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Abstract
It was recently shown [6, 8] that “properly built” linear and polyhedral estimates nearly attain minimax accuracy bounds
in the problem of recovery of unknown signal from noisy observations of linear images of the signal when the signal set is
an ellitope. However, design of nearly optimal estimates relies upon solving semidefinite optimization problems with
matrix variables, what puts the synthesis of such estimates beyond the reach of the standard Interior Point algorithms of
semidefinite optimization even for moderate size recovery problems. Our goal is to develop First Order Optimization
algorithms for the computationally efficient design of linear and polyhedral estimates. In this paper we (a) explain how to
eliminate matrix variables, thus reducing dramatically the design dimension when passing from Interior Point to First
Order optimization algorithms and (b) develop and analyse a dedicated algorithm of the latter type — Composite
Truncated Level method.
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1 Introduction

In this paper we discuss numerical algorithms for construction of “presumably good” estimates in linear inverse
problems. Specifically, consider the estimation problem as follows. We are given an observation ω ∈ Rm,

ω = Ax+ ξ (1)

where ξ ∈ Rm is a zero mean random noise, A ∈ Rm×n is the observation matrix, and x is an unknown signal
known to belong to a given convex set X ⊂ Rn. Our objective is to recover the linear image w = Bx, B ∈ Rν×n,
of x.

Our focus is on linear and polyhedral estimates for solving the problem in question.
When applied to the estimation problem above, linear estimate ŵH

lin(ω) of w is of the form ŵH
lin(ω) = HTω

where contrast matrix H ∈ Rm×ν is the estimate’s parameter. A polyhedral estimate ŵH
poly(ω) is specified by a

contrast matrix H ∈ Rm×M according to

ω 7→ x̂H(ω) ∈ Argminx∈X
{

∥HT (ω −Ax)∥∞
}
, ŵH

poly(ω) := Bx̂H(ω).

Our interest in these two types of estimates stems from the fact that, as it was shown in [6, 8, 9], in the Gaussian
case (ξ ∼ N (0, σ2Im)), linear and polyhedral estimates with properly designed efficiently computable contrast
matrices are near-minimax optimal in terms of their statistical risks over a rather general class of loss functions
and signal sets which we call ellitopes.1 In this paper, our goal is to investigate numerical algorithms for design of
near-optimal linear and polyhedral estimates. Specifically, we aim at developing numerical routines for efficient
computation of contrast matrices H, the principal parameters of the estimates of both types.
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1 Exact definitions of these sets are reproduced in the main body of the paper. For the time being, it suffices to point out an

instructive example: a bounded intersections of finitely many sets of the form {x : ∥P x∥p ≤ 1}, p ≥ 2, is an ellitope.
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2 First order algorithms for computing linear and polyhedral estimates

As it was shown in [6, 8, 9], given the problem data, matrices A, B, the signal ellitope X , and the co-ellitopic
norm ∥ · ∥ in which estimation error is measured, computing the contrast matrices of linear and polyhedral
estimates amounts to solving a well-structured convex optimization problem with linear objective and linear
matrix inequality constraints. State-of-the-art optimization software, e.g., CVX [4] which relies upon Interior
Point Semidefinite Programming (SDP) algorithms may be used to compute high-accuracy solutions to these
problems. However, the structure of the optimization problems in question (presence of “dense” matrix arguments)
results in prohibitively long processing times by IPM algorithms already for rather moderate problem dimensions
(signal dimension n in the range of few dozens). In this paper we discuss an alternative approach to solving
the problem of designing linear and polyhedral estimates which relies upon a first order algorithm, namely, the
Composite Truncated Level method (CTL) of the bundle family. In particular, we show how matrix arguments
can be eliminated from the contrast optimization problem and how the latter can be cast in the form amenable
for first order algorithms.

The paper is organized as follows. In Section 2 we present the precise setting of the estimation problem and
define optimization problems underlying the contrast design for linear and polyhedral estimates. To set up the
first order optimization algorithm, we demonstrate how the problem of contrast computation for linear estimate
can be reduced to that for the polyhedral one, and then explain in Section 3 how the latter problem can be
rewritten in the form not involving matrix arguments and convenient for solving using first order algorithms. A
small simulation study presented in Section 3.2 illustrates numerical performance of the proposed algorithms.
We present the details of the Composite Truncated Level algorithm in Section A of the appendix. Proofs of
technical statements are put to Section B.

2 Linear and polyhedral estimates

2.1 Estimation problem
Consider the problem of recovering linear image w = Bx of unknown signal x ∈ Rn from noisy observation

ω = Ax+ σξ (2)

where B ∈ Rν×n and A ∈ Rm×n are given matrices, σ > 0 is known, and x is known to belong to a given signal
set X . Throughout the paper ξ is (0, Im)-sub-Gaussian, denoted ξ ∼ SG(0, Im), i.e., for all t ∈ Rm,

E
{
etT ξ

}
≤ exp

(
1
2∥t∥2

2

)
. (3)

Given a norm ∥ · ∥ on Rν and reliability tolerance ϵ ∈ (0, 1), we quantify the performance of a candidate estimate
ŵ( · ) by its ϵ-risk

Riskϵ[ŵ|X ] = sup
x∈X

inf
ρ

{ρ : Probξ {∥ŵ(Ax+ ξ) −Bx∥ > ρ} ≤ ϵ} . (4)

We assume from now on that the signal set X and the polar B∗ of the unit ball of ∥ · ∥ are basic ellitopes (see,
e.g., [7] and [9, Section 4.2]). Specifically, we set

X = {x ∈ Rn : ∃ t ∈ T : xTTkx ≤ tk, k ≤ K},

B∗ = {y ∈ Rν : ∃ s ∈ S : yTSℓy ≤ sℓ, ℓ ≤ L}.
(5)

Here Tk ⪰ 0 with
∑

k Tk ≻ 0 (respectively, Sℓ ⪰ 0 with
∑

ℓ Sℓ ≻ 0, and T ⊂ RK
+ (respectively, S ⊂ RL

+) is a
convex compact set which is monotone (i.e., 0 ≤ t ≤ t′ ∈ T ⇒ t′ ∈ T )2 and possesses a nonempty interior. We
refer to K (respectively, to L) as ellitopic dimension of X (respectively, of B∗).

Every basic ellitope is a convex compact set with nonempty interior which is symmetric w.r.t. the origin.
“Standard” examples of basic ellitopes are:

A bounded intersection X of K centered at the origin ellipsoids/elliptic cylinders {x ∈ Rn : xTTkx ≤ 1}
[Tk ⪰ 0]:

X = {x ∈ Rn : ∃ t ∈ T := [0, 1]K : xTTkx ≤ tk, k ≤ K}

In particular, the unit box {x ∈ Rn : ∥x∥∞ ≤ 1} is a basic ellitope.

2 Here and in the sequel, relationships t ≤ s (or t < s) between t, s ∈ RK are understood entrywise, i.e., as ti ≤ si (respectively,
as ti < si), i = 1, . . . , K.
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A ∥ · ∥p-ball in Rn with p ∈ [2,∞]:

{x ∈ Rn : ∥x∥p ≤ 1} =
{
x : ∃ t ∈ T = {t ∈ Rn

+, ∥t∥p/2 ≤ 1} : x2
k︸︷︷︸

xT Tkx

≤ tk, k ≤ n

}
.

2.2 The estimates
The interest in ellitopes in the present context is motivated by the results of [7, 8, 9] which state that, in the
situation in question, “near-optimal” (with risks within logarithmic in K and L factors from the minimax risk)
estimates can be found among linear and polyhedral ones.

2.2.1 Linear estimate
Linear estimate is specified by an m× ν contrast matrix H according to

ŵH(ω) = HTω.

Let

rκ [H] := min
λ,µ,Θ

ϕT (µ) + ϕS(λ) + σ2κ2 Tr(Θ) :

λ ≥ 0, µ ≥ 0,
∑

ℓ λℓSℓ
1
2 (B −HTA) 1

2H
T

1
2 (B −HTA)T

∑
k µkTk

1
2H Θ

 ⪰ 0

 (6)

where for G ⊂ Rp

ϕG(z) = sup
g∈G

zT g : Rp → R ∪ {+∞}

is the support function of G.

Proposition 1 (cf. [9, Proposition 4.14]). Let ŵH
lin(ω) = HTω with some H ∈ Rm×ν .

i. Then

sup
x∈X

E
{

∥ŵH
lin(ω) −Bx∥

}
≤ r1[H]

ii. Furthermore, let

κ = 1 +
√

2 ln[ϵ−1].

Then

Riskϵ[ŵH
lin|X ] ≤ rκ [H]. (7)

Furthermore, function rκ [H] is a convex, continuous and coercive function of the contrast matrix, and can be
efficiently minimized w.r.t. H.

Remarks.

As a consequence of the statement i of the proposition, the optimal value r∗ of the (clearly solvable) convex
optimization problem

r∗ := min
H

r1[H] = min
H,λ,µ,Θ

ϕT (µ)+ϕS(λ)+σ2 Tr(Θ) :

λ ≥ 0, µ ≥ 0,
∑

ℓ λℓSℓ
1
2 (B −HTA) 1

2H
T

1
2 (B −HTA)T

∑
k µkTk

1
2H Θ

 ⪰ 0

 (8)

is an upper bound on the expected risk

Risk[ŵ∗
lin|X ] = sup

x∈X
E {∥ŵ∗

lin(Ax+ ξ) −Bx∥}
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of the estimate ŵ∗
lin(ω) = HT

∗ ω yielded by the H-component H∗of an optimal solution to the problem. Note
that we do not need to assume that the noise ξ is sub-Gaussian for the above bound to hold: it would suffice
to suppose that E{ξξT } ⪯ σ2I. Moreover (cf. [9, Proposition 4.16]), the value r∗ is within moderate factor of
the minimax-optimal ∥ · ∥-risk

RiskOpt[X ] = inf
ŵ( · )

Risk[ŵ|X ]

(here inf is taken over all estimates, linear and nonlinear alike):

r∗ ≤ O(1)
√

ln(K + 1) ln(L+ 1) RiskOpt[X ] (9)

(from now on, O(1)’s stands for an absolute constant).
Observe that the ϵ-risk of the estimate ŵ∗

lin may be evaluated using the statement ii of Proposition 1.

Corollary 2. Let ϵ ∈ (0, 1). The ϵ-risk of the estimate ŵ∗
lin(ω) satisfies

Riskϵ[ŵ∗
lin|X ] ≤

(
1 +

√
2 ln[ϵ−1]

)
r∗.

The bound ψϵ(Θ) = κ2 Tr(Θ) for the 1 − ϵ quantile of the quadratic form ξT Θξ in the expression (6) can be
replaced by the following tighter but harder to process bounds (cf, e.g., [1, Proposition A.1])

ψϵ(Θ) := min
α

{
−α

2 log Det(I − 2α−1Θ) + α ln[ϵ−1], α ≥ 2λmax(Θ)
}

≤ ψ′
ϵ(Θ) := min

α

{
Tr(Θ) + Tr

(
Θ(αI − 2Θ)−1Θ

)
+ α ln(ϵ−1) : α ≥ 2λmax(Θ)

}
≤ ψ̃ϵ(Θ) := Tr(Θ) + 2∥Θ∥Fro

√
ln[ϵ−1] + 2λmax(Θ) ln[ϵ−1] ≤ ψϵ(Θ). (10)

2.2.2 Polyhedral estimate
Polyhedral estimate is specified by m×m contrast matrix H satisfying

σχ∥Colj [H]∥2 ≤ 1, 1 ≤ j ≤ m, (11)

with

χ = [χ(ϵ/m)] =
√

2 ln[2ϵ/m];

in other words, H is normalized by the requirement that

Probξ∼SG(0,I){σ∥HT ξ∥∞ > 1} ≤ ϵ. (12)

The associated with H polyhedral estimate ŵH
poly(ω) is

ŵH
poly(ω) = Bx(ω), x(ω) = argminx

{
∥HT (ω −Ax)∥∞ : x ∈ X .

}
(13)

It is shown in [9, Setion 5.1.5] that the ϵ-risk of ŵH
poly is upper-bounded by the quantity

min
λ,µ,υ

2
[
ϕS(λ) + ϕT (µ) +

∑
j

υj

]
:

λ ≥ 0, µ ≥ 0, υ ≥ 0,[ ∑
ℓ λℓSℓ

1
2B

1
2B

T ATH Diag{υ}HTA+
∑

k µkTk

]
⪰ 0

 (P [H])

A presumably good synthesis of the contrast H is yielded by feasible solutions to the convex optimization
problem

p∗
χ = min

Θ

pχ[Θ] := min
λ,µ


2
[
ϕS(λ) + ϕT (µ)
+ σ2χ2(ϵ/m) Tr(Θ)

] :

λ ≥ 0, µ ≥ 0, Θ ⪰ 0,[ ∑
ℓ λℓSℓ

1
2B

1
2B

T AT ΘA+
∑

k µkTk

]
⪰ 0


 (14)

Given a feasible solution (λ, µ,Θ) to (14), we set H = [σχ(ϵ/m)]−1U where Θ = U Diag{ν}UT is the eigenvalue
decomposition of Θ and υ = [σχ(ϵ/m)]2ν. Note that such H satisfies (11) and, moreover, (λ, µ, υ,H) is a
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feasible solution to (P [H]) with values of respective objectives of both problems at these feasible solutions being
equal to each other. As a result, the ϵ-risk of the polyhedral estimate ŵpoly stemming, in the just explained
fashion, from an optimal solution to the (clearly solvable) problem (14) is upper-bounded by p∗

χ. As shown in [9,
Proposition 5.10], the resulting polyhedral estimate is nearly minimax-optimal:

Riskϵ[ŵpoly|X ] ≤ p∗
χ ≤ O(1)

√
ln(K + 1) ln(L+ 1) ln(2m/ϵ) RiskOptϵ[X ]

where RiskOptϵ[X ] is the minimax ϵ-risk.

2.3 From polyhedral to linear estimate and back
Observe that problems (8) and (14) responsible for the design of nearly minimax-optimal under the circumstances
linear and polyhedral estimates are well structured convex problems. State-of-the-art Interior Point Semidefinite
Programming (SDP) algorithms may be use to compute high-accuracy solutions to these problems in a wide
range of geometries of T and S. However, the presence of matrix variables H and Θ results in large design
dimensions of the SDP’s to be solved and make prohibitively time consuming processing problem instances
of sizes m,n in the range of hundreds. The first goal of this paper is to show that matrix variables may be
eliminated from (8) and (14) allowing for processing by dedicated First Order algorithms, resulting in significant
extension of the ranges of problem sizes amenable for numerical processing.

Our first observation is that problems (8) and (14) are “nearly reducible” to each other. Indeed, let (λ, µ,H,Θ)

be feasible to (8). We clearly have Θ ⪰ 0. Let G =
[
I

I AT

]
. By multiplying the semidefinite constraint

of (8) by G on the left and GT on the right we conclude that (λ, µ,Θ) is a feasible solution to (14) with the
corresponding objective value

2[ϕS(λ) + ϕT (µ) + σ2χ2 Tr(Θ)] = 2rχ[H].

The converse is also true.

Lemma 3. Let (λ, µ,Θ) be a feasible solution to (14). Then it can be augmented to the feasible solution
(2λ, µ,H,Θ) of (8) with the corresponding objective value

2ϕS(λ) + ϕT (µ) + σ2κ2 Tr(Θ) ≤ pκ [Θ].

3 Designing polyhedral estimates by a First Order method

According to the results from the previous section, when speaking about numerical design of linear and polyhedral
estimates, we can focus solely on solving problem (14).3 Next, projecting, if necessary, the observation ω onto
the image space of A, we can assume w.l.o.g. that m ≤ n and the image space of A is the entire Rm. In fact, we
make here a stronger assumption:4

Assumption 0. Matrix A ∈ Rn×n in (2) is nonsingular.

Under this assumption, we can carry out partial minimization in Θ in (14). Specifically, it is immediately
seen that (14) is equivalent to the optimization problem

min
λ,µ,Θ

{
ϕS(λ)+ϕT (µ)+σ2χ2 Tr(Θ) : λ> 0, µ≥ 0, Θ ⪰ 0, Θ ⪰A−T

[
1
4B

T

[∑
ℓ

λℓSℓ

]−1
B−

∑
k

µkTk

]
A−1

︸ ︷︷ ︸
T(λ,µ)

}
(15)

In the latter problem partial minimization in Θ is as follows: given λ > 0 and µ ≥ 0 we compute the eigenvalue
decomposition

T(λ, µ) = U Diag{υ}UT

3 Strictly speaking, this is so if we assume that when looking for a linear estimate, we are ready to tolerate a moderate constant
factor (namely, 2) in the risk bound of the resulting estimate.

4 We briefly describe the “conversion” of (14) into the form amenable for First Order algorithms in the case of singular A in
Section C.
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of T(λ, µ). The best in terms of the objective of (15) choice of Θ given λ, µ is

Θ = U Diag{υ+}UT . ([α+ = max[α, 0]])

Therefore, (15) reduces to

min
λ>0,µ≥0

{
Υ(λ, µ) := ϕS(λ) + ϕT (µ) + σ2χ2

∑
i

λ+
i (T(λ, µ))

}

T(λ, µ) = A−T

[
1
4B

T

[∑
ℓ

λℓSℓ

]−1
B −

∑
k

µkTk

]
A−1

(16)

where λ1(Q) ≥ λ2(Q) ≥ · · · ≥ λp(Q) are the eigenvalues of symmetric p×p matrix Q. and λ+
i (Q) = max[λi(Q), 0].

3.1 Setting up Composite Truncated Level algorithm
We intend to solve the problem of interest (14) by applying to (16) a First Order algorithm — Composite
Truncated Level algorithm (CTL). Detailed description of the method is presented in Section A. CTL is aimed
at solving convex optimization problems of the form

Opt = min
x∈X

{ϕ(x) := ψ(x) + f(x)} (17)

where X ⊂ RN is a nonempty bounded and closed convex set, and ψ( · ) and f( · ) are Lipschitz continuous
convex functions on X with “simple” X and ψ (for details, see Section A). Note that in order to reduce the
problem of interest (16) to the form (17), it suffices to set

X =
{
x = [λ;µ] ∈ RL+K

+ , λℓ ≥ δ ∀ ℓ,
∑

ℓ

λℓ +
∑

k

µk ≤ R

}
,

ψ([λ;µ]) = ϕS(λ) + ϕT (µ),

f([λ;µ]) = σ2χ2
∑

i

λ+
i (T(λ, µ)).

(18)

When solving (17), CTL “learns” the difficult part f(x) of the objective via oracle which, given on input a query
point x ∈ X, returns a “simple” Lipschitz continuous convex function (model) fx( · ) such that

fx(x) = f(x) & fx(y) ≤ f(y) ∀ y ∈ X.

Oracle Oϱ

In the situation we are interested in with the data for (17) given by (18), the oracle may be built as follows:
1. Given query point x = [λ;µ] ∈ X, we compute the matrices Λ =

∑
ℓ λℓSℓ and T = T(λ, µ) along with the

eigenvalue decomposition T = U Diag{υ}UT , υ1 ≥ υ2 ≥ · · · ≥ υn of T.
2. We put

T (λ, µ) = A−T

[
1
4B

T Λ−1
[
2Λ −

∑
ℓ

λℓSℓ

]
Λ−1

B −
∑

k

µkTk

]
A−1

This function is obtained from T(λ, µ) by linearization in λ at λ = λ and clearly ⪰-underestimates T(λ, µ)
on X, while T (λ, µ) ≡ T(λ, µ). Consequently,

f([λ;µ]) = σ2χ2
∑

i

λ+
i (T(λ, µ)) ≥ fλ(λ, µ) := σ2χ2

∑
i

λ+
i (T (λ, µ)),

the inequality being equality when λ = λ.
Recall that for every symmetric convex function g on Rn and every n× n symmetric matrix D one has [2,

Proposition 4.2.1]

g([D11; . . . ;Dnn]) ≤ g(λ(D)).
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When specifying g(s) =
∑n

i=1 s
+
i and denoting by Di(λ, µ) the diagonal entries in the matrix UT

T (λ, µ)U ,
1 ≤ i ≤ n, we get

[f([λ;µ]) ≥] fλ(λ, µ) ≥
n∑

i=1
D+

i (λ, µ) ∀ (λ > 0, µ ≥ 0)

with both inequalities becoming equalities for λ = λ and µ = µ. Taking into account that functions Di(λ, µ)
are affine, we conclude that piecewise linear function

∑
i D

+
i (λ, µ) underestimates f([λ;µ]) in the domain

λ > 0 and is equal to f([λ;µ]) when (λ, µ) = (λ, µ).
3. The above considerations justify the oracle Oϱ defined as follows:

fx=[λ;µ](x) =
ϱ∑

ι=1
max[αι(x), 0],

where ϱ, 1 ≤ ϱ ≤ n, is the “complexity parameter” of the oracle, and αι(x) are affine functions of x = [λ;µ]
specified according to

for ι < ϱ, αι(x) = Dι(x);

αϱ(x) =
∑

ι≥ϱ Dι(x), Dι(x) =
{
Dι(x), Dι(x) ≥ 0,
0, otherwise.

By construction, fx(x) is the sum of ϱ positive parts of linear forms, underestimates f(x) everywhere, and
coincides with f(x) when x = x.

3.2 Numerical illustration
Consider the situation in which ∥ · ∥ is ∥ · ∥2. In this case problem (14) reads

p∗
χ = min

λ,µ,Θ

2[λ+ ϕT (µ) + σ2χ2 Tr(Θ)] :

λ ≥ 0, µ ≥ 0,Θ ⪰ 0[
λIν

1
2B

1
2B

T AT ΘA+
∑

k µkTk

]
⪰ 0

 (19)

Observe that scaling a feasible solution (λ, µ,Θ) to the problem according to (λ, µ,Θ) 7→ (sλ, s−1µ, s−1Θ)
with s > 0 preserves feasibility; the best in terms of the objective scaling of (λ, µ,Θ) corresponds to s =√

[ϕT (µ) + σ2χ2 Tr(Θ)]/λ and results in the value of the objective 4
√
λ[ϕT (µ) + σ2χ2 Tr(Θ)], As a result, we

can eliminate the variable λ, thus arriving at the problem

p∗
χ = min

µ,Θ

F (µ,Θ) := ϕT (µ) + σ2χ2 Tr(Θ) :

µ ≥ 0,Θ ⪰ 0[
Iν

1
2B

1
2B

T AT ΘA+
∑

k µkTk

]
⪰ 0

 (20)

A feasible (an optimal) solution µ,Θ to (20) gives rise to feasible (resp., optimal) solution λ =
√
F (µ,Θ),

µ = µ/λ, Θ = Θ/λ to (19) with the value of the objective equal to 4
√
F (µ,Θ); in particular,

p∗
χ = 4

√
p∗

χ.

In our experiments, we used B = In, A ∈ Rn×n with i.i.d. entries drawn from N (0, 1), we put σ = 0.1, ϵ = 0.05,
and used ellitopic signal set

X = {x ∈ Rn :
∑
i∈Ik

ix2
i ≤ 1, 1 ≤ i ≤ K}

where I1, . . . , IK are consecutive segments of the range 1 ≤ i ≤ n of cardinality n/K each.
Under the circumstances, problem (20) reads

p∗
χ = min

µ,Θ


K∑

k=1
µk + σ2χ2(ϵ/n)︸ ︷︷ ︸

γ

Tr(Θ) :

µ ≥ 0,Θ ⪰ 0[
Iν

1
2In

1
2In AT ΘA+D[µ]

]
⪰ 0

 (21)
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Table 1 Solving (22) by CTL with ϱ = 10, τ = 10.

n 64 128 256 512 1024 1024

K 8 16 32 64 128 1024

calls 23 8 10 28 24 26

phases 11 4 5 14 11 11

CPU, sec 7 2 4 20 96 781

0.05-risk 3.215 4.283 4.519 4.169 4.216 7.868

∥ · ∥2-risk 1.709 2.237 2.389 2.209 2.231 4.271

Table 2 Performance of CTL vs. ϱ and τ , problem (22) with n = 1024, K = 128. Data in cells: # of
calls/# of phases/CPU time, sec.

ϱ=1 ϱ=10

τ=1 50/11/275 31/12/136

τ=10 26/11/109 24/11/96

where D[µ] is diagonal n× n matrix with the i-th diagonal entry equal to iµk when i ∈ Ik.
After eliminating Θ by partial minimization (21) becomes

min
µ

{∑
k

µk + γ
∑

ι

λ+
ι (A−T [In −D[µ]]A−1) : 0 ≤ µ,

∑
k

µk ≤ R

}
(22)

(we have imposed a large enough upper bound on
∑

k µk to make the optimization domain bounded). The
resulting problem was processed by the CTL algorithm utilizing oracle Oϱ. ϱ was the first of the two control
parameters used the experiments; the second parameter was the maximum cardinality τ of bundle allowed for
CTL.5 We used “ℓ1/ℓ2 proximal setup,” [11, Section 2.1], in which

∥ · ∥ = ∥ · ∥1, ω(µ) = κn∥µ∥2
pn
, pn = 1 + 1/ lnn,

where κn is an easy to compute constant ensuring strong convexity, modulus 1, of ω( · ) w.r.t. ∥ · ∥1(see [11,
Theorem 2.1]). The CTL parameters λℓ, θ, θ were set to 1/2, and the auxiliary problems (steps 4.2-4.3)
were processed by Interior Point solver Mosek invoked via CVX, see [4]. When solving (22), computations were
terminated when the best found so far value of the objective were within the factor 1.1 of the generated by the
method lower bound on the optimal value.

We report on results of our experiments in Tables 1 and 2.6 To put these results in proper perspective, note
that solving (21) by state-of-the-art Mosek Interior Point solver takes 35 sec when n = 64, K = 8 and 1785 sec
when n = 128, K = 16; as applied to the same problem with n = 256, K = 64, Mosek runs out of memory.

A CTL — Composite Truncated Level algorithm

A.1 Situation and goal
CTL is a First Order method for solving optimization problems

Opt = min
x∈X

ϕ(x) := ψ(x) + f(x), (17)

where
X ⊂ Rn is nonempty, convex, closed, and bounded
ψ : X → R and f : X → R are Lipschitz continuous convex functions.

Our assumptions are as follows:

5 For description of CTL and related entities, see Section A.
6 MATLAB code for this experiment is available at GitHub repository https://github.com/ai1-fr/

Algorithms-for-linear-and-polyhedral-estimates/tree/main.

https://github.com/ai1-fr/Algorithms-for-linear-and-polyhedral-estimates/tree/main
https://github.com/ai1-fr/Algorithms-for-linear-and-polyhedral-estimates/tree/main
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Assumption 1. X is equipped with a proximal setup composed of a norm ∥ · ∥ on Rn and a distance-generating
function ω : X → R which is continuously differentiable and strongly convex on X with convexity modulus 1
w.r.t. ∥ · ∥:

⟨∇ω(x) − ∇ω(y), x− y⟩ ≥ ∥x− y∥2 ∀ x, y ∈ X.

Proximal setup induces Bregman distance Vx(y) on X and Bregman diameter Ω of X:

Vx(y) = ω(y) − [ω(x) − ⟨∇ω(x), y − x⟩] ≥ 1
2∥x− y∥2, x, y ∈ X

Ω =
[
2 max

x,y∈X
Vx(y)

]1/2
≥ max

x,y∈X
∥x− y∥.

Assumption 2. We have at our disposal oracle O which, given on input a query point x ∈ X, returns a piece:
a Lipschitz continuous on X convex function

ϕx( · ) = ψ( · ) + fx( · ) : X → R

where fx( · ) belongs to some family F of “simple” Lipschitz continuous convex functions on X. We suppose that

∀ (x, y ∈ X) : fx(y) ≤ f(y) & fx(x) = f(x)

(in particular, ϕ(x) = ϕx(x)) and that functions ϕx( · ) : X → R are uniformly in x ∈ X Lipschitz continuous
on X:

|ϕx(u) − ϕx(v)| ≤ Lϕ∥u− v∥ ∀ (u, v ∈ X) (23)

for some Lϕ < ∞.

The simplest example of such oracle is that of family F comprised of affine functions of Rn, and fx(y) =
f(x) + ⟨f ′(x), y−x⟩ where f ′(x) is a subgradient of f at x (“first order oracle”). In a less trivial example, f(x) is
the largest eigenvalue of a symmetric matrix S(x) which affinely depends on x, while fx(y) = maxi≤k e

T
i S(y)ei,

where k ≤ n is fixed and e1, . . . , ek are the k leading eigenvectors of S(x).

Assumption 3. We assume that for some positive integer τ we are able to solve efficiently problems of the form

min
y

{
ψ(y) + max

ι≤τ
fxι

(y) : y ∈ X,α(y) ≤ 0
}

and

min
y

{
Vx(y) : y ∈ X,ψ(y) + max

ι≤τ
fxι

(y) ≤ ℓ, α(y) ≤ 0
}

where α( · ) is an affine function.

We remark that the algorithm to follow is the composite version of Non-Euclidean Restricted Memory Level
method [3] operating with ψ ≡ 0 and the family of affine functions in the role of F ; the Euclidean version of the
latter algorithm is the minimization version of the Proximal level bundle method from [10].

A.1.1 The algorithm
The description of CTL is as follows.
0. Control parameters of the algorithms are λℓ ∈ (0, 1), θ ∈ (0.1), θ ∈ (0, 1).
1. At the beginning of an iteration of CTL, we have at our disposal
1.1. upper bound ϕ on Opt; the best (the smallest) of the values of ϕ observed at the query points processed so

far. These upper bounds do not increase as the iteration count grows. The query point ŷ with ϕ = ϕ(ŷ) is
considered as the approximate solution generated so far.

1.2. lower bound ϕ on Opt; these lower bounds do not decrease as the iteration number grows
1.3. prox-center x ∈ X and level ℓ ∈ (ϕ, ϕ)
1.4. query point x ∈ X
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1.5. bundle – a nonempty collection B of τB ≤ τ pieces ϕι( · ) = ψ( · ) + f ι( · )}, 1 ≤ ι ≤ τB, with f ι ∈ F ;
positive integer τ is a parameter of the algorithm.

The very first iteration is preceded by initialization where we call the oracle at a (whatever) point xini ∈ X

and set

ϕ = ϕ(xini), ϕ = min
x∈X

[ψ(x) + fxini(x)], B = {ψ(x) + fxini(x)}

Note that since the pieces reported by the oracle underestimate ϕ( · ), we do ensure ϕ ≤ Opt.
2. Iterations are split into consecutive phases, with prox-center and level common to all iterations of a phase.

For a particular phase,
2.1. the prox-center x is selected at the beginning of the first iteration of the phase and can be a whatever

point of X;
2.2. the query point of the first iteration of the phase is x = x,
2.3. the level ℓ is selected at the beginning of the very first iteration of the phase as

ℓ = λℓϕ+ (1 − λℓ)ϕ.

• At the beginning of the first iteration of a phase, we set

∆ = ϕ− ℓ, ∆ = ℓ− ϕ, ∆ = ∆ + ∆ = ϕ− ϕ.

Note that the gap ∆ of a phase upper-bounds the inaccuracy in terms of the objective of the approximate
solution available at the beginning of the phase.
3. At iterations of a phase, we maintain the relation

ϕ(y) ≥ ℓ for all y ∈ X such that ⟨∇ω(x) − ∇ω(x), y − x⟩ < 0 (24)

where x, ℓ are the prox-center and the level of the phase, and x is the query point of the iteration. Note that
this relation takes place at the very first iteration of a phase, since for such an iteration x = x.

4. An iteration of a phase is organized as follows:
4.1. We call the oracle at the query point x of the iteration, thus getting the value of the objective ϕ(x) and a

piece ϕx( · ). After ϕ(x) is known, we
update the upper bound ϕ and the approximate solution x̂:

(
ϕ, x̂

)
=

{
(ϕ(x), x), if ϕ(x) < ϕ

(ϕ, x̂), otherwise.

update the bundle B by adding to it the piece ϕx( · ) and removing, if necessary, one of “old” pieces to
keep the number of pieces ϕ1, . . . , ϕτB in the resulting bundle to be at most τ .

4.2. If ϕ(x) − ℓ ≤ θ∆ (“essential progress in upper bound on Opt”), we terminate the phase and pass to the
next one. Otherwise we solve the auxiliary problem

ϕ̃ = min
y

{
ϕ̂(y) := max

1≤ι≤τB
ϕι(y) : y ∈ X, ⟨∇ω(x) − ∇ω(x), y − x⟩ ≥ 0

}
(25)

(as usual, ϕ̃ = +∞ when the right hand side problem is infeasible), and update the lower bound ϕ on Opt
according to

ϕ 7→ max
[
ϕ,min[ϕ̃, ℓ]

]
▶ Note. By (24), ϕ(y) ≥ ℓ at every point y ∈ X which is not feasible for the optimization problem in (25).
Besides this, the pieces ϕi( · ) in the bundle, and, consequently, the model ϕ̂( · ), underestimate ϕ( · ) on X.
As a result, the quantity min[ϕ̃, ℓ], and consequently the new value of ϕ, indeed is a lower bound on Opt.
If updated ϕ satisfies

ℓ− ϕ ≤ θ∆

(“essential progress in lower bound on Opt”), we terminate the phase and pass to the next one.
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4.3. If the iteration in question does not result in phase change, we solve the auxiliary problem

min
y

{
Vx(y) : y ∈ X, ϕ̂(y) ≤ ℓ, ⟨∇ω(x) − ∇ω(x), y − x⟩ ≥ 0

}
(26)

take its optimal solution, x+, as the new query point, and pass to the next iteration of the phase.
▶ Note. When we need to solve (26), we have, by construction, ϕ̃ ≤ ℓ, so that the problem in (26) is
feasible, a feasible solution being a minimizer in (25). Thus, the new query point x+ is well defined. Besides
this, from the definition of x+ it follows that

⟨∇ω(x+) − ∇ω(x), y − x+⟩ ≥ 0

for every feasible solution y to (26). As a result, when y ∈ X satisfies the relation

⟨∇ω(x+) − ∇ω(x), y − x+⟩ < 0,

y is infeasible for (26), meaning that either ϕ̂(y) > ℓ, and in such case ϕ(y) ≥ ϕ̂(y) ≥ ℓ, or y satisfies the
premise in (24), implying that ϕ(y) ≥ ℓ by (24). We see that (24) holds true when x is replaced with x+,
that is, (24) is maintained during the iterations.

A.1.2 Convergence analysis
Observe that
(!). If a phase is finite, then the gap ∆+ of the subsequent phase does not exceed a fixed fraction θ∆ of the gap

∆ of the phase in question, where

θ = max
[
1 − λℓθ, θ + λℓ(1 − θ)

]
∈ (0, 1);

Indeed, (!) is an immediate consequence of the phase termination rules in 4.2 combined with the facts that ϕ
does not decrease, and ϕ does not increase as the iteration count grows.

The following observation is crucial:
(!!). The number of iterations at a phase with gap ∆ does not exceed⌈(

LϕΩ
θλℓ∆

)2
⌉

(27)

(here ⌈a⌉ stands for the upper integer part of a, the smallest integer greater or equal to a).
Indeed, let ℓ be the level of the phase. Assume that the phase contains more that T ≥ 1 iterations, so that

the upper bound ϕ, the lower bound ϕ on Opt, same as the model ϕt( · ) generated at iteration t of the phase
are well defined for t = 1, . . . , T , and the query points xt are well defined for t = 1, . . . , T + 1. By construction,
for 1 ≤ t ≤ T we have

ϕt(xt) > ℓ+ θ∆, (28a)
ϕt(xt+1) ≤ ℓ, (28b)

⟨∇Vx(xt), xt+1 − xt⟩ ≥ 0 (28c)

where x = x1 is the prox-center of the phase. Indeed, when t ≤ T ,
(28a) holds true since otherwise the phase would be terminated at its t-th iteration due to essential progress
in upper bound on Opt, which is not the case when t ≤ T ;
(28b) and (28c) hold because, by construction of xt+1 at a non-concluding iteration t of a phase, xt+1
minimizes continuously differentiable on X convex function Vx( · ) over the set

X ∩ {y ∈ X : ϕt(y) ≤ ℓ} ∩ {y ∈ Y : ⟨∇Vx(xt), y − xt⟩ ≥ 0}.

Now note that by construction of ϕt( · ) and due to Assumption Ass2, ϕt is Lipschitz continuous with constant
Lϕ w.r.t. ∥ · ∥, which combines with (28a) and (28b) to imply that

∥xt − xt+1∥ > L−1
ϕ θ · ∆ = L−1

ϕ θλℓ∆.
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The latter relation, in turn, combines with (28c) and with inherited from ω( · ) strong convexity of Vx( · ) on X

w.r.t. ∥ · ∥ to imply that

Vx(xt+1) > Vx(xt) + [θλℓ]2∆2

2L2
ϕ

, 1 ≤ t ≤ T.

Taking into account that Vx(x1) = 0 and Vx(x) ≤ 1
2 Ω2 for all x ∈ X, we arrive at (27).

As an immediate consequence of (!) and (!!), we get the following efficiency estimate:

Proposition 4. For every ϵ ∈ (0, LϕΩ), the overall number of CTL iterations until an ϵ-optimal, as certified by
current gap, solution to the minimization problem is built does not exceed

N(ϵ) = C(LϕΩ/ϵ)2

with C depending solely on the control parameters λℓ, θ, and θ.

B Proofs for Section 2

B.1 Proof of Proposition 1
To save notation, in this section we use shortcut notation ŵH for the linear estimate ŵH

lin(Ax+ ξ). Note that for
all x ∈ X , the loss ∥ŵH −Bx∥ of the estimate ŵH satisfies

∥ŵH −Bx∥ = ∥(HTA−B)x+ σHT ξ∥ = max
u∈B∗

{
uT [(HTA−B)x+ σHT ξ]

}

= max
u∈B∗

[u;x;σξ]T


1
2 (B −HTA) 1

2H
T

1
2 (B −HTA)T

1
2H

 [u;x;σξ]


≤ max

u∈B∗,x∈X

{
uT

[∑
ℓ

λℓSℓ

]
u+ xT

[∑
k

µkTk

]
x+ σ2ξT Θξ

}
where µ, λ ≥ 0 and Θ ∈ Sm are such that

∑
ℓ µℓSℓ

1
2 (B −HTA) 1

2H
1
2 (B −HTA)T

∑
k λkTk

1
2H

T Θ

 ⪰ 0.

We conclude that for all x ∈ X ,

∥ŵH −Bx∥ ≤ max
s∈S,t∈T

{∑
ℓ

λℓsℓ +
∑

k

µktk + σ2ξT Θξ
}

= ϕS(λ) + ϕT (µ) + σ2ξT Θξ.

Due to (3) we have E{ξξT } ⪯ σ2I. We conclude that E{ξT Θξ} ≤ Tr(Θ) what implies the first claim of the
proposition. To complete the proof it remains to recall the bound

Probξ

{
ξT Θξ ≥ κ2 Tr(Θ))

}
≤ ϵ

for deviations of the quadratic form of sub-Gaussian random vectors (cf., e.g., [5, 12, 13]). ◀

B.2 Proof of Corollary 2
Indeed, let κ = 1 +

√
2 ln[ϵ−1], and let λ∗, µ∗ and Θ∗ be components of an optimal solution to (8). Notice that

λ∗, µ∗ and Θ∗ are feasible for (6). Moreover, λ, µ and Θ where

λ = κλ∗, µ = κ−1µ∗, Θ = κ−1Θ∗

are also feasible, so, by item ii of Proposition 1, the value

ϕT (µ) + ϕS(λ) + σ2κ2 Tr(Θ) ≤ κ
(
ϕT (µ∗) + ϕS(λ∗) + σ2 Tr(Θ)

)
≤ κr∗

upper-bounds the ϵ-risk of ŵ∗
lin. ◀
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B.3 Proof of Lemma 3
Let (λ, µ,Θ) be a feasible solution to (14) such that

Λ :=
∑

ℓ

λℓSℓ ≻ 0, Ξ :=
∑

k

µkTk ≻ 0. (29)

Note that every feasible solution to (14) remains feasible and satisfies (29) after replacing zero entries of λℓ and
µk, if any, with arbitrarily small positive entries.

Now, due to
[

Λ 1
2B

1
2B

T AT ΘA+ Ξ

]
⪰ 0 we have

[
Iν

1
2 Λ−1/2BΞ−1/2

1
2 Ξ−1/2BT Λ−1/2 Ξ−1/2AT ΘAΞ−1/2 + In

]
⪰ 0.

When setting Θ1/2AΞ−1/2 = US with UUT = In and S ⪰ 0, we get

1
4 [Λ−1/2BΞ−1/2]T [Λ−1/2BΞ−1/2] ⪯ S2 + In ⪯ (S + In)2

(recall that S ⪰ 0). We conclude that there is Q ∈ Rν×n of spectral norm ∥Q∥2,2 ≤ 1 such that

1
2 [Λ−1/2BΞ−1/2] = Q(S + In)

and

B − 2Λ1/2QSΞ1/2 = 2Λ1/2QΞ1/2.

When recalling what S is and setting H = 2Θ1/2UQT Λ1/2 we have

B −HTA = 2Λ1/2QΞ1/2.

Due to ∥Q∥2,2 ≤ 1, by Schur complement lemma, now it follows that[
Λ 1

2 (B −HTA)
1
2 (B −HTA)T Ξ

]
⪰ 0. (30)

Besides this, by construction,

1
4HΛ−1HT = Θ1/2 UQTQUT︸ ︷︷ ︸

⪯In

Θ1/2 ⪯ Θ,

that is,[
Λ 1

2H
T

1
2H Θ

]
⪰ 0. (31)

Finally, (30) together with (31) imply that matrix
2Λ 1

2 (B −HTA) 1
2H

T

1
2 (B −HTA)T Ξ

1
2H Θ


is positive semidefinite, meaning that 2λ, µ,H and Θ form a feasible solution to (8). The corresponding objective
value is

ϕS(2λ) + ϕT (µ) + σ2κ2 Tr(Θ) = 2ϕS(λ) + ϕT (µ) + σ2κ2 Tr(Θ) ≤ pκ [Θ]. ◀



14 First order algorithms for computing linear and polyhedral estimates

C Contrast synthesis for the polyhedral estimate

Projecting, if necessary, the observations onto the image space of A, we reduce the situation to that in which
this image space is the entire Rm; that is, m ≤ n with positive singular values σ1, . . . , σm of A. Let us assume
that n = m+ d for some d ≥ 0, and let

A = UDV T , D =
[

Diag(σ1, . . . , σm)︸ ︷︷ ︸
=:Dm

, 0m×d

]
, U ∈ Rm×m, V ∈ Rm×n,

be the (full) singular-value decomposition of A. The starting point of the following computation is the bound (14)
for the ϵ-risk of the polyhedral estimate: we have

p∗
χ = 2 min

λ,µ,Θ

ϕS(λ) + ϕT (µ) + σ2χ2 Tr(Θ) :

λ ≥ 0, µ ≥ 0,Θ ⪰ 0,[ ∑
ℓ λℓSℓ

1
2B

1
2B

T
∑

k µkTk +AT ΘA

]
⪰ 0


= 2 min

λ,κ,Θ

2ϕS(λ) + ϕT (µ) + σ2χ2 Tr(Θ) :
λ > 0, µ ≥ 0,Θ ⪰ 0,

AT ΘA ⪰ 1
4B

T

[∑
ℓ

λℓSℓ

]−1
B −

∑
k

µkTk



= 2 min
λ,µ,Θ


F (λ, µ,Θ)

:= ϕS(λ) + ϕT (µ) + σ2χ2 Tr(Θ)
:

λ > 0, µ ≥ 0, Θ = UT ΘU ⪰ 0,[
DmΘDm

]
= DT ΘD

⪰ V T

[
1
4B

T

[∑
ℓ

λℓSℓ

]−1
B −

∑
k

µkTk

]
V



= 2 min
λ,µ,Θ

F (λ, µ,Θ) :

λ > 0, µ ≥ 0, Θ ⪰ 0,[
Θ

]
⪰

[
Dm

I

]−1

V T

[
1
4B

T

[∑
ℓ

λℓSℓ

]−1
B −

∑
k

µkTk

]
V

[
Dm

I

]−1

︸ ︷︷ ︸
=:C(λ,µ)

.

 (32)

Observe that the matrix-valued function C(λ, µ) is ⪰-convex for λ > 0, and is negative definite for every fixed λ
for all µ such that mini µi ≥ µ large enough. On the other hand, when Z(λ, µ) ≺ 0 in the representation

C(λ, µ) =
[

X(λ, µ) Y (λ, µ)
Y T (λ, µ) Z(λ, µ)

]

the semidefinite constraint of (32) is satisfied if and only if

Θ ⪰ W (λ, µ) := X(λ, µ) + Y T (λ, µ)Z(λ, µ)−1Y (λ, µ).

As a result, when denoting [M ]+ the matrix obtained from a symmetric matrix M by replacing its eigenvalues
with their positive parts in the eigenvalue decomposition of M , we conclude that

p∗
χ = 2 min

λ,µ

{
ϕS(λ) + ϕT (µ) + σ2χ2 Tr[W (λ, µ)]+ : λ > 0, µ ≥ 0, Z(λ, µ) ≺ 0

}
.

The bottom line is that in the situation of this section, building Θ (and thus, the near-optimal polyhedral
estimate) reduces to solving convex problem of design dimension L + M with (relatively) easy-to-compute
objective and constraints.

References
1 Yannis Bekri, Anatoli Juditsky, and Arkadi Nemirovski. On robust recovery of signals from indirect observations.

https://arxiv.org/abs/2309.06563, 2023.
2 Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algorithms, and

engineering applications, volume 2 of MPS/SIAM Series on Optimization. Society for Industrial and Applied
Mathematics, 2001.

https://arxiv.org/abs/2309.06563


Yannis Bekri, Anatoli Juditsky & Arkadi Nemirovski 15

3 Aharon Ben-Tal and Arkadi Nemirovski. Non-euclidean restricted memory level method for large-scale convex
optimization. Math. Program., 102(3):407–456, 2005.

4 Michael Grant and Stephen Boyd. The cvx Users’ Guide. Release 2.1, 2014. https://web.cvxr.com/cvx/doc/CVX.
pdf.

5 Daniel Hsu, Sham M. Kakade, and Tong Zhang. A tail inequality for quadratic forms of subgaussian random vectors.
Electron. Commun. Probab., 17: article no. 52 (6 pages), 2012.

6 Anatoli Juditsky and Arkadi Nemirovski. Near-optimality of linear recovery from indirect observations. Math. Stat.
Learn., 1(2):171–225, 2018.

7 Anatoli Juditsky and Arkadi Nemirovski. Near-optimality of linear recovery in gaussian observation scheme under
∥ · ∥2

2-loss. Ann. Stat., 46(2):1603–1629, 2018.
8 Anatoli Juditsky and Arkadi Nemirovski. On polyhedral estimation of signals via indirect observations. Electron. J.

Stat., 14(1):458—502, 2020.
9 Anatoli Juditsky and Arkadi Nemirovski. Statistical Inference via Convex Optimization. Princeton Series in Applied

Mathematics. Princeton University Press, 2020.
10 Krzysztof C. Kiwiel. Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems

and variational inequalities. Math. Program., 69(1):89–109, 1995.
11 Yurii Nesterov and Arkadi Nemirovski. On first-order algorithms for ℓ1/nuclear norm minimization. Acta Numer.,

22:509–575, 2013.
12 Mark Rudelson and Roman Vershynin. Hanson–Wright inequality and sub-Gaussian concentration. Electron.

Commun. Probab., 18: article no. 82 (9 pages), 2013.
13 Vladimir Spokoiny and Maya Zhilova. Sharp deviation bounds for quadratic forms. Math. Methods Stat., 22(2):100–

113, 2013.

https://web.cvxr.com/cvx/doc/CVX.pdf
https://web.cvxr.com/cvx/doc/CVX.pdf

	Introduction
	Linear and polyhedral estimates
	Estimation problem
	The estimates
	From polyhedral to linear estimate and back

	Designing polyhedral estimates by a First Order method
	Setting up Composite Truncated Level algorithm
	Numerical illustration

	CTL — Composite Truncated Level algorithm
	Situation and goal

	Proofs for Section 2
	Proof of Proposition 1
	Proof of Corollary 2
	Proof of Lemma 3

	Contrast synthesis for the polyhedral estimate 

