X)i = 1 ⇐⇒ i ∈ X. Note that p

has degree at most n and hence is the weighted sum of a⊺x + β (for suitable a ∈ Rn and β ∈ R) and at most
2n − n − 1 monomials in M of degree greater than 1. By construction, we have f(x) = p (x) for each x ∈ {0, 1}n.
This establishes the upper bound on lcM(f), and equality follows from the uniqueness of p’s representation. ◀

Proposition 4 yields a sufficient condition, namely G ⊇ M, for lcG(f) to be finite for all functions f . The
following proposition provides a characterization.

Proposition 5. Let Gn be a subset of functions that map from {0, 1}n → R. Then lcGn
(f) < ∞ holds for all

f : {0, 1}n → R if and only if lcGn(gI,∅) < ∞ holds for all I ⊆ {1, 2, . . . , n}.

Proof. Necessity is trivial. Sufficiency follows by expressing f as a weighted sum of monomials and combining
the monomials’ linearizations accordingly. ◀

Random polynomials

Our first larger result essentially states that having a small linearization complexity is an exceptional property
in a probabilistic sense.

Theorem 6. Consider a family G of functions with M ⊆ G ⊆ B. Then the subset of functions f : {0, 1}n → R
with lcG(f) < 2n − n − 1 is a null set (in the set of pseudo-Boolean functions f : {0, 1}n → R).

The statement and its proof are similar to Theorem 1 in [4], basically exploiting that pseudo-Boolean functions
form a vector space of dimension 2n and that any subspace spanned by fewer functions constitutes a null set.

Proof. Consider a fixed number n of variables and the subset Gn ⊆ G of functions that map from {0, 1}n. We
consider the system of equations

x̄⊺a + β +
∑

g∈Gn: g(x̄)=1

cg = f(x̄) ∀ x̄ ∈ {0, 1}n (6)

in variables ai ∈ R (for i = 1, 2, . . . , n), β ∈ R and cg ∈ R for all g ∈ Gn. On the one hand, every solution
(a, β, c) yields a linearization by letting g1, g2, . . . , gk be those g ∈ Gn for which cg ̸= 0 and letting bi := cgi

for
i = 1, 2, . . . , k. Note that its size k is equal to the number of nonzero components of the c-vector. On the other
hand, every linearization, say with a ∈ Rn, β ∈ R, b ∈ Rk and g1, g2, . . . , gk ∈ Gn, corresponds to a solution
(a, β, c), where cgi

:= bi for i = 1, 2, . . . , k and cg := 0 for all g ∈ Gn \ {g1, g2, . . . , gk}.
Hence, a function f : {0, 1}n → R has lcG(f) < 2n − n − 1 if and only if its right-hand side vector

f(x̄)x̄∈{0,1} ∈ R2n in the system (6) lies in the span of the first n + 1 columns the coefficient matrix of (6) and
less than 2n − n − 1 of the remaining columns. However, the set of such right-hand side vectors (for a fixed choice
of columns) has dimension less than 2n and thus constitutes a null set. This fact is not changed by considering
any of the (finite) number of column subsets (consisting of less than 2n columns). The one-to-one correspondence
between functions f : {0, 1}n and their right-hand sides (6) establishes the result. ◀

Corollary 7. Consider a family G of functions with M ⊆ G ⊆ B. A polynomial p : {0, 1}n → R whose coefficients
are chosen randomly according to any absolutely continuous probability distribution has lcG(f) = 2n − n − 1 with
probability 1.

2.2 Arbitrary functions
We already observed that lcB(f) ≤ 2n − n − 1 holds for any function f : {0, 1}n → R. It turns out that the
family B is so general that the corresponding linearization complexity only depends on the range of f̃ . To make
this precise, we define for a vector w ∈ Rk its partial sum set pss(w) as the set of partial sums

∑
i∈I wi over all

subsets I ⊆ {1, 2, . . . , k}. We also allow for k = 0 and define pss(w) = {0} in this case.

Theorem 8. Let f : {0, 1}n → R and let Y := {f̃(x) : x ∈ {0, 1}n} be the range of its nonlinear part. Then
lcB(f) is equal to the smallest dimension k of a vector w ∈ Rk with pss(w) ⊇ Y .

Proof. Let f and Y be as in the theorem and consider a vector w ∈ Rk (for some k) with pss(w) ⊇ Y . We now
construct a linearization of f of size k. For each x ∈ {0, 1}n we have f̃(x) ∈ Y ⊆ pss(w), which implies that
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there must be a subset Ix ⊆ {1, 2, . . . , k} with
∑

i∈Ix
wi = f̃(x). We now define, for i = 1, 2, . . . , k, the function

gi : {0, 1}n → {0, 1} such that

gi(x) = 1 ⇐⇒ i ∈ Ix

holds. Moreover, we use b := w and observe
∑k

i=1 bigi(x) =
∑

i∈Ix
wi = f̃(x) for each x ∈ {0, 1}n, which

establishes lcB(f̃) ≤ k and by Proposition 1 also lcB(f) ≤ k.
For the reverse direction, suppose lcB(f) = k. Again by Proposition 1 there exist vectors a ∈ Rn, b ∈ Rk,

scalar β ∈ R and functions g1, g2, . . . , gk : {0, 1}n → {0, 1} such that

f(x) = a⊺x + β +
k∑

i=1
bigi(x)

holds for all x ∈ {0, 1}n. For the nonlinear part we obtain

f̃(x) =
k∑

i=1
big̃i(x).

Now consider a y ∈ Y , i.e., the function value y = f̃(x) for some x ∈ {0, 1}n. By using the set I := {i ∈
{1, 2, . . . , k} : g̃i(x) = 1} we obtain that y ∈ pss(b) holds. This implies pss(b) ⊇ Y , and hence the choice w := b

concludes the proof. ◀

The intuition behind Theorem 8 is the following: since there are no restrictions on the structure of the
functions g used, the fact that the possible arguments x of f are actually (binary) vectors is not relevant, i.e.,
one can think of just 2n different inputs without any structure. In the next section we will use this viewpoint to
construct a small linearization for an example application.

3 Application to Low Autocorrelation Binary Sequences

In this section we consider the low auto-correlation binary sequences problem, which arises in theoretical physics
when studying ground states of the Bernasconi model [5, 23]. An extension of the problem was considered in [28],
which involves, in addition to the dimension N , another parameter R ∈ {1, 2, . . . , N} indicating the so-called
interaction range to specify a problem instance. In the Bernasconi model, R = N holds. The general formulation
is the following, where we omit normalization factors.

min
N−R∑
i=0

R−1∑
d=1

i+R−d∑
j=i+1

sjsj+d

2

(7a)

s.t. si ∈ {−1, +1} i = 1, 2, . . . , N (7b)

The state-of-the-art method for solving the Bernasconi problem (R = N) is a highly parallelized combinatorial
branch-and-bound algorithm [32] which builds upon earlier work [29, 30]. The optima for the problem are
known for all N ≤ 66. A dynamic programming algorithm for unconstrained binary polynomial optimization
was recently proposed and tested computationally [10]. Moreover, also methods based on quadratic convex
reformulations were applied successfully to the problem [6, 18]. For the Bernasconi model, they can find optimal
solutions up to N = R = 30, but perform better for smaller interaction range, e.g., obtaining an optimal solution
for (N, R) = (40, 10).

In this section we investigate IP models based on binary linearizations for this problem. To this end, let us
first rephrase the problem by substituting si ∈ {−1, +1} with 2xi − 1 for xi ∈ {0, 1} for all i ∈ {1, 2, . . . , N}. We
obtain

min fbern
N,R (x) :=

N−R∑
i=0

R−1∑
d=1

i+R−d∑
j=i+1

(4xjxj+d − 2xj − 2xj+d + 1)

2

(8a)

s.t. xi ∈ {0, 1} i = 1, 2, . . . , N. (8b)
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Let fbern
N,R (x) =

∑t
m=1 amgIm,∅(x) be the decomposition of fbern

N,R into its t monomials. With this notation, the
standard IP reformulation (4) applied to fbern

N,R reads as follows.

min
t∑

m=1
amzIm (9a)

s.t. zIm ≤ xi ∀ i ∈ Im, m = 1, 2, . . . , t (9b)

1 − zIm
≤

∑
i∈Im

(1 − xi) m = 1, 2, . . . , t (9c)

zIm ∈ {0, 1} m = 1, 2, . . . , t (9d)
xi ∈ {0, 1} i = 1, 2, . . . , N (9e)

The following proposition establishes the asymptotic number of monomials of fbern
N,R (x), which implies that (9)

has Θ(N3) many variables and constraints.

Proposition 9. For N ≥ 3 and 1 ≤ R ≤ N , the number of monomials of fbern
N,R (x) and thus the number of

variables and constraints of model (9) is Θ(NR2).

Proof. We first establish the upper bound. For that it suffices to consider the polynomial (7a) in the s-variables
since substitution of si by 2xi − 1 yields, due to the degree being at most 4, a blow-up factor of 16 in the number
of monomials. All monomials with a nonzero coefficient are of the form sjsj+dsj′sj′+d. Since there are only
O(N) choices for j and, after chosing j, only O(R) choices for j′ and for d, there are only O(NR2) monomials
with a non-zero coefficient.

It remains to prove the lower bound for which we analyze the polynomial (8a) in the x-variables to avoid a
discussion of potential cancellations caused by the substitution. To this end, let k := ⌊R/4⌋. We consider any
d ∈ {1, 2, . . . , k}, any j′ ∈ {k + 1, k + 2, . . . , 2k} and any i ∈ {1, . . . , ⌊N/4⌋}. Note that for each such (d, j′, i),
the term xixi+dxi+j′xi+j′+d arises as a monomial of fbern

N,R . Moreover, all these monomials are distinct and only
appear with positive coefficients. Hence, due to k ∈ Ω(R) there exist Θ(NR2) such monomials with a positive
coefficient. ◀

Partial sum sets

With Proposition 9 in mind a natural follow-up question is whether there exist formulations of smaller asymptotic
size. By Theorem 8 we can investigate the partial sum set of the domain Y of its nonlinear part. The set Y is
nontrivial to characterize, in particular since computing min(Y ) is equivalent to solving (7). Nevertheless, we can
construct a suitable partial sum set of quadratic size which yields our main theoretical result for the application.

Theorem 10. For N ≥ 3 and 1 ≤ R ≤ N we have lcB(fbern
N,R ) ≤ (N − R + 1)R2.

Proof. First observe that the sum
∑i+R−d

j=i+1 sjsj+d can attain R − d + 1 different values, and these depend
on d (in addition to R). Consequently there are also only R − d + 1 different squared such values. Let, for
i ∈ {0, 1, . . . , N − R} and d ∈ {1, 2, . . . , R − 1}, the vector wi,d consist of these squared values in an arbitrary
order and let w = (w0,1, w0,2, . . . , w0,R−1, w1,1, w1,2, . . . , wN−R,R−1) be the concatenation of all these vectors.
Hence, w has dimension at most (N − R + 1)(R − 1)R ≤ (N − R + 1)R2. Moreover, for each x ∈ {0, 1}n, the
value fbern

N,R (x) is a partial sum of elements of w. The result now follows from Theorem 8. ◀

Note that the theorem only yields an asymptotic improvement over Proposition 9 if R is close to N . In
particular for the Bernasconi model, we improve from Θ(N3) to N2.

Model with value indicators

Theorem 10 only yields the existence of an IP formulation with (N − R + 1)R2 auxiliary variables. Instead
of following its proof to derive such a formulation we directly exploit the main observation that led to the
quadratic size, namely that every element from the domain is a sum of squares and that, for every (i, d) ∈ ID :=
{0, 1, . . . , N − R} × {0, 1, . . . , R − 1}, at most R − d + 1 such squared numbers can actually arise. This yields
the idea of introducing binary variables for indicating (for each pair (i, d) ∈ ID separately) which number was
actually squared. To this end, we define the set Li,d :=

{∑i+R−d
j=i+1 sjsj+d : s ∈ {−1, 1}N

}
of distinct function
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values of the inner sum of (7a). Since sj · sj+d ∈ {−1, +1} holds, we have

Li,d ⊆ {−(R − d), −(R − d) + 2, . . . , (R − d) − 2, (R − d)}.

We obtain |Li,d| ≤ R + 1 − d for all (i, d) ∈ ID. Now we consider, for each such pair (i, d) and each ℓ ∈ Li,d, the
function gi,d,ℓ : {0, 1}N → {0, 1} that indicates whether the inner sum of (7a) for some (i, d) is equal to ℓ. More
precisely, it shall satisfy gi,d,ℓ(x) = 1 if and only if

∑i+R−d
j=i+1 (2xj − 1)(2xj+d − 1) = ℓ. Since for each (i, d) and

each x ∈ {0, 1}n, precisely one of the functions gi,d,ℓ(x) is equal to 1, we obtain

fbern
N,R (x) =

∑
(i,d)∈ID

∑
ℓ∈Li,d

ℓ2gi,d,ℓ(x).

This clearly leads to the following value-indicator-nogood (VING) formulation with only O((N − R)R2) variables
by enforcing zi,d,ℓ = gi,d,ℓ(x) via constraints (2). However, these are exponentially many constraints.

min
∑

(i,d)∈ID

∑
ℓ∈Li,d

ℓ2zi,d,ℓ (10a)

s.t.
∑

j:x̄j=0
xj +

∑
j:x̄j=1

(1 − xj) + zi,d,ℓ ≥ 1 ∀ (i, d) ∈ ID, ∀ ℓ ∈ Li,d,

∀ x̄ ∈ {0, 1}n : gi,d,ℓ(x̄) = 1 (10b)∑
j:x̄j=0

xj +
∑

j:x̄j=1
(1 − xj) + (1 − zi,d,ℓ) ≥ 1 ∀ (i, d) ∈ ID, ∀ ℓ ∈ Li,d,

∀ x̄ ∈ {0, 1}n : gi,d,ℓ(x̄) = 0 (10c)

xi ∈ {0, 1} ∀ i ∈ {1, 2, . . . , N} (10d)
zi,d,ℓ ∈ {0, 1} ∀ (i, d) ∈ ID, ∀ ℓ ∈ Li,d (10e)

We can build upon this formulation idea in order to devise a hybrid formulation, called value-indicator-
quadratic (VIQ): Instead of relating the z-variables directly to the x-variables we introduce variables yi,j that
indicate for all i, j (with i ̸= j) whether the product sisj is +1 or −1, and link these to the z-variables.

min
∑

(i,d)∈ID

∑
ℓ∈Li,d

ℓ2zi,d,ℓ (11a)

s.t. xi + xj ≥ 1 − yi,j ∀ i, j ∈ {1, 2, . . . , N} : i < j < i + R (11b)
xi − xj ≥ yi,j − 1 ∀ i, j ∈ {1, 2, . . . , N} : i < j < i + R (11c)

−xi + xj ≥ yi,j − 1 ∀ i, j ∈ {1, 2, . . . , N} : i < j < i + R (11d)
xi + xj ≤ yi,j + 1 ∀ i, j ∈ {1, 2, . . . , N} : i < j < i + R (11e)∑

ℓ∈Li,d

zi,d,ℓ = 1 ∀ (i, d) ∈ ID (11f)

i+R−d∑
j=i+1

(2yj,j+d − 1) =
∑

ℓ∈Li,d

ℓzi,d,ℓ ∀ (i, d) ∈ ID (11g)

xi ∈ {0, 1} i = 1, 2, . . . , N (11h)
yi,j ∈ {0, 1} ∀ i, j ∈ {1, 2, . . . , N} : i < j < i + R (11i)

zi,d,ℓ ∈ {0, 1} ∀ (i, d) ∈ ID, ∀ ℓ ∈ Li,d (11j)

Corollary 11. For N ≥ 3 and 1 ≤ R ≤ N , the integer program (11) correctly models the low auto-correlation
binary sequences problem (7) and has O((N − R)R2) variables and constraints.

Proof. Similar to (8) we model si ∈ {−1, +1} by si = 2xi −1, i.e., xi = 1 if and only if si = 1. Constraints (11b)–
(11e) enforce that 2yi,j − 1 = si · sj = (2xi − 1)(2xj − 1) holds, i.e., yi,j = 1 if and only if xi = xj holds. For each
d ∈ {1, 2, . . . , N − 1}, equation (11f) implies that zi,d,ℓ = 1 holds for exactly one ℓ ∈ Li,d. Since the left-hand
side of (11g) is equal to the inner sum of (7a), the right-hand side implies that zi,d,ℓ = 1 holds exactly for ℓ

being the value of that inner sum. Hence, the right-hand side of (11g) is the corresponding ℓ ∈ Li,d. This implies
that the contribution of all zi,d,ℓ for some (i, d) ∈ ID to the objective (11a) is equal to ℓ2, where ℓ is the value
of the inner sum of (7a). We conclude that (7a) is indeed equal to fbern

N,R (x).
The numbers of variables and constraints are easily verified. ◀
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Experimental evaluation

The numbers of variables and constraints are only one factor that has impact on the solution time of an IP.
For instance, the quality of the dual (in our case lower) bounds on the optimum and the ability to find good
primal solutions is extremely important. Hence, we compare the new IP models (11) and (10) with the standard
formulation (9).

We tried to solve the low auto-correlation binary sequences problem with both models using the SCIP
solver framework [7]1. Constraints (10b) and (10c) were implemented as a constraint handler that finds violated
inequalities in linear time. Note that all three approaches are too slow to compete with the most recent
state-of-the-art approach that is based on combinatorial branch-and-bound with which the problem could be
solved to optimality up to N = 66 [32]. We report about instances with N ∈ {5, 10, 15, 20, 25, 30, 35} and
R ∈ {N, ⌊ 3

4 N⌉, ⌊ 1
2 N⌉, ⌊ 1

4 N⌉, ⌊ 1
8 N⌉} using version 9.0.0 of SCIP using SoPlex 7.0.0 as an LP solver. Also note

that we ran our experiments only on a single core (with an Intel CPU on 2.1 GHz) while the computations for
N = 66 were done using 248 cores and took about 55 days [32]. Moreover, we strengthened none of the models
to keep the comparison fair.

Table 1 provides an overview over the number of variables and constraints for the models, while Table 2
shows the actual results. Note that for R = N ≥ 25, SCIP could not solve the standard formulation (9) within
three hours. In fact, the lower bound obtained after that time was still a negative number. The first model (10)
with value indicators always produces nonnegative bounds by construction, but it usually takes a lot of branching
effort until this increases. A likely reason is that, besides providing a nonnegative bound, the LP relaxation
is not very tight, and hence the solver has to effectively solve the problem by branching. The same holds for
the hybrid model (11) but, as can be seen in Table 2 it requires much less branching. We conclude that our
last formulation (11) outperforms the standard formulation as well as the straight-forward formulation (10), in
particular by means of quality of the bound obtained from the LP relaxation.

Finally, let us remark that neither model outperforms the mixed-integer quadratic programming approach
described in [18] or the dynamic programming algorithm from [10], although a direct comparison of the bounds
with those from several other papers is difficult due to the fact that the benchmark instance files in [31] used
there do not contain the correct absolute term in the polynomial. However, we believe that it is possible to make
formulation (11) competitive by strengthening the model using cutting planes that improve the linking of y- and
z-variables.

We also tried to determine a small formulation for problem (7) for G = C, i.e., for the family of potentially
complemented products of variables. To this end, system (6) can be augmented by binary variables to indicate
whether a g ∈ G is used (that is, has a nonzero multiplier). The minimization of the sum of these binary variables
yields lcG(f). Clearly, this approach only works for small sizes |G|. Our results for N ∈ {3, 4, 5, 6} and R = N

were quite disappointing – at least when considering only functions g ∈ C of degree at most 5, the linearization
complexity is minimized by the linearization that just uses monomials. Hence, we do not expect that one can
gain much by allowing complements of variables for the low auto-correlation problem.

4 Open Problems

We hope to have convinced the reader that the linearization complexity is a useful concept. Nevertheless, many
unsolved problems remain, and we use the rest of the paper to present them.

More families

We discussed various families of functions g to use for linearization, namely the products of variables M, the
potentially complemented products of variables C, arbitrary Boolean functions B, and finally functions that
indicate whether an expression of a certain type attains a certain value. Another family is induced by any
quadratization strategy: after applying such a strategy to obtain a quadratization function g as in (5) one can
linearize the latter, e.g., in a monomial-wise fashion. We believe that there are more such interesting families.

Formulations

Perfect formulations are known for the first two considered linearizations when considering every linearization
variables separately. Strengthening the joint formulation for multiple linearization variables from C is subject of

1 The code can be found at github.com/discopt/labs.

https://github.com/discopt/labs
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Table 1 Comparison of IP models (9), (10) and (11) with respect to model size. The first two
columns show the parameters N and R. Moreover, for each model, the number of variables (Vars) and
constraints (Cons) are shown, where for (10) the number indicates the number of constraints that were
generated while solving the IP with a time limit of 3 h (if reached, this is indicated with “>”).

Instance Standard (9) VING (10) VIQ (11)
N R Vars Cons Vars Cons Vars Cons
5 3 14 20 20 87 30 52
5 4 29 76 23 198 33 52
5 5 33 92 19 200 29 48

10 3 29 45 50 519 95 212
10 5 98 312 94 7441 139 228
10 8 197 723 115 13 902 160 222
10 10 232 870 64 12 944 109 198
15 2 16 1 43 634 148 448
15 4 119 356 123 22 808 228 492
15 8 387 1463 295 583 033 400 532
15 11 609 2398 340 644 103 445 520
15 15 784 3141 134 642 542 239 448
20 3 59 95 110 8174 300 832
20 5 228 752 244 1 276 533 434 888
20 10 854 3368 614 18 843 315 804 958
20 15 1515 6175 734 27 263 821 924 928
20 20 1880 7732 229 27 916 846 419 798
25 3 74 120 140 21 822 440 1292
25 6 433 1552 425 56 896 414 725 1400
25 13 1808 7342 1195 84 930 754 1495 1512
25 19 3066 12 708 1348 93 968 461 1648 1452
25 25 3703 15 437 349 402 081 122 649 1248
30 4 254 776 273 9 603 173 708 1902
30 8 957 3683 835 45 645 241 1270 2062
30 15 2975 12 235 1934 116 846 391 2369 2188
30 23 5407 22 633 2230 169 575 296 2665 2092
30 30 6443 27 079 494 346 309 883 929 1798
35 4 299 916 323 46 091 169 918 2572
35 9 1417 5557 1223 66 844 682 1818 2812
35 18 5038 20 957 3095 121 894 574 3690 2992
35 26 8383 35 287 3535 144 974 813 4130 2880
35 35 10 288 43 472 664 327 766 744 1259 2448

current research, e.g., by means of studying multilinear polytopes [9, 11, 12, 13, 14, 15, 16, 17, 33]. For B we
cannot hope to identify perfect formulations since this encompasses arbitrary binary sets. However, for other
functions it is interesting to investigate which inequalities are best to add in order to apply such a function. For
instance, our formulation (11) worked well because we did not model the meaning of each z-variable individually,
but because we considered multiple of them in a combined fashion in constraints (11f) and (11g).

Bounding techniques

While we could interpret the linearization complexities for M and for B, little is known about C. The first natural
question is which properties of a polynomial allow to recast it as a sum of only few products of potentially
complemented variables.
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Table 2 Comparison of IP models (9), (10) and (11). The first three columns show the parameters
N and R as well as the best-known solution value. Moreover, for each model, the dual bound from the
LP relaxation (LP), the dual bound after termination of branch-and-cut (IP), the number of solved
branch-and-bound nodes (Nodes), as well as the total solution time (Time) are reported. The symbol /
indicates that the computation reached the timeout of 3 h.

Instance Standard (9) VING (10) VIQ (11)
N R Best LP IP Nodes Time LP IP Nodes Time LP IP Nodes Time
5 3 3 3 3 1 0.8 s 0 3 7 0.4 s 3 3 1 0.4 s
5 4 4 −148 4 1 1.0 s 0 4 15 0.1 s 4 4 1 0.0 s
5 5 2 −226 2 1 1.1 s 0 2 19 0.1 s 2 2 1 0.0 s

10 3 8 8 8 1 1.0 s 0 8 33 0.0 s 8 8 1 0.0 s
10 5 24 −1356 24 41 1.5 s 0 24 388 0.4 s 12 24 49 0.5 s
10 8 28 −5004 28 77 2.4 s 0 28 535 0.6 s 12 28 57 0.7 s
10 10 13 −3795 13 147 3.5 s 0 13 1016 0.6 s 5 13 1 0.3 s
15 2 14 14 14 0 0.7 s 0 14 155 0.1 s 14 14 1 0.4 s
15 4 24 −888 24 189 1.6 s 0 24 1783 1.8 s 24 24 2 0.3 s
15 8 88 −13 344 88 1042 11.5 s 0 88 13 404 17.0 s 32 88 118 2.8 s
15 11 89 −26 575 89 1067 19.3 s 0 89 16 118 22.2 s 25 89 642 5.4 s
15 15 15 −15 421 15 2912 96.3 s 0 15 34 796 22.5 s 7 15 1906 11.0 s
20 3 18 18 18 1 3.4 s 0 18 738 0.6 s 18 18 1 0.1 s
20 5 64 −3616 64 2484 20.0 s 0 64 52 716 60.2 s 32 64 775 6.9 s
20 10 199 −41 745 199 2463 136.8 s 0 199 291 086 1023.7 s 55 199 1153 24.9 s
20 15 170 −92 526 170 15 029 574.0 s 0 170 383 481 1502.9 s 42 170 10 020 205.3 s
20 20 26 −39 890 26 346 254 4096.1 s 0 26 1 100 186 847.1 s 10 26 13 454 131.1 s
25 3 23 23 23 1 0.5 s 0 23 2020 4.0 s 23 23 1 0.3 s
25 6 140 −10 580 140 63 868 346.9 s 0 140 1 453 552 4113.0 s 60 140 7834 90.7 s
25 13 302 −123 422 302 414 502 4139.6 s 0 0 608 642 / 78 302 4813 176.2 s
25 19 335 −236 145 −8997 628 159 / 0 0 697 217 / 63 335 298 622 4231.8 s
25 25 36 −81 916 −9398 330 251 / 0 0 12 052 530 / 12 36 140 836 818.7 s
30 4 54 −1998 54 14 945 100.5 s 0 54 762 946 1947.4 s 54 54 5 1.3 s
30 8 268 −38 364 268 1 473 990 8256.5 s 0 0 424 215 / 92 268 117 667 1162.5 s
30 15 496 −246 736 −12 523 636 725 / 0 0 501 220 / 112 496 87 424 2941.5 s
30 23 544 −501 512 −75 545 96 704 / 0 0 563 463 / 88 96 267 257 /

30 30 59 −146 285 −57 671 20 221 / 0 0 8 282 519 / 15 29 1 613 292 /

35 4 64 −2368 64 19 874 159.2 s 0 33 2 174 070 / 64 64 21 3.9 s
35 9 400 −69 660 −3840 1 281 756 / 0 0 405 240 / 108 400 689 174 8432.0 s
35 18 970 −508 734 −71 146 108 013 / 0 0 512 088 / 162 213 173 793 /

35 26 930 −928 590 −351 158 18 151 / 0 0 576 608 / 130 130 80 653 /

35 35 85 −237 711 −121 870 16 103 / 0 0 6 416 944 / 17 18 780 767 /

Algorithmic questions

After settling how f could be encoded (expressing it as a polynomial is only one possibility), there are many
algorithmic problems related to linearization complexity. Most importantly, the complexity of the computation
or approximation of lcC(f) or of lcB(f) is open. For practical purposes it would be very interesting to find small
linearizations based on C because the actual formulations are essentially the same as those for M which are
reasonably well understood.

Approximations

While Theorems 6 and 7 indicate that linearizations with small linearization complexity are rare, one may still
consider approximate linearizations, i.e., small linearizations of a function f ′ that is very close to f . Instead
of abandoning exactness one can also try to pursue a related approach by finding a linearization that may
not be small but for which only few of the weights bi in (1) are large (in absolute value). While the resulting
IP formulation would still have many variables, one could apply strengthening techniques only on those few
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linearizations that are most important for the value of f . Then, relaxation errors for the remaining variables
(with small |bi|) will not have a big impact on the overall objective value, which would yield better bounds.
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