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Abstract
We consider the problem of computing mixed Nash equilibria of two-player zero-sum games with continuous sets of pure
strategies and with first-order access to the payoff function. This problem arises for example in game-theory-inspired
machine learning applications, such as distributionally-robust learning. In those applications, the strategy sets are
high-dimensional and thus methods based on discretisation cannot tractably return high-accuracy solutions. In this paper,
we introduce and analyze a particle-based method that enjoys guaranteed local convergence for this problem. This
method consists in parametrizing the mixed strategies as atomic measures and applying proximal point updates to both
the atoms’ weights and positions. It can be interpreted as an implicit time discretization of the “interacting”
Wasserstein–Fisher–Rao gradient flow.

We prove that, under non-degeneracy assumptions, this method converges at an exponential rate to the exact mixed
Nash equilibrium from any initialization satisfying a natural notion of closeness to optimality. We illustrate our results
with numerical experiments and discuss applications to max-margin and distributionally-robust classification using
two-layer neural networks, where our method has a natural interpretation as a simultaneous training of the network’s
weights and of the adversarial distribution.

Digital Object Identifier 10.5802/ojmo.37

1 Introduction

Consider the min-max, or saddle-point, optimization problem

min
µ∈P(X )

max
ν∈P(Y)

∫
X

∫
Y
f(x, y)dµ(x)dν(y) (1)

where P(X ) and P(Y) are the sets of probability distributions over the sets of pure strategies X and Y, and
f : X × Y → R is the payoff function. In the language of game theory, P(X ) and P(Y) are the sets of mixed
strategies and solutions (µ∗, ν∗) of (1) are the mixed Nash equilibria (MNEs) of the two-player zero-sum game
(f,X ,Y). The conditions for the existence of a MNE are well-known since the 1950s. In particular, by Glicksberg’s
theorem [14] (later generalized as Sion’s minimax theorem [33]) a MNE always exists if X and Y are finite, or if
X and Y are compact and f is continuous.

Many methods have been proposed to compute MNEs given zeroth-order access to f , including in noisy,
online or decentralized settings [6, 25]. Those methods are typically derived and studied for finite games (i.e.,
with finite strategy sets). When X and Y are continuous (say, differentiable manifolds) and we additionally have
access to the gradients of f , it is still possible to reduce the game to a finite one by discretization, but this not
only wastes the gradient information, it may also incur a prohibitively high discretization cost when X and Y
have high dimension. In this paper, we thus study how to efficiently compute a MNE of (f,X ,Y) to a high
accuracy, when the strategy sets X ,Y are continuous and given first-order access to f .
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2 Exponentially Converging Particle Method

Particle methods

In this setting, a possible strategy is to parametrize the unknowns via

µ =
n∑

i=1
aiδxi , ν =

m∑
j=1

bjδyj ,

and to use gradient methods to solve the reparametrized min-max problem

min
a∈∆n

x∈X n

max
b∈∆m

y∈Ym

Fn,m ((a, x), (b, y)) :=
n∑

i=1

m∑
j=1

aibjf(xi, yj)

 , (2)

where ∆n :=
{
a ∈ Rn

+;
∑n

i=1 ai = 1
}

is the n-simplex. This approach takes its inspiration from the recent
guarantees obtained for “weighted particle methods” for convex minimization on the space of measures. In
particular, adapting the Conic1 Particle Gradient Descent (CP-GD) method [8] to the constrained min-max
context, leads to the Conic Particle Mirror Descent-Ascent (CP-MDA) method which defines a sequence of
iterates (ak, xk, bk, yk)k≥0 by the update ruleak+1

i ∝ ak
i e

−η ∂
∂ai

Fn,m(ak,xk,bk,yk)

xk+1
i = xk

i − σ 1
ak

i

∂
∂xi

Fn,m(ak, xk, bk, yk)

bk+1
j ∝ bk

j e
η ∂

∂bj
Fn,m(ak,xk,bk,yk)

yk+1
j = yk

j + σ 1
bk

j

∂
∂yj

Fn,m(ak, xk, bk, yk).
(3)

Here η, σ > 0 are step-sizes to be chosen and ak and bk are normalized to sum to 1 at each step. (The equations
above are for the case where X , Y are Euclidean and without boundaries; in general a retraction step is needed
for the update of xk, yk.) In the limit where η, σ → 0, we obtain a continuous-time dynamics studied by [12]
under the name “interacting Wasserstein–Fisher–Rao gradient flow”, which they show admits a mean-field
limiting dynamics when n,m→∞ and the initial iterates are randomly independently sampled.

Convergence to mixed Nash equilibria

The reparametrized saddle-point objective Fn,m is finite-dimensional, but is unfortunately not convex-concave in
general, and there is no known convergence guarantee for CP-MDA. In fact, taking σ = 0, we recover the Mirror
Descent-Ascent algorithm on the finite game (f, {x0

i }i, {y0
j }j) (a.k.a. multiplicative weight updates), and it is

known that the Bregman divergence of the iterates to the MNE is then non-decreasing [3]! For finite games, this
non-convergence issue can be resolved by considering instead the implicit version of the same algorithm, or other
methods which can be interpreted as tractable approximations of it [10, 29].

In this paper, we propose the implicit version of CP-MDA, which we call the Conic Particle Proximal Point
algorithm (CP-PP).

We show that, if (1) admits a unique and non-degenerate sparse saddle point (µ∗, ν∗), and if CP-PP is
initialized close enough to optimality, then it converges to (µ∗, ν∗) at an exponential rate. Note that one can
always find such an initialization by sampling sufficiently many particles, setting σ = 0 and taking the averaged
iterate in an initial warm-up phase, see Section 2.3. The convergence is established both for the Nikaido–Isoda
error (the natural measure of optimality for min-max problems) and for the Wasserstein–Fisher–Rao distance
to (µ∗, ν∗).
While CP-PP itself is not directly implementable, we also prove in a simplified setting that a computationally
efficient approximation of CP-PP, the Conic Particle Mirror Prox algorithm (CP-MP), also converges to
(µ∗, ν∗) under the same conditions and with the same rate. We observe experimentally that its convergence
behavior is the same in the general setting.
We illustrate our work with numerical experiments, including examples of applications to max-F1-margin
and distributionally-robust classification with two-layer neural networks. We observe experimentally that
the explicit method CP-MDA does not always converge (although it does in some cases), so that using an
implicit time discretization of the dynamics, like CP-PP, is necessary for convergence in general.

1 The term “conic” refers to the particular geometry on the space of couples (ai, xi) that leads to multiplicative updates on ai

and additive updates on xi in (3).
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1.1 Related work

Infinite-dimensional Mirror Descent-Ascent

For finite strategy sets X and Y, the min-max problem (1) is finite-dimensional, and the classical Mirror
Descent-Ascent algorithm can be applied to obtain convergence of the averaged iterate to a MNE [4]. In [16], the
authors use sampling by Langevin dynamics to formulate an implementable version of Mirror Descent-Ascent
for continuous strategy sets, which coincides with the bona fide infinite-dimensional Mirror Descent-Ascent
algorithm in expectation.

Computing approximate MNEs via regularization
[12], [24] and [23] propose and analyze methods that solve an entropy-regularized variant of (1):

min
µ∈P(X )

max
ν∈P(Y)

∫
X

∫
Y
f(x, y)dµ(x)dν(y) + β−1H(µ)− β−1H(ν)

where H(µ) =
∫

X log dµ
dx (x)dµ(x) denotes negative differential entropy (and H(µ) = +∞ if µ is not absolutely

continuous with respect to Lebesgue measure), and β is a fixed regularization parameter. The methods analyzed
in these papers correspond to the continuous-time dynamics called “entropy-regularized interacting Wasserstein
gradient flow” in [12]. Qualitative convergence properties are shown in [12], [24] proves convergence to an
approximate MNE in the quasi-static regime (i.e., when the step-size used to update µ is infinitely smaller than
the one for ν), and [23] proves convergence in a regime with finite timescale separation. The continuous-time
guarantees of the aforementioned works can be translated to discrete-time algorithms, thanks to the general
framework developed in [18] and [19].

Last-iterate convergence of proximal point methods for min-max optimization

In the optimization and learning community, there has been much interest in general convex-concave min-max
problems minx maxy G(x, y). Some works focus on ergodic convergence, that is, convergence of the averaged
iterate:

( 1
T

∑T
k=1 x

k, 1
T

∑T
k=1 y

k
)
. For instance, the Mirror Prox and Proximal Point methods were introduced

in [30] to attain O(1/T ) ergodic convergence for convex-concave C1,1 functions, instead of O(1/
√
T ) using Mirror

Descent-Ascent [4, 5].
Recent works showed that, while Mirror Descent-Ascent may not in fact converge in the last-iterate sense [27],

Proximal Point and related methods (e.g. Mirror Prox, Optimistic Mirror Descent-Ascent) do exhibit last-iterate
convergence [21]. In the special case of finding MNEs of finite two-player zero-sum games, convergence rates for
the last iterate have been derived by [10] and by [37] for Optimistic Mirror Descent-Ascent, under the assumption
that the MNE is unique.

It should be noted that, when using particle methods for the problem (1), the averaged iterate
( 1

T

∑T
k=1 µ

k,
1
T

∑T
k=1 ν

k
)

consists of (n+m)T atoms in general. This means that averaging in measure space would result in
unacceptably large memory requirements in cases where the domain X or Y is large, such as for mixtures of
GANs [12]. Another option is to take the average of the (ak

i , x
k
i ) directly, but it would not a priori improve upon

the last iterate because Fn,m is not convex-concave.
There also exists a growing literature on nonconvex-nonconcave min-max optimization, which focuses on the

problem of finding local saddle points or even just stationary points of the gradient descent-ascent flow [11, 13].
Our result are stronger than what one could expect to achieve with techniques from that literature: We are able
to find the solution of (1), which gives a global Nash equilibrium of Fn,m, instead of simply stationary points.

The remainder of this paper is structured as follows. In Section 2, we state the problem, describe the
algorithm, and present the main result. In Section 3, we prove the main result. In Section 4, we discuss examples
of applications and present numerical experiments. In Section 5 we conclude and proof details are deferred to
the appendix.
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2 Main result

2.1 Problem setting: Computing MNEs of continuous games
Preliminaries

Let us first recall the general convex-concave min-max optimization framework. For convex sets M,N and a
convex-concave function F : M ×N → R, a saddle point or solution of the min-max problem

min
µ∈M

max
ν∈N

F (µ, ν)

is any pair (µ∗, ν∗) such that2

∀ µ ∈M, ∀ ν ∈ N, F (µ∗, ν) ≤ F (µ∗, ν∗) ≤ F (µ, ν∗).

The existence of saddle points is guaranteed for example by Sion’s minimax theorem when M and N are compact
and F is continuous. The goodness of a pair (µ̂, ν̂) can be quantified by its Nikaido–Isoda error (NI error),
a.k.a. duality gap, defined as

NI(µ̂, ν̂∗) = max
µ,ν

F (µ̂, ν)− F (µ, ν̂).

Indeed, it is easily seen that NI(µ̂, ν̂) ≥ 0 with equality if and only if (µ̂, ν̂) is a saddle point.
As an example, the problem of finding the MNE of a two-player zero-sum game with finite strategy sets

X = [n] := {1, . . . , n} and Y = [m] and payoff function f(i, j) can be written as

min
a∈∆n

max
b∈∆m

F (a, b) =
n∑

i=1

m∑
j=1

aibjf(i, j) = a⊤Mb


where Mij = f(i, j) and ∆n =

{
a ∈ Rn

+;
∑

i ai = 1
}
≃ P([n]). Since ∆n and ∆m are convex compact and

F (a, b) = a⊤Mb is convex-concave and continuous, Sion’s minimax theorem applies so saddle points exist.

Problem setting and assumptions

The min-max problem we are concerned with in this paper is that of finding a MNE of the continuous game
(f,X ,Y), as defined in (1):

min
µ∈P(X )

max
ν∈P(Y)

{
F (µ, ν) :=

∫
X

∫
Y
f(x, y)dµ(x)dν(y)

}
,

with the following assumptions.

▶ Assumptions.
1. The strategy sets are the dx- resp. dy-dimensional tori X = Tdx , Y = Tdy .
2. The payoff function f : X × Y → R is C2,1, i.e., it has Lipschitz-continuous second-order differentials.
3. The MNE (µ∗, ν∗) of (1) is unique.
4. The MNE (µ∗, ν∗) of (1) is sparse, that is,

supp(µ∗) = {x∗
I , I ∈ [n∗]} and supp(ν∗) = {y∗

J , J ∈ [m∗]}

for some n∗,m∗ <∞.

Note that points 1 and 2 imply the existence of a MNE by Glicksberg’s theorem. Also note that point 4
is guaranteed to hold if the game is separable, that is, if f can be written as a finite sum of the form
f(x, y) =

∑
kl cklgk(x)hl(y) for some ckl ∈ R and gk : X → R, hl : Y → R continuous [34, Cor. 2.10].

Moreover, point 1 could be replaced by assuming only that X and Y are compact Riemannian manifolds without
boundaries; our analysis could be generalized to this setting (following [8]) at the expense of more technical

2 When F is not convex-concave, several notions of min-max solutions can be considered [11, §2.1], but we will never need
such considerations in this article. To fix ideas, we will use the strongest such notion (that of global saddle point) and call
solution of a nonconvex-nonconcave problem minx maxy G(x, y) any (x∗, y∗) satisfying G(x∗, y) ≤ G(x, y∗) for all x, y; but we
emphasize that this choice has no impact on any of our discussion.
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notation. Point 3 is crucial to our analysis, but also to all known last-iterate convergence analyses for MNEs in
finite dimension [10, 37].

Before stating the rest of our assumptions, let us remark a useful fact about the structure of the problem. By
definition the MNE (µ∗, ν∗) is characterized by

∀ µ ∈ P(X ), ∀ ν ∈ P(Y), F (µ∗, ν) ≤ ρ ≤ F (µ, ν∗) where ρ := F (µ∗, ν∗),

i.e.,

∀ µ ∈ P(X ),
∫

X

(∫
Y
f(x, y)dν∗(y)

)
︸ ︷︷ ︸

=: (F ν∗)(x)

dµ(x) ≥ ρ and ∀ ν ∈ P(Y),
∫

Y

(∫
X
f(x, y)dµ∗(x)

)
︸ ︷︷ ︸

=: ((µ∗)⊤F )(y)

dν(y) ≤ ρ.

The function Fν ∈ C(X ) defined by this equation is the first variation of F with respect to µ at any (µ, ν) [32];
note that it is independent of µ thanks to bilinearity of F . Since minµ∈P(X )

∫
gdµ = minX g for any g ∈ C(X ),

the above inequalities are equivalent to

∀ x ∈ X , (Fν∗)(x) ≥ ρ and ∀ y ∈ Y, ((µ∗)⊤F )(y) ≤ ρ. (4)

As a partial converse, we also have

∀ I ∈ [n∗], (Fν∗)(x∗
I) = ρ and ∀ J ∈ [m∗], ((µ∗)⊤F )(y∗

J) = ρ (5)

since if (Fν∗)(x∗
I) > ρ for some I then we would have F (µ∗, ν∗) =

∫
X (Fν∗)(x)dµ∗(x) > ρ.

Our second set of assumptions requires the inequalities (4) to be strict wherever possible, and even “strong”
locally.

▶ Assumptions (Non-degeneracy).
5. The first variations at optimum, Fν∗ ∈ C(X ) resp. (µ∗)⊤F ∈ C(Y), are equal to ρ := F (µ∗, ν∗) only at the
{x∗

I , I ∈ [n∗]} resp. {y∗
J , J ∈ [m∗]}.

6. The local kernels are non-degenerate, that is,

∀ I ∈ [n∗], ∇2(Fν∗)(x∗
I) ≻ 0 and ∀ J ∈ [m∗], ∇2((µ∗)⊤F )(y∗

J) ≺ 0.

These non-degeneracy assumptions are analogous to the ones made in [8] for minimization in the space of
measures. As for minimization, they generally cannot be checked a priori; but they can be checked a posteriori
after computing (µ∗, ν∗) by computing the Hessians of Fν∗ on supp(µ∗) and of (µ∗)⊤F on supp(ν∗), or simply
visually in the one-dimensional case as in Section 4.1 (Figure 3). Even though we do not have any rigorous result
in this direction, informally we expect the non-degeneracy assumptions to be generic in some sense. For example
they turned out to be satisfied in all of our experiments with random payoff functions of the form of Section 4.1,
with any dimension dx, dy. Example 13 provides a case where all the assumptions can be checked analytically,
including the uniqueness of the MNE.

Our work provides the first convergence guarantee for the sparse continuous-game MNE setting (Assumptions 1,
2, 4). On the other hand, Assumptions 3, 5, 6 are admittedly difficult to check a priori for any given (f,X ,Y).
But they are the minimal ones for our convergence analysis to go through, and we expect that they are very
difficult to relax.

2.2 The Conic Particle Proximal Point algorithm
In order to solve the saddle-point problem (1), we reparametrize the problem via µ =

∑n
i=1 aiδxi

and ν =
∑m

j=1 bjδyj
and we use a particle gradient algorithm to tackle the reparametrized problem (2):

mina,x maxb,y Fn,m((a, x), (b, y)). Specifically, we analyze the Conic Particle Proximal Point (CP-PP) algorithm
given by the update rule

((ak+1, xk+1), (bk+1, yk+1)) = arg min
a∈∆n

x∈X n

arg max
b∈∆m

y∈Ym

Fn,m((a, x), (b, y)) + 1
η
D(a, ak) + 1

2σ

n∑
i=1

ak
i

∥∥xi − xk
i

∥∥2

− 1
η
D(b, bk) − 1

2σ

m∑
j=1

bk
j

∥∥yj − yk
j

∥∥2 (6)
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Algorithm 1: Conic Particle Proximal Point, implementable variant
Input: f : X × Y → R, n,m ∈ N∗, η, σ > 0, T, L ∈ N∗

Initialize z0 = (a0, x0, b0, y0) ∈ ∆n ×Xn ×∆m × Ym ;
for k = 0, . . . , T − 1 do

z̃0 ← zk ;
for l = 0, . . . , L− 1 do
∀ i, ãl+1

i ← ãl
ie

−η ∂
∂ai

Fn,m(z̃l)
/Z with Z such that ãl+1 ∈ ∆n ;

∀ i, x̃l+1
i ← x̃l

i − σ 1
ak

i

∂
∂xi

Fn,m(z̃l) ;

similarly for b̃l+1 and ỹl+1

zk+1 ← z̃L

return µT =
∑n

i=1 a
T
i δxT

i
, νT =

∑m
j=1 b

T
i δyT

j

where η, σ > 0 are constant step-sizes to be chosen and D(w, ŵ) =
∑

i wi log wi

ŵi
denotes Kullback–Leibler

divergence a.k.a. relative entropy. Interestingly, the function D ((a, x), (â, x̂)) = D(a, â) + η
2σ

∑
i âi

∥∥xi − x̂i

∥∥2 is
technically not a Bregman divergence (it does not satisfy the last point of Lemma 47), due to the “cross-terms”
in the second term.

The following lemma, proved in Appendix B, justifies that the CP-PP update is well-defined.

▶ Lemma 1. Under Assumptions 1-2, there exist η0, σ0 > 0 (dependent only on (f,X ,Y)) such that if η ≤ η0
and σ ≤ σ0, then the objective function in (6) is convex-concave over a ball centered at ((ak, xk), (bk, yk)), and it
has a saddle point in the interior of that ball.

Implementable variant: Conic Particle Mirror-Prox (CP-MP)

Note that every CP-PP update requires solving a min-max optimization problem (6) exactly. In practice, in the
spirit of [30], one may obtain an approximate solution to (6) by running an inner loop where Fn,m((a, x), (b, y))
is replaced by its first-order approximation at the current point, starting from (ã0, x̃0, b̃0, ỹ0) = (ak, xk, bk, yk):

(ãl+1, x̃l+1, b̃l+1, ỹl+1)

= arg min
a∈∆n

x∈X n

arg max
b∈∆m

y∈Ym

〈
∇Fn,m

(
ãl, x̃l, b̃l, ỹl

)
, (a, x, b, y)

〉
+ 1
η
D(a, ak) + 1

2σ

n∑
i=1

ak
i

∥∥xi − xk
i

∥∥2

− 1
η
D(b, bk) − 1

2σ

m∑
j=1

bk
j

∥∥yj − yk
j

∥∥2

and letting (ak+1, xk+1, bk+1, yk+1) = (ãL, x̃L, b̃L, ỹL), where L ≥ 1 is the number of times we run the inner loop
at each k. Each iteration of the inner loop decomposes into four independent mirror descent updates. Pseudocode
for this implementable variant of CP-PP is given in Algorithm 1, where to lighten the notation we use the
shorthand zk = (ak, xk, bk, yk).

One can check that L = 1 corresponds to the CP-MDA algorithm described in the introduction, and that
for L =∞ we recover CP-PP. When L = 2, we refer to this method as Conic Particle Mirror Prox (CP-MP).
Similarly as in [30], one can expect that L = 2 actually suffices to obtain the same convergence behavior as
L = ∞; this is confirmed in numerical experiments, and proved in a simplified setting (Proposition 6). This
behavior can be explained by the fact that Proximal Point and Mirror Prox updates coincide up to order-3 terms
in the step-size (see Lemma 49 and Lemma 50).

Relation to Wasserstein–Fisher–Rao (WFR) geometry

The Wasserstein–Fisher–Rao distance, a.k.a. Hellinger–Kantorovich distance [9, 20, 22] is a distance on the set
of non-negative measures which metrizes narrow convergence and combines features of the Fisher–Rao and of
the Wasserstein distances. This last fact is perhaps easiest to see in its dynamical formulation [22, Thm. 8.18]:

WFR2
2(µ0, µ1) = inf

(µt,vt,rt)∈A(µ0,µ1)

∫ 1

0

∫
X

(
η

2σ
∥∥vt(x)

∥∥2 + 1
2rt(x)2

)
dµt(x)dt (7)
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where A(µ0, µ1) is the set of triples (µt, vt, rt)0≤t≤1 such that (µt)t∈[0,1] is a weakly continuous curve in M+(X )
the set of non-negative measures with endpoints µ0 and µ1, vt ∈ L2

µt
(X )dx , rt ∈ L2

µt
(X ), and satisfying the

continuity equation with source ∂tµt +∇ · (µtvt) = µtrt in the sense of distributions. (See [9, 22] for equivalent
static formulations). Here the scalars η and σ trade off the Fisher–Rao (“local growth and destruction of mass”)
and Wasserstein (“movement of mass”) components of the distance.

The CP-MDA, CP-PP and CP-MP algorithms are time-discretizations of the interacting WFR gradient
flow [12], which is the finite-particle version of the WFR gradient flow in measure space [8, Prop. 2.1]. Because of
this connection, the CP-PP iterates’ WFR distance to the MNE (or rather a simpler proxy of it that is sufficient
for our purpose) will play a central role in our convergence analysis.

2.3 Main convergence result
Our main result is that the CP-PP algorithm (6) converges locally at an exponential rate. Its proof follows
from Proposition 7, Proposition 8 and Theorem 9, as shown in Appendix I.

▶ Theorem 2. Fix any Γ0 ≥ 1. Under Assumptions 1-6, there exist η0, σ0 > 0 such that for all η ≤ η0, σ ≤ σ0
with Γ−1

0 ≤ σ
η ≤ Γ0, there exists C,C ′, r0, κ > 0 such that if NI(µ0, ν0) ≤ r0, then the CP-PP iterates

(µk, νk) =
(∑n

i=1 a
k
i δxk

i
,
∑m

j=1 b
k
j δyk

j

)
satisfy for all k ∈ N

NI(µk, νk) ≤ C(1− κ)k

and WFR2
2(µk, µ∗) + WFR2

2(νk, ν∗) ≤ C ′(1− κ)k.

In particular, since WFR metrizes narrow convergence, µk, νk converge narrowly to µ∗, ν∗, that is ∀ ϕ ∈ C(X ),∫
ϕdµk →

∫
ϕdµ∗ and ∀ ψ ∈ C(Y),

∫
ψdνk →

∫
ψdν∗.

The dependency of C,C ′, r0, κ on the problem data (f,X ,Y) appears quite subtle, unfortunately. It can be
traced back to Lemma 18 establishing an “error bound” type inequality which relies on uniqueness of the MNE,
making it difficult to quantify. The known analyses for finite-game MNEs [10, 37] face the same drawback.

Dependency of the constants on the step-sizes η, σ

The quantities C,C ′, r0, κ appearing in the theorem depend on the step-sizes. Our proof technique requires to
take them at most of order r0 ≲ η17/4, κ ≲ η2, and C ≳ η−1/5r

2/5
0 , C ′ ≳ η−2/5r

4/5
0 (supposing η ≍ σ), as one

can check from the proof in Appendix I and the statements of Proposition 7, Proposition 8 and Theorem 9.
So our approach only applies for discrete-time algorithms, and would not allow to show convergence of the
continuous-time flow associated to CP-PP.

Indeed if we formally let η, σ → 0, the localness requirement on the initial iterate NI(µ0, ν0) ≤ r0
η,σ→0−−−−→ 0

reduces to requiring (µ0, ν0) to already be the MNE. Even ignoring the localness requirement, the bound(
1−Θ(η2)

)k becomes constant when k = ⌊ t
η ⌋ for a fixed t and η ≍ σ → 0; so the bound does not vanish as t

increases.
Interestingly, experimentally we do observe convergence of the continuous-time flow in some (but not all)

cases; see Section 4.1. It is worth mentioning that for X and Y finite, the Fisher–Rao gradient flow does not
converge [27], so the fact that we sometimes observe convergence of the flow may be specific to conic particle
gradient methods.

Necessity of taking η, σ > 0 (comparison with pure Fisher–Rao and pure Wasserstein particle methods)

If σ = 0, the position variables (xk, yk) of CP-PP stay constant throughout the algorithm, and only the
weights (ak, bk) vary. This corresponds to the Fisher–Rao gradient dynamics.

If the initial measure variables (µ0, ν0) were supported on a large number of points {x̂1, . . . , x̂n} resp.
{ŷ1, . . . , ŷm} covering X resp. Y uniformly, one may expect CP-PP to converge locally exponentially to
(µ∞, ν∞) a MNE of the finite game (f, {x̂i}i, {ŷj}j).3 By continuity of f , the “price” of the discretization
with respect to the original game can then be bounded by NI(µ∞, ν∞) = O

(
n−1/dx +m−1/dy

)
. That is,

3 In fact there is no guarantee so far that the last iterate of CP-PP with σ = 0 will converge locally to a MNE of the finite game(
f, {x̂i}i, {ŷj}j

)
(although the averaged iterate is guaranteed to converge globally to one by [30]). Indeed, while [26, App. D]

shows qualitative convergence without a rate, known quantitative last-iterate convergence guarantees for finite games [10, 37]
require the MNE to be unique, which may not be the case a priori for

(
f, {x̂i}i, {ŷj}j

)
.



8 Exponentially Converging Particle Method

in order to achieve a NI error of O(ε), it is sufficient to let n = (1/ε)dx ,m = (1/ε)dy , and to run CP-PP
to convergence with σ = 0; however the computational complexity of each iteration would then be Θ(nm),
which can be prohibitively costly if dx, dy are large.
Also note that if (µ0, ν0) are supported on the entire space X resp. Y, we can only expect convergence
of CP-PP to the exact MNE at a rate ≍ 1/k in the worst case, and not at an exponential rate [7] (a
worst-case example can be constructed by using a similar idea as in Proposition 5.5, Setting II of that
paper).

If η = 0, the weight variables of CP-PP stay fixed, and only the positions vary. This corresponds to the
interacting Wasserstein gradient dynamics [12].

This dynamics has a degraded behavior because of it has fewer degrees of freedom. For instance, for (µ0, ν0)
supported on finitely many point and a0

i = 1
n , b

0
j = 1

m , the CP-PP iterates cannot converge to (µ∗, ν∗)
exactly, unless the solution weights a∗

I , b
∗
J happen to all lie in 1

nZ resp. 1
mZ.

Even allowing for (µ0, ν0) supported on the entire space, we are not aware of any convergence guarantee
to (µ∗, ν∗) for this dynamics, in continuous time or otherwise.

Agnosticity to the numbers of particles n,m

The numbers of particles n,m used in the CP-PP algorithm do not appear in the theorem, nor are they hidden
in the constants. In particular the convergence rate does not deteriorate with large n,m while the per-iteration
cost is linear in n+m. Even the condition that n ≥ n∗ and m ≥ m∗ (the sparsities of (µ∗, ν∗)) does not appear
explicitly, but it is implied by the localness condition NI(µ0, ν0) ≤ r0. That is, r0 is defined such that, if n < n∗

or m < m∗, then there simply do not exist atomic measures µ0, ν0 with n resp. m atoms that achieve NI error
less than r0.

The fact that our result is agnostic to such overparametrization should be viewed as a strength. Indeed the
convergence guarantee does not deteriorate with large n,m, and on the other hand allowing ourselves to use
arbitrary (n,m) ̸= (n∗,m∗) enables simpler warm-up procedures. In terms of the application to classification
with two-layer neural networks presented in Section 4, this agnosticity means that our results apply regardless of
the number of hidden neurons, as long as it is not too small.

A possible two-phase procedure

While our proposed algorithm is only shown to be locally convergent, we would like to stress that it is the
only known one that can provably converge to the actual solution (µ∗, ν∗). This is in contrast to any algorithm
relying on discretization of the strategy spaces X ,Y, since these algorithms can only ever output measures
(µk, νk) whose support does not even match the optimal one (unless one is extremely lucky when choosing the
discretization). So one way to take advantage of our proposed algorithm and performance guarantee, is to use it
as a second “high-accuracy” phase, preceded by a warm-up phase with global convergence guarantees.

A simple such warm-up procedure is to fix εwarm-up ≤ r0, to discretize X and Y by n = (1/εwarm-up)dx ,
m = (1/εwarm-up)dy grid-points {x̂i}i, {ŷj}j , to run Fisher–Rao Proximal Point (i.e, CP-PP with σ = 0) for
Twarm-up = 1/εwarm-up iterations and take the average of the iterates. Indeed this ensures a NI error of O(εwarm-up)
for the discretized game [30], and the NI error for the discretized game is O(εwarm-up)-close to the NI error for
the original game by the choice of n,m. The per-iteration complexity of the first phase is Θ(nm) and that of
the second phase is Θ(n+m) = Θ((1/εwarm-up)dx∨dy ), which could still be large. But note that with the same
per-iteration complexity, one can then exponentially fast achieve NI error less than ε, for any ε < εwarm-up. This
“high-accuracy” regime is where our method improves upon classical discretization-based algorithms.

Note however that, unfortunately, we cannot control the size r0 of the neighborhood where our local result
applies. Even worse: even if the quantity r0 was known, this would still not suffice to certify efficiently that
neighborhood is reached, as the NI error is difficult to compute and even to upper-bound. Thus we are at present
unable to deduce a provably globally convergent algorithm from our work. (If convergence rates are not desired,
then it suffices to use the two-phase procedure proposed above along with some form of the doubling trick to
choose εwarm-up.)
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3 Convergence proof

Throughout this section, we make the Assumptions 1–6 described in Section 2.1. Furthermore, to lighten notation,
we denote by zk = (ak, xk, bk, yk) the iterates of the CP-PP algorithm. We denote the sparse unique MNE as

µ∗ =
∑

I∈[n∗]

a∗
Iδx∗

I
and ν∗ =

∑
J∈[m∗]

b∗
Jδy∗

J
with a∗

I , b
∗
J > 0.

The variational inequality characterizing CP-PP

From Lemma 1, we know that zk+1 is well-defined as the saddle point of a convex-concave function in the interior
of its domain. Just by writing out the first-order optimality conditions in the argmin/argmax, we see that the
CP-PP update (6) is characterized by the variational formula

∀ z = (a, x, b, y), η g̃ap(z; zk+1) ≤
∑

i

(ai − ak+1
i ) log a

k+1
i

ak
i

+
∑

j

(bj − bk+1
j ) log

bk+1
j

bk
j

+ η

σ

∑
i

ak
i

〈
xk+1

i − xk
i , xi − xk+1

i

〉
+ η

σ

∑
j

bk
j

〈
yk+1

j − yk
j , yj − yk+1

j

〉
(8)

(both sides are linear in z − zk+1), where we introduce, for all z = (a, x, b, y) and ẑ = (â, x̂, b̂, ŷ),

g̃ap(z; ẑ) :=
〈

∇a

∇x

−∇b

−∇y

Fn,m(ẑ),


â− a
x̂− x
b̂− b
ŷ − y


〉

and gap(z; ẑ) := Fn,m((â, x̂), (b, y))− Fn,m((a, x), (̂b, ŷ)).

One can check that zk is in the (relative) interior of (∆n ×Xn)× (∆m × Ym) for all k (provided z0 is), so (8)
holds in fact with an equality (but we continue to write inequalities to show the generality of our arguments).

The significance of the quantity g̃ap(z; ẑ) comes from the fact that, if Fn,m was convex-concave, ẑ would be
a saddle point if and only if ∀ z, g̃ap(z; ẑ) ≤ 0, as a solution of the Stampacchia variational inequality [11, §2.1].
Furthermore, g̃ap(z; ẑ) can also be interpreted as a first-order approximation of gap(z; ẑ), whose significance is
that NI

(∑
i âiδx̂i ,

∑
j b̂jδŷj

)
= maxz gap(z; ẑ).

3.1 Exact-parametrization case
In this subsection, we present a short proof of our result in the simpler case where we additionally assume that
the number of particles (n,m) is exactly equal to the sparsity of the solution (n∗,m∗). Relabel the solution
particles (a∗

I , x
∗
I) resp. (b∗

J , y
∗
J) arbitrarily so that they are indexed by i ∈ [n] = [n∗] resp. j ∈ [m] = [m∗].

The convergence analysis relies on the Lyapunov function V (a, x, b, y) = V (a, x) + V (b, y) where

V (a, x) = D(a∗, a)︸ ︷︷ ︸
=:Vwei(a,x)

+ η

σ

1
2

n∑
i=1

ai

∥∥x∗
i − xi

∥∥2

︸ ︷︷ ︸
=:Vpos(a,x)

(9)

and similarly for V (b, y). For ease of presentation, also let V1(a, x) = Vwei(a, x) + Vpos(a, x), and similarly for
V1(b, y) and V1(a, x, b, y). Note that we always have (1 ∧ σ/η)V ≤ V1 ≤ (1 ∨ σ/η)V .

Note that V (a, x, b, y) ≥ 0 and that equality holds if and only if (a, x, b, y) = (a∗, x∗, b∗, y∗). We can also
relate this quantity to the NI error as follows; in particular V is arbitrarily small for NI small, and vice-versa.
The proof can be found in Appendix D.4.

▶ Proposition 3. Assume that n = n∗,m = m∗ and define V1 as in (9). There exist a constant C > 0 dependent
only on (f,X ,Y) such that, for any z = (a, x, b, y), denoting µ =

∑
i aiδxi

and ν =
∑

j bjδyj
,

NI(µ, ν) ≤ C
√
V1(z).

Moreover, there exist C ′, r > 0 dependent only on (f,X ,Y) such that if NI(µ, ν) ≤ r, then up to permuting the
labels of the solution particles (so that, for each i ∈ [n], xi is in a neighborhood of x∗

i , and not necessarily of x∗
i′

for i′ ̸= i),

C ′V1(z)5/4 ≤ NI(µ, ν).
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Our choice of Lyapunov function is essentially a proxy for the squared WFR distance (7) of µ to µ∗ and of ν
to ν∗, as shown in [8, Lem. D.1]. In our notation:

▶ Proposition 4 ([8, Lem. D.1]). Assume that n = n∗ and define V as in (9). There exist constants C, r > 0
(dependent only on µ∗) such that for any (a, x) with V (a, x) ≤ r, denoting µ =

∑
i aiδxi

,

WFR2
2(µ, µ∗) ≤ 2V (a, x)

(
1 + C

η

σ

)
.

The main result of this subsection is that the CP-PP algorithm converges locally at an exponential rate, as
measured by the Lyapunov function. Convergence measured by NI error and by WFR distance (Theorem 2 with
the additional exact-parametrization assumption) could be shown by combining Theorem 5 with Proposition 3
and Proposition 4.

▶ Theorem 5. Assume that n = n∗,m = m∗ and define V as in (9). Fix any Γ0 ≥ 1. There exist η0, σ0 such
that for all η ≤ η0, σ ≤ σ0 with Γ−1

0 ≤ σ
η ≤ Γ0, there exists r0 > 0 such that if V (z0) ≤ r0, then the CP-PP

iterates zk satisfy

∀ k, V (zk) ≤ V (z0) (1− κ)k

for some constant κ > 0.

More precisely, one can check from the last step of the proof that the rate κ and the localness level r0 can at
most be chosen equal to η2 times a constant (dependent on (f,X ,Y) and Γ0).

Proof. Evaluate (8) at z = (a∗, x∗, b∗, y∗). By the Bregman three-point identity on h : a 7→ a log a− a+ 1 (so
that the Kullback–Leibler divergence D(·, ·) is equal to the Bregman divergence of h summed component-wise)
and on x 7→ 1

2∥x∥
2, we can rewrite the obtained inequality as

η g̃ap(z∗; zk+1) ≤ V (zk)− V (zk+1)

−

D(ak+1, ak) +D(bk+1, bk) + η

2σ
∑

i

ak
i

∥∥xk+1
i − xk

i

∥∥2 + η

2σ
∑

j

bk
j

∥∥yk+1
j − yk

j

∥∥2


︸ ︷︷ ︸

=: D(k+1,k)

+ η

2σ
∑

i

(ak+1
i − ak

i )
∥∥x∗

i − xk+1
i

∥∥2 + η

2σ
∑

j

(bk+1
j − bk

j )
∥∥y∗

j − yk+1
j

∥∥2

︸ ︷︷ ︸
=: [err]

. (10)

Now one can show that, if η ≤ η0, σ ≤ σ0 and V (zk) ≤ r0 for some η0, σ0, r0 dependent only on (f,X ,Y) and
Γ0, then both

[
mini a

k
i ∧minj b

k
j

]
and

[
mini a

k+1
i ∧minj b

k+1
j

]
are lower-bounded by a fixed positive constant

(Lemma 31), and so
(Lemma 33) The left-hand side is lower-bounded as η g̃ap(z∗; zk+1) ≥ η σmin

2 Vpos(z) + O
(
ηV (zk+1)3/2) for

some σmin > 0 dependent only on (f,X ,Y). This inequality is a consequence of the “quadratic growth” and
“star-convexity” properties discussed in Section 3.3.1, resp. Section 3.3.3.
(Lemma 38) There exists a constant C > 0 dependent only on (f,X ,Y) and Γ0 such that D(k + 1, k) ≥
Cη2V (zk+1) +O

(
ηV (zk+1)2). This inequality follows from an “error bound”-type result discussed in Sec-

tion 3.3.2.
(Lemma 36) The terms on the third line, that arise due to the fact that the divergence used in the update (6)
is not a Bregman divergence, are bounded as [err] = O

(
ηV (zk+1)3/2).

In each of the bounds above, the O( · ) hides a constant dependent only on (f,X ,Y) and Γ0. By plugging these
bounds back into (10), we obtain

V (zk+1) ≤ V (zk)− Cη2V (zk+1) +O
(
ηV (zk+1)3/2

)
.

In particular, since V (zk+1) is bounded by a constant (Lemma 31), for small enough η0 and σ0 we have that
V (zk+1) ≤ 2V (zk). By rearranging we get

V (zk+1) ≤ V (zk)

1 + η2
[
C −O

(√
V (zk+1)

η

)] .
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Hence, for appropriately small choices of r0, we have V (zk) ≤ r0 =⇒ V (zk+1) ≤ 2r0 =⇒ V (zk+1) ≤
V (zk)(1− κ) for some κ > 0. The final result follows by induction. ◀

3.1.1 Convergence of CP-MP
In the exact-parametrization case it is relatively easy to extend our convergence result for CP-PP to CP-MP
(the implementable variant of CP-PP, Algorithm 1, with L = 2). Namely CP-MP converges under the same
conditions and with the same rate as CP-PP.

▶ Proposition 6. The statement of Theorem 5 also holds for zk being the iterates of CP-MP.

The proof of the proposition, in Appendix H, essentially relies on the convergence result for CP-PP and on
the fact that the CP-MP and CP-PP updates coincide up to order-3 terms in the step-size. In particular we
derive order-2 expressions for the Mirror Prox and Proximal Point updates under quite general assumptions
(Lemma 49 and Lemma 50), which may be of independent interest.

3.2 General case
In general, the sparsity of the solution (n∗,m∗) is not known in advance, and n ̸= n∗,m ̸= m∗. Contrary to the
exact-parametrization case where the choice of Lyapunov function was relatively straightforward, here it must be
carefully designed, due to overparametrization. Indeed, the variables (a, x, b, y) and the solution (a∗, x∗, b∗, y∗) live
in different spaces: a ∈ ∆n ̸= ∆n∗ ∋ a∗, so we cannot just evaluate the algorithm’s characterizing inequality (8)
at the solution.

We define a Lyapunov function V (a, x, b, y) = V (a, x) + V (b, y) by the following construction, generalizing [8,
Eq. (20)]. See Figure 1a for an illustration.

Fix (φI)I∈[0,n∗] a partition of unity of X centered at the (x∗
I)I , i.e.,

Each φI is a measurable function X → R;
∀ I ∈ [n∗], φI ≥ 0 and φ0 = 1−

∑
I∈I∗ φI ≥ 0 over X ;

∀ I ∈ [n∗], φI(x∗
I) = 1.

For any a ∈ ∆n, x ∈ Xn, define the aggregated weights, the aggregated positions and the local covariance
matrices of µ =

∑
i aiδxi

as

∀ I ∈ [0, n∗], aI =
∫

X
φI dµ and ∀ I ∈ [n∗], xI =

∫
X
x
φI(x)
aI

dµ(x)

ΣI =
∫

X
(x− xI)(x− xI)⊤ φI(x)

aI
dµ(x).

I.e., in discrete notation,

∀ I ∈ [n∗], aI =
∑

i

φIiai xI =
∑

i

φIiai

aI
xi ΣI =

∑
i

φIiai

aI
(xi − xI)(xi − xI)⊤ (11)

where φIi = φI(xi), and a0 = 1−
∑

I aI is the stray weight.
Let, for any a ∈ ∆n, x ∈ Xn,

V (a, x) = D(a∗, a)︸ ︷︷ ︸
=:Vwei(a,x)

+ η

σ

1
2
∑

I

aI

(
∥x∗

I − xI∥2 + Tr(ΣI)
)

︸ ︷︷ ︸
=:Vpos(a,x)

. (12)

Similarly, fix (ψJ )J∈[0,m∗] a partition of unity of Y centered at the y∗
J , similarly define b ∈ ∆m∗ and y ∈ Ym∗ for any

b ∈ ∆m, y ∈ Ym, and similarly define V (b, y). For ease of presentation, also let V1(a, x) = Vwei(a, x) + Vpos(a, x),
and similarly for V1(b, y) and V1(a, x, b, y). Note that we always have (1 ∧ σ/η)V ≤ V1 ≤ (1 ∨ σ/η)V .

The Lyapunov function V depends on the choice of partitions of unity (φI)I and (ψJ )J . They can be freely
designed so as to make the proof go through, as long as they satisfy the conditions announced above (non-negative,
sum to 1, φI(x∗

I) = 1). For example, our analysis for the exact-parametrization case was equivalent to choosing
as φI the indicator function of a small ball centered at x∗

I (Claim 16). Proving convergence in the general case
requires a much subtler choice; specifically, the partitions of unity we use for the proof of our main result are
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(a) Green stems represent the particles: abscissa indicates xi

and stem height indicates ai

(b) y = exp
(
− |x|3

3

)
if |x| ≤ 2, y = 0 otherwise

Figure 1 Illustration of the construction defining V (a, x)

defined as

φI(x) =

exp
(
−∥x−x∗

I ∥3

3τ3

)
if
∥∥x− x∗

I

∥∥ ≤ λτ
0 otherwise

(13)

for some bandwidth resp. cut-off parameters τ, λ > 0 chosen as functions of η and σ. The cut-off parameter λ is
used to ensure that

∑
I′ ̸=I φI′(x∗

I) = 0 and so φ0(x∗
I) ≥ 0. See Figure 1b for an illustration in one dimension

with τ = 1, λ = 2.
Note that V (a, x, b, y) ≥ 0 with equality if and only if (a, x, b, y) = (a∗, x∗, b∗, y∗) and ΣI ,ΣJ = 0 for all I, J ,

i.e., if and only if (µ, ν) = (µ∗, ν∗). Beyond this equivalence, similarly as for the exact-parametrization case, we
can show the following relation between V and NI error. The proof of the following proposition, as well as a
more quantitative version of it, can be found in Appendix D.4

▶ Proposition 7. Define V1 as in (12) with the partitions of unity (φI)I and (ψJ )J as in (13). Suppose that λτ
is less than some constant dependent on (f,X ,Y). There exists a constant C > 0 dependent only on (f,X ,Y)
such that, for any z = (a, x, b, y), denoting µ =

∑
i aiδxi

and ν =
∑

j bjδyj
,

NI(µ, ν) ≤ C
√
V1(z).

Moreover, there exist C ′, r > 0 dependent on (f,X ,Y), λ and τ such that, if NI(µ, ν) ≤ r, then

C ′V1(z)5/4 ≤ NI(µ, ν).

More precisely if λ, τ are chosen as functions of η, σ as in (23) and Γ−1
0 ≤ σ

η ≤ Γ0 for some Γ0 ≥ 1, then r and
C ′ can be chosen as

√
σ times constants dependent only on (f,X ,Y) and Γ0.

The Lyapunov function V is by design essentially a proxy for squared WFR distance (7) of µ to µ∗ and of ν
to ν∗. Indeed we followed the same construction as for [8, Lem. D.1], with the nuance that φI and ψJ are not
necessarily indicator functions. A simple modification of their proof shows that, in our notation:5

▶ Proposition 8 (Modification of [8, Lem. D.1]). Define V as in (12) with the partitions of unity (φI)I and
(ψJ )J as in (13). There exist constants C, r > 0 (dependent only on µ∗) such that for any (a, x) with V (a, x) ≤ r,
denoting µ =

∑
i aiδxi ,

WFR2
2(µ, µ∗) ≤ 2V (a, x)

(
1 + C

η

σ
(λτ)2

)
.

The main result of this subsection, proved in Appendix E, is that the CP-PP algorithm converges locally
at an exponential rate, as measured by the Lyapunov function. Convergence measured by NI error and by
WFR distance (Theorem 2) follows by combining Theorem 9 with Proposition 7 and Proposition 8 as shown
in Appendix I.

4 The reason why we need to split Proposition 7 into two parts is that the inequality V α ≲ NI (for any exponent α) cannot be
true for all (a, x, b, y). Indeed, NI is bounded, but V may be infinite due to the terms D(a∗, a) if µ has no mass near one of
the x∗

I ’s.
5 Namely the modification to bring to the proof of [8, Lem. D.1] is (in the notations of that paper) to use the transport plan that

sends (r, θ) to
(

r
rI
r∗

I , θ
∗
I

)
with probability φI(θ) and to (0, θ) with probability φ0(θ). The present work uses Kullback–Leibler

divergence while [8] uses squared Hellinger distance, but the difference can be controlled similarly as in Lemma 46, thanks
to Lemma 19. The factor η

σ can be thought of simply as a linear rescaling of ∥ · ∥2
X .
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▶ Theorem 9. Define (φI)I , (ψJ)J as in (13) and define V as in (12). Choose λ, τ as functions of η, σ as
in (23). Fix any Γ0 ≥ 1. There exist η0, σ0 such that for all η ≤ η0, σ ≤ σ0 with Γ−1

0 ≤ σ
η ≤ Γ0, there exists

r0 > 0 such that if V (z0) ≤ r0, then the CP-PP iterates satisfy

∀ k, V (zk) ≤ V (z0)(1− κ)k

for some constant κ > 0.

More precisely, one can check from the last step of the proof (Appendix E.6) that the rate κ can at most be
chosen equal to η2 times a constant, and that the localness level r0 can at most be chosen equal to η3 times a
constant (dependent on (f,X ,Y) and Γ0).

The full proof of the theorem can be found in Appendix E. It has the same general structure as for the
exact-parametrization case, but needs to deal with the following difficulties:

The variables (a, x, b, y) and the solution (a∗, x∗, b∗, y∗) live in different spaces so we cannot just evaluate
the characterizing inequality (8) at the solution particles. Instead we identify a notion of “proxy solution
particles” (a(∗), x(∗), b(∗), y(∗)) ∈ ∆n ×Xn ×∆m × Ym, namely

x
(∗)
i := xk+1

i +
∑

I∈[n∗]

φk+1
Ii (x∗

I − xk+1
i ) and a

(∗)
i :=

∑
I∈[n∗]

a∗
I

φk+1
Ii ak+1

i

ak+1
I

(14)

where φk+1
Ii = φI(xk+1

i ), and similarly for b(∗), y(∗). We show that evaluating (8) at (a(∗), x(∗), b(∗), y(∗))
makes the Lyapunov function emerge naturally, yielding a general-case equivalent of (10).
Compared to the exact-parametrization case, several additional error terms appear, which are much more
delicate to control. For example, we need to bound 1

2
∑

I

∑
i a

k
i

(
φk+1

Ii − φk
Ii

) ∥∥x∗
I − xk

i

∥∥2, a term which we
did not appear in (10). This requires some technical work, and it is here that we benefit from choosing the
partitions of unity as (13); the choice of the parameters λ and τ also requires care.
The stray-weight and variance terms of the Lyapunov function do not appear in the error-bound-type
inequality of Section 3.3.2, so we do need to combine that result with the quadratic growth and star-convexity
properties, contrary to the exact-parametrization case.

3.3 A crucial proof ingredient: lower growth properties
For unconstrained min-max optimization of a smooth convex-concave objective G(x, y), the proof of convergence
of the (Euclidean) Proximal Point method essentially reduces to three steps:
1. Letting gap(z; ẑ) = G(x̂, y)−G(x, ŷ) and g̃ap(z; ẑ) =

〈(
∇x

−∇y

)
G(ẑ), ẑ − z

〉
, notice that

g̃ap(z; ẑ) = gap(z; ẑ) +DG(·,ŷ)(x, x̂)−DG(x̂,·)(y, ŷ) ≥ gap(z; ẑ)

where D denotes a Bregman divergence, by convexity-concavity.
2. The Proximal Point update is characterized by the variational inequality, analogous to (8),

∀ z, η g̃ap(z; zk+1) ≤
〈
z − zk+1, zk+1 − zk

〉
= 1

2
∥∥z − zk

∥∥2 − 1
2
∥∥z − zk+1∥∥2 − 1

2
∥∥zk+1 − zk

∥∥2
.

3. In particular evaluating at the saddle point z∗ assumed unique for simplicity,

1
2
∥∥z∗ − zk+1∥∥2 ≤ 1

2
∥∥z∗ − zk

∥∥2 − η gap(z∗; zk+1)

− η
[
DG(·,yk+1)(x∗, xk+1)−DG(xk+1,·)(y∗, yk+1)

]
− 1

2
∥∥zk+1 − zk

∥∥2
.

Depending on the properties of G, we lower-bound one of the three terms appearing with a negative sign
on the right-hand side. For example,

If G satisfies (a min-max analog of) the quadratic growth property [15, Def. 5.1], i.e., if there exists C > 0
such that

∀ z, gap(z∗; z) ≥ C

2
∥∥z∗ − z

∥∥2
,

then we can directly conclude to exponential decrease of the Lyapunov function V (z) = 1
2
∥∥z∗ − z

∥∥2 with a
rate at least C

2 η.
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If G satisfies the error bound property with constant C ′ > 0 [17, 35], i.e., if

∀ z,
∥∥∥∥( ∇xG(z)
−∇yG(z)

)∥∥∥∥ ≥ C ′∥∥z − z∗∥∥,
then since zk+1 − zk = η

(
−∇xG(zk+1)
∇yG(zk+1)

)
, we can conclude to exponential convergence with a rate at least

(C ′η)2.
We note that convexity-concavity of G is not essential. (Suppose existence and uniqueness of the saddle
point z∗ is guaranteed by some other property that convexity-concavity.) Indeed, to lower-bound the
second term on the right-hand side, it suffices to have G (µ′-strongly) star-convex-concave [15, Def. 5.1],
that is

∀ z, DG(·,y)(x∗, x)−DG(x,·)(y∗, y) ≥ µ′

2
∥∥z∗ − z

∥∥2
.

In total, if G is (µ′-strongly) star-convex-concave, satisfies quadratic growth with constant C, and error bound
with constant C ′, then we can conclude to exponential convergence with a rate at least C+µ′

2 η + (C ′η)2.
In our case (constrained min-max optimization of the overparametrized objective Fn,m using the divergence

D ((a, x), (â, x̂)) = D(a, â) + η
2σ

∑
i âi

∥∥xi − x̂i

∥∥2 which is non-Euclidean and not even a Bregman divergence)
the analysis is significantly more technical, but it involves the same basic ingredients.

3.3.1 “Quadratic growth” with respect to the position and stray weight variables
We establish a quadratic growth property for Fn,m involving only some of the desired terms in the lower bound.
Analogously to the analysis of [8] for minimization, the proof relies on the non-degeneracy Assumptions 5–6;
a crucial difference however, is that we do not have quadratic growth in the weight variables. To be precise,
compared to the assumption (A5) of [8], our non-degeneracy assumption concerns only the so-called local kernels
HI , HJ , and the min-max analog of the global kernel (K in that paper’s notations) is necessarily zero due to the
bilinearity of F (µ, ν).

The precise statement of our result is given in Appendix C.1; here we state a simplified version to give the
intuition.

▶ Lemma 10 (“Quadratic growth”, simplified). There exist constants r, C > 0 only dependent on (f,X ,Y) (and
on λ, τ in the general case) such that, for any z = (a, x, b, y) with V1(z) ≤ r, then

F (µ, ν∗)− F (µ∗, ν) ≥ C
(
Vpos(z) + a0 + b0

)
where µ =

∑n
i=1 aiδxi and ν =

∑m
j=1 bjδyj (and a0 = b0 = 0 by definition in the exact-parametrization case).

Note that ∥a− a∗∥1 does not appear in this inequality, but it will appear in the error-bound-type inequality
discussed in the next paragraph. Conversely a0 and

∑
I aI Tr(ΣI) appear in the inequality of this paragraph but

not of the next.

3.3.2 “Error bound” with respect to the weight and aggregated position variables
It is well-known that the error bound property holds for strongly-convex-strongly-concave and smooth min-max
objectives, or for bilinear objectives constrained to a product of polytopes [35]. In our case, the reparametrized
objective Fn,m(a, x, b, y) is bilinear in the weight components (a, b), and intuitively it possesses some local strong
convexity-concavity in the position components (x, y) thanks to Assumption 6. But these two facts are not
enough to directly show an error bound inequality, because the constant C for the components (a, b) may depend
arbitrarily badly on (x, y) a priori. Instead we use an argument, inspired by [37, Lem. 14], that also exploits the
Assumption 3 of uniqueness of the MNE.

Again, the precise statement of our result is deferred to the appendix Appendix C.2; here we state an informal
version to give the intuition. We also refer to the second paragraph of that appendix for an interpretation of the
quantity appearing on the left-hand side.
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▶ Lemma 11 (“Error bound”, informal). Consider any ẑ = (â, x̂, b̂, ŷ) ∈ ∆n × Xn × ∆m × Ym. For any
(AI)I∈[n∗], (BJ )J∈[m∗] (and A0 = B0 = 0) and (XI)I∈[n∗], (YJ )J∈[m∗], define “proxy particles” from (A,X,B, Y )
and (â, x̂, b̂, ŷ) analogously to (14), and denote them by z. There exist r, C > 0 only dependent on (f,X ,Y) such
that if V1(ẑ) ≤ r, then

max
A,X,B,Y

g̃ap(z; ẑ) ≥ C
√∑

I

dh(a∗
I , âI)+

∑
J

dh(b∗
J , b̂J)+

∑
I

âI

∥∥x̂I−x∗
I

∥∥2+
∑

J

b̂J

∥∥ŷJ−y∗
J

∥∥2 +O(V1(ẑ)).

3.3.3 Local “star-convexity-concavity” (strong with respect to the position variables)
Note that g̃ap(z; ẑ) − gap(z; ẑ) = DFn,m(·,ŷ)(x, x̂) − DFn,m(x̂,·)(y, ŷ) where D denotes a Bregman divergence.
Intuitively, Fn,m is bilinear in the weight variables and, in a neighborhood of the MNE, it possesses some local
strong convexity-concavity with respect to the position variables thanks to Assumption 6. And indeed, by Taylor
expansions, one can obtain lower-bounds on g̃ap(z; ẑ)− gap(z; ẑ) consisting of positive terms and of error terms
in V (z), V (ẑ). Note however that (for the general case) due to the overparametrization, there are many ways to
write Taylor expansions.

Specifically, we will use the following bound. Again the precise statement of the result is deferred to the
appendix Appendix C.3; here we state an informal version to give the intuition.

▶ Lemma 12 (“Local star-convexity-concavity”, informal). Consider any ẑ = (â, x̂, b̂, ŷ) ∈ ∆n ×Xn ×∆m × Ym,
and let z(∗) = (a(∗), x(∗), b(∗), y(∗)) the “proxy solution particles” defined as in (14). Denote µ̂ =

∑n
i=1 âiδx̂i and

ν̂ =
∑m

j=1 b̂jδŷj
. There exist r, C > 0 only dependent on (f,X ,Y) such that if V1(ẑ) ≤ r, then for an appropriate

choice of the partitions of unity φI , ψJ ,

g̃ap(z(∗); ẑ) ≥ F (µ̂, ν∗)− F (µ∗, ν̂) + CVpos(ẑ) +O
(
V1(ẑ)3/2

)
.

4 Numerical experiments

In this section, we illustrate the CP-PP algorithm and its convergence properties on simple examples of
applications. As discussed in Section 2.2, in experiments we actually run the CP-MP algorithm since the CP-PP
update cannot be computed exactly, but based on Lemmas 49 and 50 we strongly expect the same convergence
behavior for these two algorithms, as proved in the exact-parametrization case in Proposition 6.

Julia code to reproduce the experiments is publicly available online at https://github.com/guillaumew16/
particle-MNE.

4.1 Payoff drawn from a Gaussian process
We start by an application of our method on a toy example where the payoff function is drawn from a Gaussian
process. More precisely we apply CP-MP on the function f : Tdx × Tdy → R defined by

f(x, y) = ℜ
∑

|k|≤K

∑
|l|≤L

ck,le
2πi(⟨k,x⟩+⟨l,y⟩)

where the ck,l ∈ C are drawn randomly, namely ℜ[ck,l],ℑ[ck,l] are drawn i.i.d. from the standard normal
distribution. The orders K and L control the smoothness of the function. Remark that the game is separable,
i.e., f can be written as a finite sum of the form f(x, y) =

∑
k,l c

′
k,lgk(x)hl(y) for some c′

k,l ∈ R and continuous
gk, hl, since f(x, y) =

∑
k,l |ck,l| cos (2π ⟨k, x⟩+ 2π ⟨l, y⟩+ arg(ck,l)) and cos(a + b) = cos a cos b − sin a sin b; so

we are guaranteed that a sparse MNE exists [34, Cor. 2.10].
We illustrate the behavior of the CP-MP algorithm on such a payoff function with dx = dy = 1, K = L = 3

and n = m = 15. A contour plot of f is contained in Figure 3a.
In Figure 2, we plot the NI errors and Lyapunov potentials of the iterates for η = 0.04 and σ = 0.001, up

to T = 400. Those values decrease exponentially as expected from our upper bounds. In order to compute the
NI errors, we computed maxν F (µk, ν) = maxν

∫
Y((µk)⊤F )dν = maxy∈Y((µk)⊤F )(y) simply by discretization

of Y = T1. In order to compute the Lyapunov potentials V (zk) defined in (12), we used an estimation of the
(a∗

I , x
∗
I)I , (b∗

J , y
∗
J)J obtained by clustering the particles of µ2T , ν2T .

In Figure 3, we plot (a smoothed version of) the measures (µT , νT ) as well as the first variations (FνT )(x)
and ((µT )⊤F )(y) at the last iterate. On all three subfigures, green lines indicate the support of µT and νT . The

https://github.com/guillaumew16/particle-MNE
https://github.com/guillaumew16/particle-MNE
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(a) NI errors NI(µk, νk) (log-linear scale) (b) Lyapunov potentials V (zk) (log-linear scale)

Figure 2 Optimality metrics of CP-MP iterates for Gaussian process payoff

(a) The measures smoothed by convolution with
h = 1[0,0.01].
Middle: contour plot of f(x, y).
Top: (µT ∗ h)(x). Left: (νT ∗ h)(y)

(b) First variation (FνT )(x) at the last
iterate.
Orange dashed line: payoff at equilib-
rium F (µ∗, ν∗)

(c) First variation ((µT )⊤F )(y) at the
last iterate.
Orange dashed line: payoff at equilib-
rium F (µ∗, ν∗)

Figure 3 Smoothed measures and first variations at the last iterate

iterates converge to a sparse measure (here n∗ = m∗ = 3), as expected. The first variations visibly satisfy the
inequalities (4), which characterize the MNE, as well as the non-degeneracy Assumptions 5–6.

Convergence of the continuous-time flow

Interestingly, for payoff functions of this form, we observe experimentally that the continuous-time flow corre-
sponding to CP-MP typically also converges to the MNE. This behavior is not captured by our upper bound.
Indeed, we observe that the slopes of the lines in the log-linear plots of Figure 2 scale as η instead of η2.
Moreover, experimentally, the explicit time-discretization CP-MDA (i.e. Algorithm 1 with L = 1) also converges
exponentially to the solution in this setting.

This phenomenon is specific to CP-MP, as it does not arise for Mirror Prox in finite games.6 We emphasize
that it is not always the case that the continuous-time flow of CP-MP converges, as shown experimentally for
the synthetic example below.

The mechanism behind this phenomenon is explained in depth in the follow-up work [36] (subsequent to the
completion of this work), where in particular the conditions for convergence of the continuous-time flow are
described precisely, in the exact-parametrization case.

6 For finite games with a unique MNE, Mirror Descent-Ascent diverges, unless the MNE consists of two Dirac deltas (i.e. there
exists a pure-strategy Nash equilibrium) [3]. Moreover, in all our experiments with random payoff matrices, we observed that
the convergence rate of Mirror Prox scaled as η2.
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▶ Example 13 (The continuous-time flow may not converge). Take dx = dy = 1 and c2,0 = −i, c0,2 = −i, c1,1 = 2,
ck,l = 0 otherwise, i.e.,

f(x, y) = sin(4πx) + sin(4πy) + 2 cos(2πx+ 2πy).

For this payoff function, the MNE is unique and equal to (µ∗, ν∗) =
( 1

2δ 3
8

+ 1
2δ 7

8
, 1

2δ 1
8

+ 1
2δ 5

8

)
. Indeed,

1. Using that −1 ≤ sin ≤ 1 one can check that this (µ∗, ν∗) is a MNE, and so the value at optimum is ρ = 0.
2. Suppose by contradiction that there exists (µ′, ν′) a MNE with Eν′ [sin(4πy)−1] < 0, and pose x+ = 3

8 , x− = 7
8 .

Using that cos(2πx+ + 2πy) + cos(2πx− + 2πy) = 0 for all y, we have either Eδx+ ,ν′ [2 cos(2πx+ 2πy)] ≤ 0 or
Eδx− ,ν′ [2 cos(2πx+ 2πy)] ≤ 0. So F (δx+ , ν

′) < 0 = ρ or F (δx− , ν
′) < ρ, contradicting optimality of ν′.

3. By the previous point and the symmetric argument for µ′, any MNE (µ′, ν′) must satisfy Eµ′ [sin(4πx)+1] = 0
and Eν′ [sin(4πy)− 1] = 0, i.e., must be of the form µ′ = aδ 3

8
+ (1− a)δ 7

8
, ν′ = bδ 1

8
+ (1− b)δ 5

8
. By explicit

calculations, one can show that necessarily a = b = 1
2 .

On the other hand, experimentally we observe that CP-MDA does not converge, while CP-MP converges with
an exponential rate that scales as η2.

4.2 Max-F1-margin classification with two-layer neural networks
A well-known machine learning task which uses the min-max framework is max-margin classification. In particular
when using a two-layer neural network as the classifier, the training task is exactly of the form (1). Indeed, a
two-layer network with non-decreasing positive-homogeneous activation σ (without bias terms) can be represented
as a signed measure ν± on the space of normalized hidden neurons Θ = Sd−1 =

{
θ ∈ Rd;

∥∥θ∥∥2 = 1
}

via

NN(x; ν±) =
∫

Θ
σ(θ⊤x)dν±(θ),

or equivalently as a non-negative measure ν on the space Θ+ ⊔Θ−, the disjoint union of two copies of Θ, via

NN(x; ν) =
∫

Θ+

σ(θ⊤
+x)dν(θ+)−

∫
Θ−

σ(θ⊤
−x)dν(θ−).

Two-layer networks with bias terms can be represented in the same way, by appending a constant component 1
to the input vector x and taking Θ = Sd instead of Sd−1. One can define the F1 norm of a function f : Rd → R
as the infimum of ν(Θ+ ⊔ Θ−) over all ν such that f = NN( · ; ν). Balls for this norm admit advantageous
estimation/approximation trade-offs in a supervised learning task [2].

Consider a supervised classification task with covariates x ∈ Rd and labels y ∈ {−1, 1}. Given N observations
(xi, yi)1≤i≤N , the max-F1-margin classification task consists in finding ν that maximizes the following problem

max
ν∈M(Θ+⊔Θ−)
ν(Θ+⊔Θ−)=1

min
1≤i≤N

yi NN(xi; ν)

≡ max
ν∈P(Θ+⊔Θ−)

min
a∈P([N ])

N∑
i=1

aiyi

(∫
Θ+

σ(θ⊤
+xi)dν(θ+)−

∫
Θ−

σ(θ⊤
−xi)dν(θ−)

)
.

This problem is indeed an instance of (1) for X = [N ], Y = Θ+ ⊔Θ−, and f(i, θ) =
{
yiσ(θ⊤xi) if θ ∈ Θ+

−yiσ(θ⊤xi) if θ ∈ Θ−
.

Numerical results

As detailed above, the max-F1-margin classification problem can be written as

max
ν∈P(Θ+⊔Θ−)

min
a∈P([N ])

N∑
i=1

∫
Θ+⊔Θ−

aif(i, θ)dν(θ).

It is straightforward to adapt the CP-MP algorithm to this setting. Namely, choose m′ = 2m a number of
neurons, reparametrize by ν =

∑2m
j=1 bjδθj

for θ1, . . . , θm ∈ Θ+ and θm+1, . . . , θ2m ∈ Θ−, and consider the
reparametrized problem

min
a∈∆N

max
b∈∆2m

θ∈(Sd−1)2m


N∑

i=1

2m∑
j=1

aibj ·
(
1[j≤m] − 1[j>m]

)
· yiσ(θ⊤

j xi) =: Fn,m(a, (b, θ))

 .
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We can then apply Algorithm 1 with y = θ and with xi kept constant equal to i for all i.
In Figure 4 we present the results of an experiment with N = 5 samples, two positively labeled and three

negatively labeled, and 2m = 2 ∗ 50 neurons and activation σ(s) = max(0, s)3. The dimensionality of the problem
is d = 3 with each sample having 1 as the last coordinate, meaning that the last component of θ acts as a bias
term. Our analysis does not cover this case, strictly speaking, since one strategy space is discrete, and there is
no guarantee that the MNE is unique; yet the experimental results indicate a similar behavior as for continuous
games.

Figure 4a shows that the NI error, here NI(ak, νk) = maxθ

∣∣∣∑N
i=1 aiyiσ(θ⊤xi)

∣∣∣−mini yiNN(xi; νk), decreases
exponentially to 0.
In particular the margin is non-negative at optimum so all points are classified correctly, as expected from
the universality of two-layer neural networks [31]. This can also be seen from the decision regions shown
in Figure 4b.
The solution found (νT ) turns out to be sparse, as shown by the plots in Figure 4c, where blue dots correspond
to positively weighted neurons and red dots to negatively weighted neurons, and the distance from the origin
represents the associated magnitude bT

j . A green sphere of radius 1
m was added for scale.

While they are not represented in the figure so as not to overload it, the variables a are also of interest as a
measure of each sample’s importance. For example in this experiment, aT

i is close to zero for the topmost
sample (xi ≈ (0, 2) and yi = +1), and non-zero for all other samples. In particular, removing the topmost
sample from the dataset does not modify the learned network.
The activation function σ(s) = max(0, s)3 chosen for this experiment has locally Lipschitz-continuous

second derivative, so our results’ smoothness assumption on the payoff is verified. Interestingly, when using the
ReLU activation σ(s) = max(0, s) for the same toy dataset, we observe that the NI error first decreases at an
exponential rate and then oscillates around a value of about 10−3, even for large m. For σ(s) = max(0, s)2, in all
our experiments we observed that the NI error vanishes exponentially.

4.3 Distributionally-robust classification with two-layer neural networks
Consider again a supervised classification task with covariates x ∈ Rd and labels y ∈ {−1, 1}. Consider a dataset
of N observations (x̂k, ŷk)1≤k≤N and let µ̂ = 1

N

∑N
k=1 δ(x̂k,ŷk) the empirical distribution. Let W∞ denote the

L∞-Wasserstein distance on P(Rd × {−1, 1}), defined by

W∞(µ, µ′) = inf
γ∈Π(µ,µ′)

max
((x,y),(x′,y′))

∈supp(γ)

d((x, y), (x′, y′)) where d((x, y), (x′, y′)) =
{∥∥x− x′

∥∥
2 if y = y′

+∞ otherwise

where Π(µ, µ′) is the set of couplings of µ and µ′. Fix a “robustness level” r > 0. In the spirit of [28], the
distributionally-robust classification task with respect to W∞, using two-layer neural networks NN( · ; ν), is to
find ν that maximizes

max
ν∈M(Θ+⊔Θ−)
ν(Θ+⊔Θ−)=1

min
µ∈P(Rd×{−1,1})

W∞(µ,µ̂)≤r

∫
Rd×{−1,1}

y NN(x; ν)dµ(x, y)

≡ max
ν∈P(Θ+⊔Θ−)

min
µ∈P(Rd×{−1,1})

W∞(µ,µ̂)≤r

∫
Rd×{−1,1}

∫
Θ+⊔Θ−

f ((x, y), θ) dν(θ)dµ(x, y)

with f ((x, y), θ) =
{
yσ(θ⊤x) if θ ∈ Θ+

−yσ(θ⊤x) if θ ∈ Θ−
a “payoff” function over

(
Rd × {−1, 1}

)
×(Θ+⊔Θ−). More concretely,

since µ̂ = 1
N

∑N
k=1 δx̂k,ŷk

, then W∞(µ, µ̂) ≤ r means that

supp(µ) ⊂ {(x, y); ∃ k, d ((x, y), (x̂k, ŷk)) ≤ r} =
⋃

k∈[N ]

(x̂k + rB)× {ŷk}

where B denotes the unit Euclidean ball. In the language of adversarial robustness, the inner minimization means
that we train the model NN( · ; ν) to correctly classify potential adversarial examples that are within a distance
of r from an instance present in the dataset.
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(a) NI errors NI(ak, νk) (log-linear
scale)

(b) Soft decision regions (logits) at the last
iteration. The dashed blue line indicates the
decision boundary.

(c) Neurons at the last iteration

Figure 4 Results for the max-F1-margin classification experiment

(a) NI errors NI(µk, νk) (log-linear
scale)

(b) Decision regions at the last iteration. See
text for further description.

(c) Neurons at the last iteration

Figure 5 Results for the distributionally-robust classification experiment with r = 0.2

(a) NI errors NI(µk, νk) (log-linear
scale)

(b) Decision regions at the last iteration. See
text for further description.

(c) Neurons at the last iteration

Figure 6 Results for the distributionally-robust classification experiment with r = 0.3

Numerical results

We showed how the task of distributionally-robust classification can be rewritten as

max
ν∈P(Θ+⊔Θ−)

min
µ∈P

(⋃
k∈[N]

(x̂k+rB)×{ŷk}
) ∫

Rd×{−1,1}

∫
Θ+⊔Θ−

f ((x, y), θ) dν(θ)dµ(x, y).

Let us adapt the CP-MP algorithm to this setting.
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For the classifier (ν), similarly to the previous example, choose m′ = 2m a number of neurons and let
ν =

∑2m
j=1 bjδθj with θ1, . . . , θm ∈ Θ+ and θ1, . . . , θm ∈ Θ−.

For the adversary (µ), choose n′ = Nn a number of particles (n per sample), and let µ =∑N
k=1

∑n
i=1 akiδ(x̂k+uki,ŷk) with

∥∥uki

∥∥
2 ≤ r. To deal with the constraint on the uki’s, we project those

variables back to rB after each gradient step.
We obtain the reparametrized problem

min
a∈∆Nn

u∈(rB)Nn

max
b∈∆2m

θ∈(Sd−1)2m


N∑

k=1

n∑
i=1

2m∑
j=1

akibj ·
(
1[j≤m] − 1[j>m]

)
· ŷkσ

(
θ⊤

j (x̂k + uki)
)

=: Fn,m((a, u), (b, θ))


on which we can apply Algorithm 1 with x = u, y = θ, modified with a projection step to ensure u ∈ rB.

In Figure 5 (resp. Figure 6), we show the results of experiments with the same dataset and the same network
architecture as in the previous subsection, with robustness level r = 0.2 (resp. r = 0.3), and using n = 10
particles per datapoint. The bias terms are taken into account, i.e., each uki has 0 as the last coordinate.

In both experiments, similar to the previous subsection, the NI error decreases exponentially to 0 (Figure 5a,
Figure 6a).
In particular the robust margin mink minx∈x̂k+rB ŷkNN(x; νT ) is non-negative at optimum. In other words,
the disks of radius r around the sample covariates are classified correctly, as can be seen in Figure 5b,
Figure 6b, where the disks’ boundaries are shown by green and red circles. In those figures we also represented
the adversary’s support points (x̂k + uT

ki) by slightly darker marks. We see that they are concentrated on the
points of the disks that are closest to the decision boundary (dashed blue line).
Just like in the max-F1-margin experiment of the previous subsection, the learned network (νT ) is sparse, as
shown in Figure 5c, Figure 6c. In fact, max-F1-margin can be seen as an instance of distributionally-robust
classification with level r = 0, and increasing r seems to perturb the learned neurons in a continuous way.
Again, the variables a are not represented in the figures to avoid overloading them. In both experiments,∑n

i=1 a
T
ki is close to zero for the topmost sample (x̂k ≈ (0, 2) and ŷk = +1) and non-zero for all other samples,

just like in the max-F1-margin experiment.

5 Conclusion

In this paper, we showed that weighted particle methods can be successfully used to compute the MNE of
continuous games. Specifically, we prove local exponential convergence of Conic Particle Proximal Point (CP-PP)
under non-degeneracy assumptions. This algorithm is easily implementable as a descent-ascent method on a
reparametrized finite-dimensional (but nonconvex-nonconcave) objective, and corresponds to an implicit time-
discretization of the Wasserstein–Fisher–Rao gradient flow. Applied to max-margin and distributionally-robust
classification, our result indicates (and our numerical experiments confirm) that training the classifier and
the adversary simultaneously is sufficient for convergence, with no need for timescale separation nor for any
reformulation as in [28].

An interesting question for further research would be to relax the assumption that the step-sizes for the
weight (η) and position variables (σ) are of the same order, as this would allow a direct comparison with the
convergence behavior of pure Fisher–Rao or pure Wasserstein gradient methods. Another open direction is to
adapt our algorithm and analysis to the case where only noisy access to the payoff function or its derivatives is
available. Finally, it could be interesting to extend our study of distributionally-robust classification (Section 4.3)
to regression tasks, or to classification using the logistic loss.
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Appendix

The appendix is structured as follows.
In Appendix A we introduce notations used throughout the proofs in the appendix.
In Appendix B we prove Lemma 1 stating that the CP-PP update is well-defined.
In Appendix C we formalize and prove the lower growth properties discussed in Section 3.3.
This section, and in particular the “steepness” result Claim 22, represents the crux of our analysis. In particular
much of Appendix D will rely on the same proof ideas, and Appendix E will make crucial use of the results
from this section.
In Appendix D we prove the bounds of Proposition 3 and Proposition 7 relating NI error and our Lyapunov
potential.
In Appendix E we present the complete convergence analysis of CP-PP for the general case, proving Theorem 9.
It is instructive to see how the aggregated weights and positions naturally appear in the derivations, so that
the steps of the proof almost perfectly match the ones for the exact-parametrization case (proof of Theorem 5).
The manipulations required to deal with the additional error terms are purely technical however, and they
are deferred to the last subsection.
Appendix F collects elementary auxiliary facts used in some of the above sections.
Appendix G contains some delayed calculatory proofs for the above sections.

In Appendix H we prove Proposition 6 stating that (in the exact-parametrization case) CP-MP has the same
convergence behavior as CP-PP.
The proof consists in deriving generically applicable approximate expressions for the Mirror Prox and Proximal
Point updates, up to order-3 terms in the step-size. In particular we show and exploit the fact that the error
terms are also proportional to the projected gradient norm.
In Appendix I we show in detail how our main result Theorem 2 follows from combining Proposition 7,
Proposition 8 and Theorem 9.

A Notations used in the proofs

In this section we collect notations used throughout the proof. Most of them are natural, except perhaps our use
of the O( · ) notation (last paragraph).

Relative entropy

Let h : R+ → R defined by h(s) = s log s− s+ 1. h is convex and its Bregman divergence is

dh(s, s′) =
{

+∞ if s′ = 0, s > 0
s log s

s′ − s+ s′ otherwise.

The Kullback Leibler (KL) divergence between w and ŵ ∈ [0, 1]n is given by D(w, ŵ) =
∑

i dh(wi, w
′
i).

Indexing

We use I ∈ [n∗] resp. J ∈ [m∗] to index the “true” particles, i.e., the unique MNE (µ∗, ν∗) is

µ∗ =
∑

I∈[n∗]

a∗
Iδx∗

I
(a∗

I > 0) ν∗ =
∑

J∈[m∗]

b∗
Jδy∗

J
(b∗

J > 0).

We use i ∈ [n] resp. j ∈ [m] to index the particles used by the algorithm.
Let by convention a∗

0 = b∗
0 = 0. In particular we can write that

∀ a ∈ ∆[0,n∗], D(a∗, a) =
∑

I∈[0,n∗]

a∗
I log a

∗
I

aI
.

Unless specified, summations over I refer to I ∈ [n∗] (excluding index 0). To lift any ambiguity,
∥∥a− a∗

∥∥
1

refers to ℓ1-norm for ∆[n∗]:
∥∥a− a∗

∥∥
1 =

∑
I∈[n∗] |a− a∗|, even when a ∈ ∆[0,n∗].

For a ∈ ∆[0,n∗], ∆aI = aI − a∗
I , and for x ∈ Xn∗ , ∆xI = xI − x∗

I .
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Generically denote the joint weight resp. position variables by w = ( a
b ) ∈ ∆n×∆m, resp. p = ( x

y ) ∈ Xn×Ym.
Summations over wi will implicitly be over [n] ⊔ [m], that is,

∑
i f(wi) =

∑n
i=1 f(ai) +

∑m
j=1 f(bj). Likewise

for w =
(

a
b

)
∈ ∆[n∗] × ∆[m∗] and p =

(
x
y

)
∈ Xn∗ × Ym∗ , for which summations will implicitly be over

[n∗] ⊔ [m∗] (excluding the two indices 0). Finally, w0 = a0 + b0.

Local payoff matrices

Generically let, for (â, x̂, b̂, ŷ) ∈ (∆n ×Xn)× (∆m × Ym),

M̂ij = f(x̂i, ŷj) (∧M∗)iJ = f(x̂i, y
∗
J)

(∗M∧)Ij = f(x∗
I , ŷj) M∗

IJ = f(x∗
I , y

∗
J)

as well as ∂xM̂ij = ∂xf(x̂i, ŷj), ∂xM
∗
IJ = ∂xf(x∗

I , y
∗
J), etc., and similarly for ∂y, ∂2

xx, ∂2
xy, and ∂2

yy. For
example, we have the Taylor expansion for all i, j, I

M̂ij = (∗M∧)Ij + (x̂i − x∗
I)⊤∂x(∗M∧)Ij +O(

∥∥x̂i − x∗
I

∥∥2).

Let

∀ I ∈ [n∗], HI =
∑

J

∂2
xxM

∗
IJb

∗
J resp. ∀ J ∈ [m∗], HJ = −

∑
I

a∗
I∂

2
yyM

∗
IJ

the local kernels; that is, HI = ∂2
xx(Fν∗)(x∗

I) and HJ = −∂2
yy((µ∗)⊤F )(y∗

J). Let Hx the n∗dx by n∗dx

block-diagonal matrix with blocks (HI)I∈[n∗], and likewise let Hy the block-diagonal matrix with blocks
(HJ)J∈[m∗].
We will use the usual matrix-vector product notation, so that for example HI = ∂2

xxM
∗
I•b

∗. In addition we
introduce the following shorthands: For a, x, b, y = (∆n∗ ×Xn∗)× (∆m∗ × Ym∗),

Even though x is a vector in (Rdx)n∗ and a is a vector in Rn∗ , we denote by a⊙ x the vector in (Rdx)n∗

such that (a⊙ x)I = aIxI .
We denote by aHx the block-diagonal matrix such that [aHx]II′ = 1I=I′aIHI . Likewise,
a∂xM

∗ is the matrix such that [a∂xM
∗]IJ = aI∂xM

∗
IJ , and

∂yM
∗b is the matrix such that

[
∂yM

∗b
]

IJ
= bJ∂yM

∗
IJ , and

a∂2
xyM

∗b is the matrix such that
[
a∂2

xyM
∗b
]

IJ
= aIbJ∂

2
xyM

∗
IJ .

Finally, we use id to denote the identity matrix, and its size will be clear from context.

Norms and dual norms on X and Y

We assume that X and Y are the dx- resp. dy-dimensional tori, that is, X = Tdx = (R/Z)dx and

∀ x, x′ ∈ X ,
∥∥x− x′∥∥

X = inf
k∈Zdx

∥∥x− x′ + k
∥∥

2.

In particular X is a compact Riemannian manifold, the tangent space at any point is isometric to Rdx , and the
norm of a tangent vector is

∀ v ∈ TxX , ∥v∥x = ∥v∥2.

The same considerations apply for Y = Tdy .
To lighten notation, we use ∥ · ∥ to denote the norm over X or Y or TxX or TyY ; which one is meant in each

situation will be clear from context.

The quantities arising from the Assumptions 1–6

Since X and Y are compact Riemannian manifolds, let R = diameter(X ) ∨ diameter(Y) <∞.
Since f has bounded differentials of order up to 3, let ∂x, ∂y the partial derivative operators and denote the
smoothness constants of f as

L0 = sup
X ×Y

f − inf
X ×Y

f, L1 = sup
X ×Y

∥∥∂xf
∥∥ ∨ ∥∥∂yf

∥∥, L2 = sup
X ×Y

∥∥∂2
xxf
∥∥ ∨ ∥∥∂2

xyf
∥∥ ∨ ∥∥∂2

yyf
∥∥

and L3 such that ∂2
xxf , ∂2

xyf , ∂2
xxf are L3-Lipschitz-continuous, and L = L0 ∨ L1 ∨ L2 ∨ L3.

By definition of MNE, the local kernels HI , HJ ⪰ 0, and by non-degeneracy assumption, HI , HJ ≻ 0. Denote
σmin = (minI σmin(HI)) ∧ (minJ σmin(HJ)) > 0 the least eigenvalue.
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Shorthands for partitions of unity

We recall the following notations, already introduced in our construction of the Lyapunov function in Section 3.2.
For each I ∈ [n∗], φI : X → R is the function defined in (13), and φ0 = 1−

∑
I φI .

Generically denote, for any a ∈ ∆n, x ∈ Xn: ∀ I ∈ [0, n∗],∀ i ∈ [n], φIi = φI(xi), and

∀ I ∈ [n∗], aI =
∑

i

φIiai xI =
∑

i

φIiai

aI
xi ΣI =

∑
i

φIiai

aI
(xi − xI)(xi − xI)⊤

as well as a0 = 1−
∑

I aI . We refer to aI as the aggregated weights, to xI as the aggregated positions, to ΣI

as the local covariance matrices, and to a0 as the stray weight. For example, the iterates at k have aggregated
weights ak

I =
∑

i φ
k
Iia

k
i .

For any J ∈ [0,m∗], then ψJ : Y → R is defined similarly. For any b ∈ ∆m and y ∈ Ym, then b ∈ ∆m∗ and
y ∈ Ym∗ are defined similarly.
In addition, we let ε = e−λ3/3 be the value of φI and ψJ at the cut-off.

What we hide in the O( · )’s

Fix an arbitrary constant Γ0 ≥ 1 and restrict attention to choices of step-sizes such that η, σ ≤ 1000 and
Γ−1

0 ≤ σ
η ≤ Γ0.

Let

c = a∗
min ∧ b∗

min
4 = (minI a

∗
I) ∧ (minJ b

∗
J)

4 .

We will justify in Lemma 31 that, locally, this quantity is a uniform lower bound on the iterates’ aggregated
weights: minI a

k
I ,minJ b

k

J ,minI a
k+1
I ,minJ b

k+1
J ≥ c.

We will use O( · ) and ≲ and ≍ to hide only constants dependent on (f,X ,Y) (such as c,R, L, n∗,m∗. . . ) and
on Γ0. That is,
a = O(b) means that there exists a constant C only dependent on those quantities, such that |a| ≤ C |b|.
a ≲ b means that there exists a constant C only dependent on those quantities, such that a ≤ Cb.
a ≍ b means that a ≲ b and a ≳ b.

For example, we have η, σ = O(1) and η ≍ σ.
Likewise, by “for η sufficiently small” we mean that a property holds for all η ≤ η0 for some η0 dependent
only on those quantities.

B Proof of Lemma 1

Fix k and denote the objective function in (6) as

G((a, x), (b, y)) := Fn,m((a, x), (b, y)) + 1
η
D(a, ak) + 1

2σ

n∑
i=1

ak
i

∥∥xi − xk
i

∥∥2 − 1
η
D(b, bk)− 1

2σ

m∑
j=1

bk
j

∥∥yj − yk
j

∥∥2
.

Recall that L1 denotes the Lipschitz constant of f and L2 its smoothness constant. We prove a quantitative
version of Lemma 1.

▶ Lemma 14. G is convex-concave over (Ak ×Xn)× (Bk × Yn) where

Ak =
{
a ∈ ∆n;∀ i, c1a

k
i ≤ ai ≤ c2a

k
i

}
and Bk =

{
b ∈ ∆m;∀ j, c1b

k
j ≤ bj ≤ c2b

k
j

}
for any c1, c2 such that

c1 ≤ 1 ≤ c2 and c2

c1
≤ 2
ηL1

and c2 ≤
1

(L1 + L2)σ .

Such c1, c2 exist if and only if η ≤ 2
L1

and σ ≤ 1
L1+L2

. In particular, if η ≤ 1
L1

and σ ≤ 1
2(L1+L2) , then we can take

c1 = 0.75 and c2 = 1.5. Furthermore, let ((a∗, x∗), (b∗, y∗)) denote a saddle point of G over (Ak×Xn)×(Bk×Yn).
If η ≤ 1

L1
c1
c2

, then we have D(a∗, ak) +D(b∗, bk) ≤ O(η). In particular, for η small enough, a∗ resp. b∗ belong to
the interior of Ak resp. Bk.
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Proof. Fix (̂b, ŷ) ∈ Bk × Ym and let us show that G(·, (̂b, ŷ)) is convex over Ak × Xn. For this, it suffices to
show that its Bregman divergence is non-negative, i.e., that

∀ (a, x), (â, x̂) ∈ Ak ×Xn,

DG(·,(b̂,ŷ))((a, x), (â, x̂)) := G((a, x), (̂b, ŷ))−G((â, x̂), (̂b, ŷ))−
〈(
∇a

∇x

)
G((â, x̂), (̂b, ŷ)),

(
a− â
x− x̂

)〉
≥ 0.

By straightforward calculations summarized in Lemma 47, this quantity is equal to

DG(·,(b̂,ŷ))((a, x), (â, x̂)) = DFn,m(·,(b̂,ŷ))((a, x), (â, x̂)) + 1
η
D(a, â) + 1

2σ
∑

i

ak
i

∥∥xi − x̂i

∥∥2
.

Let us now estimate the term in DFn,m(·,(b̂,ŷ)). Using the shorthands for the local payoff matrices,

DFn,m(·,(b̂,ŷ))((a, x), (â, x̂))

= Fn,m((a, x), (̂b, ŷ))− Fn,m((â, x̂), (̂b, ŷ))−
〈
∇(a,x)Fn,m((â, x̂), (̂b, ŷ)), (a, x)− (â, x̂)

〉
= a⊤(M∧)̂b− â⊤M̂ b̂− (a− â)⊤M̂ b̂−

∑
i,j

âi(xi − x̂i) · [∂xM̂ ]i,j b̂j

= a⊤
(

(M∧)− M̂
)
b̂− â⊤

[
Diag(x− x̂)∂xM̂

]
b̂

= â⊤
(

(M∧)− M̂ −
[
Diag(x− x̂)∂xM̂

])
b̂︸ ︷︷ ︸

=:S1

+ (a− â)⊤
(

(M∧)− M̂
)
b̂︸ ︷︷ ︸

=:S2

.

For the first term: For all i, j, by L2-smoothness of f(·, ŷj),∣∣∣∣((M∧)− M̂ −
[
Diag(x− x̂)∂xM̂

])
i,j

∣∣∣∣ = |f(xi, ŷj)− f(x̂i, ŷj)− (xi − x̂i)∂xf(x̂i, ŷj)|

≤ L2

2
∥∥xi − x̂i

∥∥2

so |S1| ≤
L2

2
∑

i

âi

∥∥xi − x̂i

∥∥2
.

For the second term: For all i, j, by L1-Lipschitz-continuity of f(·, ŷj),∣∣∣∣((M∧)− M̂
)

i,j

∣∣∣∣ = |f(xi, ŷj)− f(x̂i, ŷj)| ≤ L1
∥∥xi − x̂i

∥∥
so |S2| ≤ L1

∑
i

|ai − âi|
∥∥xi − x̂i

∥∥ = L1
∑

i

|ai − âi|√
âi

·
√
âi

∥∥xi − x̂i

∥∥
≤ L1

2

(∑
i

(ai − âi)2

âi
+
∑

i

âi

∥∥xi − x̂i

∥∥2
)
.

Thus we have that for all (a, x), (â, x̂),

DG(·,(b̂,ŷ))((a, x), (â, x̂))

≥ −L1

2
∑

i

(ai − âi)2

âi
− L1 + L2

2
∑

i

âi

∥∥xi − x̂i

∥∥2 + 1
η
D(a, â) + 1

2σ
∑

i

ak
i

∥∥xi − x̂i

∥∥2

= 1
η
D(a, â)− L1

2 χ2(a, â)︸ ︷︷ ︸ +
∑

i

(
1

2σa
k
i −

L1 + L2

2 âi

)∥∥xi − x̂i

∥∥2
.︸ ︷︷ ︸

By Lemma 46, if maxi
ai

âi
≤ 2

ηL1
, then χ2(a, â) ≤ 2

ηL1
D(a, â), and so the first underbrace is non-negative.

If furthermore 1
2σa

k
i − L1+L2

2 âi ≥ 0 for all i, then the second underbrace is non-negative.
Both of these conditions can be ensured by imposing a, â ∈ Ak with c1, c2 as defined in the lemma, since
c1a

k
i ≤ ai, âi ≤ c2a

k
i =⇒ ai

âi
≤ c2

c1
. The conditions on η, σ and the possible choices of c1, c2 are straightforward
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to check. Finally, fix some admissible c1, c2 and let us prove the last part of the lemma. Let ((a∗, x∗), (b∗, y∗))
denote a saddle point of G over (Ak ×Xn)× (Bk × Yn), i.e., such that

∀ ((a, x), (b, y)) ∈ (Ak ×Xn)× (Bk × Yn), G((a∗, x∗), (b, y)) ≤ G((a∗, x∗), (b∗, y∗)) ≤ G((a, x), (b∗, y∗)).

We have shown above that for all (a, x), (â, x̂) ∈ Ak ×Xn and (b, y), (̂b, ŷ) ∈ Bk × Yn,

DG(·,(b̂,ŷ))((a, x), (â, x̂)) ≥ 1
η
D(a, â)− L1

2 χ2(a, â) +
∑

i

(
1

2σa
k
i −

L1 + L2

2 âi

)∥∥xi − x̂i

∥∥2

≥
(

1
η
− L1

2
c2

c1

)
D(a, â)

and symmetrically,

DG((â,x̂),·)((b, y), (̂b, ŷ)) ≤ −
(

1
η
− L1

2
c2

c1

)
D(b, b̂).

In particular, for (a, x) = (a∗, x∗), (â, x̂) = (ak, xk) and (b, y) = (b∗, y∗), (̂b, ŷ) = (bk, yk), the difference of the
left-hand sides reads

DG(·,(bk,yk))((a∗, x∗), (ak, xk))−DG((ak,xk),·)((b∗, y∗), (bk, yk))

= G((a∗, x∗), (bk, yk))−G((ak, xk), (bk, yk))−
〈(
∇a

∇x

)
G(ak, xk, bk, yk),

(
a∗ − ak

x∗ − xk

)〉
−
(
G((ak, xk), (b∗, y∗))−G((ak, xk), (bk, yk))−

〈(
∇b

∇y

)
G(ak, xk, bk, yk),

(
b∗ − bk

y∗ − yk

)〉)

= G((a∗, x∗), (bk, yk))−G((ak, xk), (b∗, y∗))−
〈

∇a

∇x

−∇b

−∇y

G(ak, xk, bk, yk),


a∗ − ak

x∗ − xk

b∗ − bk

y∗ − yk


〉
.

Now G((a∗, x∗), (bk, yk))−G((ak, xk), (b∗, y∗)) ≤ 0 by definition of the saddle point, so we have

(
1
η
− L1

2
c2

c1

)(
D(a∗, ak) +D(b∗, bk)

)
≤ −

〈
∇a

∇x

−∇b

−∇y

G(ak, xk, bk, yk),


a∗ − ak

x∗ − xk

b∗ − bk

y∗ − yk


〉
.

Since ∇aD(a, ak)
∣∣
a=ak = 0 and ∇xi

1
2
∥∥xi − xk

i

∥∥2
∣∣∣
xi=xk

i

= 0, the right-hand side is equal to

−

〈
∇a

∇x

−∇b

−∇y

Fn,m(ak, xk, bk, yk),


a∗ − ak

x∗ − xk

b∗ − bk

y∗ − yk


〉
.

By proceeding similarly as for our bound of DFn,m(·,(b̂,ŷ)), one can show that it is bounded by C :=
2(L0 ∨ L1) (1 +R) (in particular the bound does not depend on n, m). Thus we have as announced

D(a∗, ak) +D(b∗, bk) ≤ C(
1
η −

L1
2

c2
c1

) = O(η). ◀

C Proof of the lower growth properties

Here we give the proof of the lower growth properties, which are crucial ingredients in our convergence analysis
of CP-PP, and which were discussed in Section 3.3.
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C.1 Proof of “quadratic growth”
▶ Lemma 15 (“Quadratic growth”, general case). Consider the Lyapunov function V as in (12) with the partitions
of unity (φI)I and (ψJ)J as in (13). Then for any (â, x̂, b̂, ŷ) ∈ ∆n ×Xn ×∆m × Ym,

F (µ̂, ν∗)− F (µ∗, ν̂) ≥ max
{[

σmin

2 ∧ 2ξ
(λτ)2

]
Vpos(â, x̂, b̂, ŷ),

[
σmin

4
3(λτ)2

λ3 ∧ ξ
]

(â0 + b̂0)
}

for some constant ξ > 0 only dependent on (f,X ,Y).

Proof. We have

F (µ̂, ν∗)− F (µ∗, ν̂) = ⟨µ̂, Fν∗ − ρ⟩C(X ) +
〈
ρ− (µ∗)⊤F, ν̂

〉
C(Y) .

Focus on the first term. By the non-degeneracy Assumptions 5 and 6, Fν∗ grows quadratically as 1
2σmin(HI) on

the neighborhood of x∗
I for each I, and is lower-bounded by a constant everywhere else. In symbols, there exists

a constant ξ > 0 such that

∀ x ∈ X , (Fν∗)(x)− ρ ≥
(σmin

4 min
I

∥∥x− x∗
I

∥∥2
)
∧ ξ. (15)

This directly implies a lower bound in terms of the position variables. Indeed,

∀ x ∈ supp(φI) = Bx∗
I

,λτ , (Fν∗)(x)− ρ ≥
[
σmin

4 ∧ ξ

(λτ)2

] ∥∥x− x∗
I

∥∥2
,

and (Fν∗)(x)− ρ ≥ 0 on all of X , so by decomposing µ̂ =
∑

I φI µ̂+ φ0µ̂,

⟨µ̂, Fν∗ − ρ⟩C(X ) ≥
[
σmin

4 ∧ ξ

(λτ)2

]
·
∑

I∈[n∗]

n∑
i=1

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2

︸ ︷︷ ︸
=2Vpos(â,x̂)

.

We can also get a lower bound in terms of the “stray weights” â0 and b̂0. Indeed,

∀ r ≤ λ, 1− e− r3
3 ≤ r3

3 ≤
λ

3 · r
2

so that for each I,

∀ x ∈ Bx∗
I

,λτ , φ0(x) = 1− exp
(
−
∥∥x− x∗

I

∥∥3

3τ3

)
≤ λ

3 ·
∥∥x− x∗

I

∥∥2

τ2

and so ∀ x ∈ X , φ0(x) ≤
(

λ

3τ2 min
I

∥∥x− x∗
I

∥∥2
)
∧ 1.

Hence, (15) implies

∀ x ∈ X , (Fν∗ − ρ)(x) ≥
(σmin

4 min
I

∥∥x− x∗
I

∥∥2
)
∧ ξ ≥

[
σmin

4
3τ2

λ
∧ ξ
]
·
[(

λ

3τ2 min
I

∥∥x− x∗
I

∥∥2
)
∧ 1
]

≥
[
σmin

4
3τ2

λ
∧ ξ
]
· φ0(x)

and so finally ⟨µ̂, Fν∗ − ρ⟩C(X ) ≥
[
σmin

4
3τ2

λ
∧ ξ
]
·
∫

X
φ0 dµ̂︸ ︷︷ ︸

=â0

. ◀

For the exact-parametrization case, we can actually reuse the result for the general case, using that our two
Lyapunov functions “coincide locally”. We summarize that fact in the following easily checked claim, which will
also be useful in Sections C.2 and D.4.
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▷ Claim 16. Consider the exact-parametrization case. Denote
d∗ = mini′ ̸=i′′

∥∥x∗
i′ − x∗

i′′

∥∥ ∧minj′ ̸=j′′
∥∥y∗

j′ − y∗
j′′

∥∥. Fix any d∗ ≤ d∗.
Ve the Lyapunov function designed for the exact-parametrization case (9).
Vg the Lyapunov function designed for the general case (12) with φI being the indicator function of Bx∗

I
,d∗/4

(well-defined since those balls do not intersect).
Vλ,τ the Lyapunov function designed for the general case (12) with the parametrized partitions of unity (φI)I

and (ψJ)J from (13).
There exists r > 0 such that if Ve(ẑ) ≤ r, then âi ≥ a∗

i

2 and
∥∥x̂i − x∗

i

∥∥ ≤ d∗/4 for all i ∈ [n]. That is, for all i,
x̂i ∈ Bx∗

i
,d∗/4. For such ẑ, we have Ve(ẑ) = Vg(ẑ). Moreover, Vg is the point-wise limit of Vλ,τ when λτ is held

constant equal to d∗/4 and τ →∞.
The result for the exact-parametrization case now follows immediately from the above lemma and claim:

▶ Lemma 17 (“Quadratic growth”, exact-parametrization case). Assume n = n∗,m = m∗, and consider the
Lyapunov function V defined in (9). There exist constants r, C > 0 only dependent on (f,X ,Y) such that, for
any ẑ = (â, x̂, b̂, ŷ) with V (ẑ) ≤ r, then

F (µ̂, ν∗)− F (µ∗, ν̂) ≥ CVpos(â, x̂, b̂, ŷ).

C.2 Proof of “error bound”
Our error-bound-type result is contained in the following lemma. It is stated for the general case, i.e., V1 refers to
the Lyapunov function defined in (12). But since we make no assumption on the partitions of unity (φI)I , (ψJ )J ,
the conclusion of the lemma (“if V1(ẑ) ≤ r then we have this error bound inequality”) is also true for the
exact-parametrization case with V1 referring to the Lyapunov function from (9), as one can deduce a posteriori
thanks to Claim 16.

▶ Lemma 18. Consider any ẑ = (â, x̂, b̂, ŷ) ∈ ∆n × Xn × ∆m × Ym. For any (AI)I∈[n∗], (BJ)J∈[m∗] (and
A0 = B0 = 0) and (XI)I∈[n∗], (YJ)J∈[m∗], let analogously to (14) the “proxy particles”

xi = x̂i +
∑

I

φ̂Ii(XI − x̂i) and ai =
∑

I

AI
φ̂Iiâi

âI

(16)

and similarly for b, y, and z = (a, x, b, y). There exist r, C > 0 only dependent on (f,X ,Y) such that if V1(ẑ) ≤ r,
then

max
A,X,B,Y

g̃ap(z; ẑ) ≥ C
√∑

I

dh(w∗
I , ŵI) +

∑
I

ŵI

∥∥∆p̂I

∥∥2 +O (V1(ẑ)) .

Informally, maxA,X,B,Y g̃ap(z; ẑ) can be interpreted as a lower bound (up to a constant) on

max
∥δz∥∗≤1

〈
∇a

∇x

−∇b

−∇y

Fn,m(ẑ),


δa

δx

δb

δy


〉

=
∥∥∇Fn,m(ẑ)

∥∥.
Note that in the latter expression, δx has n degrees of freedom, whereas in maxA,X,B,Y g̃ap(z; ẑ), X has only n∗

degrees of freedom (and similarly for A,B and Y ). Thus, maxA,X,B,Y g̃ap(z; ẑ) represents a “norm” of ∇Fn,m(ẑ)
(which justifies why we refer to Lemma 18 as an error bound), for a notion of norm that is adapted to the
geometry of the algorithm and of the problem at hand.

The remainder of this subsection is dedicated to proving the above lemma. To lighten notation, we continue
to leave the dependence of z = (a, x, b, y) on A,X,B and Y implicit.

Let us start by showing that locally (i.e. for z’s with small enough Lyapunov potential), we have a constant
lower bound on the aggregated weights aI , bJ . This fact will be used repeatedly throughout this appendix and
the next ones.

▶ Lemma 19. There exists r > 0 (only dependent on a∗, b∗) such that if Vwei(a, x, b, y) ≤ r, then(
min
I ̸=0

aI

)
∧
(

min
J ̸=0

bJ

)
≥ a∗

min ∧ b∗
min

2 .
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Proof. h : [0, 1]→ R, s 7→ s log s− s+ 1 is 1-strongly convex (just bound h′′), so for any I,

(a∗
I − aI)2 ≤ 2dh(a∗

I , aI) ≤ 2Vwei(a, x) ≤ 2r.

Similarly, for any J , (b∗
J − bJ )2 ≤ 2r. So by choosing r small enough, we can ensure that minI aI ≥ minI a∗

I

2 and
minJ bJ ≥ minJ b∗

J

2 , and the lemma follows by combining these two inequalities. ◀

C.2.1 Step 1: Reduce to a bilinear functional in the aggregated weights and positions
▷ Claim 20. For any ẑ and A,X,B, Y , g̃ap(z; ẑ) is approximately given by

g̃ap(loc∗)(z; ẑ) = −∆A⊤M∗∆b̂ + ∆â⊤
M∗∆B

+ ∆â⊤
∂yM

∗(∆Y ⊙ b∗) − (a∗ ⊙∆X)⊤∂xM
∗∆b̂

−∆A⊤∂yM
∗(∆ŷ ⊙ b∗) + (a∗ ⊙∆x̂)⊤∂xM

∗∆B

−
∑

I

a∗
I

〈
∆XI ,∆x̂I

〉
HI

−
∑

J

b∗
J

〈
∆YI ,∆ŷJ

〉
HJ

− (a∗ ⊙∆X)⊤∂2
xyM

∗(∆ŷ ⊙ b∗) + (a∗ ⊙∆x̂)⊤∂2
xyM

∗(∆Y ⊙ b∗)

and more precisely

g̃ap(z; ẑ) = g̃ap(loc∗)(z; ẑ) +O
(

(min
I
ŵI)−1V1(ẑ)

)
.

The proof consists of simple but tedious calculations, which we defer to Appendix G.1. Essentially we just
write out the expression of g̃ap(z; ẑ) and do Taylor expansions of f(x̂i, ŷj) around (x∗

I , y
∗
J).

We see that g̃ap(loc∗)(z; ẑ) has a bilinear structure; in matrix form, denoting [a∗Hx]II′ = 1I=I′a∗
IHI and

[a∗∂xM
∗]IJ = a∗

I∂xM
∗
IJ , etc.,

g̃ap(loc∗)(z; ẑ) = −


∆A
∆X
∆B
∆Y


⊤ 

0 0 M∗ ∂yM
∗b∗

0 a∗Hx a∗∂xM
∗ a∗∂2

xyM
∗b∗

−(M∗)⊤ −(a∗∂xM
∗)⊤ 0 0

−(∂yM
∗b∗)⊤ −(a∗∂2

xyM
∗b∗)⊤ 0 b∗Hy




∆â
∆x̂
∆b̂
∆ŷ

 .

Here the first component ∆A/∆â is a vector in Rn∗ , and the second component ∆X/∆x̂ is in Xn∗ . Note that on
the right, the first component ∆â does not sum to 0, but to −â0. For concision and for clarity of the argument
to follow, introduce some notation for the remainder of this section:

Let H denote the above block matrix.
Let

Z =



α

x

β

y

 ∈ [0, 1]n
∗
×Xn∗

× [0, 1]m
∗
× Ym∗

;
∑

I

αI ≤ 1,
∑

J

βJ ≤ 1

 ,

Z =


A

X

B

Y

 and Ẑ =


â

x̂

b̂

ŷ

 and Z∗ =


a∗

x∗

b∗

y∗

 ∈ Z.
For any Z̃ ∈ Z, denote ∆Z̃ = Z̃ − Z∗ and let∥∥∆Z̃

∥∥2 =
∥∥α̃− a∗∥∥2

1 + max
I

∥∥x̃I − x∗
I

∥∥2 +
∥∥β̃ − b∗∥∥2

1 + max
J

∥∥ỹJ − y∗
J

∥∥2
. (17)

Clearly ∥ · ∥ defines a norm on Z − Z∗.
So far we showed that, for all ẑ with V (ẑ) less than some r so that Lemma 19 applies,

max
W,P

g̃ap(z; ẑ) = max
A∈∆n∗ ,X∈X n∗

B∈∆m∗ ,Y ∈Ym∗

−


∆A
∆X
∆B
∆Y


⊤

H


∆â
∆x̂
∆b̂
∆ŷ

+O (V1(ẑ)) .
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To complete the proof of the lemma, it suffices to prove that there exist r, C > 0 only dependent on (f,X ,Y)
such that if V1(ẑ) ≤ r, then

max
A∈∆n∗ ,X∈X n∗

B∈∆m∗ ,Y ∈Ym∗

−∆Z⊤H∆Ẑ ≥ C
√∑

I

dh(w∗
I , ŵI) +

∑
I

ŵI

∥∥∆p̂I

∥∥2
.

We will do so by working with the aggregated variables ∆Z,∆Ẑ. So let us first clarify the relation between the
norm on Z − Z∗ and the desired divergence. Namely, we show that

∥∥∆Ẑ
∥∥2 is equivalent to V1(ẑ)− ŵ0.

▷ Claim 21. Suppose minI âI ,minJ b̂J ≥ c for some constant c > 0. Then

2c
∑

I

dh(w∗
I , ŵI) +

∑
I

ŵI

∥∥∆p̂I

∥∥2 ≤
∥∥∆Ẑ

∥∥2 ≤ 2(n∗ ∧m∗)
∑

I

dh(w∗
I , ŵI) + 1

c

∑
I

ŵI

∥∥∆p̂I

∥∥2
.

Proof. For the first inequality, for the weight part: h : x 7→ x log x − x + 1 is 1
c -smooth over [c, 1] (since

1 ≤ h′′(x) = 1
x ≤

1
c ), so ∀ s, s′ ∈ [c, 1], dh(s, s′) ≤ 1

2c |s− s
′|2. So

∑
I

dh(a∗
I , âI) ≤ 1

2c
∑

I

(a∗
I − âI)2 ≤ 1

2c

(∑
I

∣∣∣a∗
I − âI

∣∣∣)2

.

For the position part: just write
∑

I âI

∥∥∆x̂I

∥∥2 ≤ maxI

∥∥∆x̂I

∥∥2. For the second inequality, for the weight part: h
is 1-strongly concave over [c, 1], so ∀ s, s′ ∈ [c, 1], dh(s, s′) ≥ 1

2 |s− s
′|2. So

∑
I

dh(a∗
I , âI) ≥ 1

2
∑

I

(a∗
I − âI)2 ≥ 1

2n∗

(∑
I

∣∣∣a∗
I − âI

∣∣∣)2

.

For the position part: since c ≤ âI , just write maxI

∥∥∆x̂I

∥∥2 ≤
∑

I
âI

c

∥∥∆x̂I

∥∥2
. ◀

C.2.2 Step 2: “Steepness” of the reduced game
The following claim is the crucial point of our analysis. It extends [37, Lem. 14] to the case of continuous instead
of finite games, using the Wasserstein–Fisher–Rao instead of the Fisher–Rao geometry. In particular, the proof
crucially relies on the assumption that the MNE is unique.

▷ Claim 22. For all Ẑ ∈ Z \ {Z∗}, max
A∈∆n∗ ,X∈X n∗

B∈∆m∗ ,Y ∈Ym∗

−∆Z⊤H∆Ẑ > 0.

Proof. Let Ẑ =
(
α̂ x̂ β̂ ŷ

)
∈ Z \{Z∗}. Suppose by contradiction max

A∈∆n∗ ,X∈X n∗

B∈∆m∗ ,Y ∈Ym∗

−∆Z⊤H∆Ẑ ≤ 0. Since

the set
{

∆Z =
( ∆A

∆X
∆B
∆Y

)
;A ∈ ∆n∗ , X ∈ Xn∗

, B ∈ ∆m∗ , Y ∈ Ym∗
}

contains a (relative) neighborhood of zero since

a∗ is in the interior of ∆n∗ , clearly the inequality to contradict is equivalent to

∀ A ∈ ∆n∗ , X ∈ Xn∗
, B ∈ ∆m∗ , Y ∈ Ym∗

, ∆Z⊤H∆Ẑ = 0. (18)

Denote α̂0 = 1−
∑

I α̂I and β̂0 = 1−
∑

J β̂J . Pose for some λ ̸= 0 to be specified

A = a∗ + λ(∆α̂+ α̂0a
∗) and B = b∗ + λ(∆β̂ + β̂0b

∗).

It is straightforward to check that
∑

I AI = 1 and
∑

J BJ = 1. Moreover since a∗ lies in the interior of ∆n∗ , |λ|
can be chosen small enough so that AI ≥ 0, and so A ∈ ∆n∗ (and likewise B ∈ ∆m∗). Further pose

X = x∗ + λ∆x̂ and Y = y∗ + λ∆ŷ.
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Evaluating (18) at this (A,X,B, Y ) yields

0 = λ


∆α̂+ α̂0a

∗

∆x̂
∆β̂ + β̂0b

∗

∆ŷ


⊤ 

0 0 M∗ ∂yM
∗b∗

0 a∗Hx a∗∂xM
∗ a∗∂2

xyM
∗b∗

−(M∗)⊤ −(a∗∂xM
∗)⊤ 0 0

−(∂yM
∗b∗)⊤ −(a∗∂2

xyM
∗b∗)⊤ 0 b∗Hy




∆α̂
∆x̂
∆β̂
∆ŷ


= ∆Ẑ⊤H∆Ẑ + α̂0 · a∗M∗︸ ︷︷ ︸

=ρ1⊤

∆β̂ − β̂0 ·∆α̂M∗b∗︸ ︷︷ ︸
=ρ1

= a∗∆x̂⊤
Hx∆x̂+ b∗∆ŷ⊤

Hy∆ŷ + α̂0 · ρ(−β̂0)− β̂0 · ρ(−α̂0)

=
∑

I

a∗
I

∥∥∆x̂I

∥∥2
HI

+
∑

J

b∗
J

∥∥∆ŷJ

∥∥2
HJ
.

Since HI , HJ ≻ 0, this implies that ∆x̂ = 0 and ∆ŷ = 0. So the inequality to contradict reduces to

∀ A ∈ ∆n∗ , X ∈ Xn∗
, B ∈ ∆m∗ , Y ∈ Ym∗

,


∆A
∆X
∆B
∆Y


⊤ 

0 M∗

0 a∗∂xM
∗

−(M∗)⊤ 0
−(∂yM

∗b∗)⊤ 0


(

∆α̂
∆β̂

)
= 0. (19)

Since ∆Ẑ ̸= 0 and ∆x̂,∆ŷ = 0, then w.l.o.g. ∆α̂ ̸= 0. We want to show that there exists θ > 0 such that,
denoting

α̂θ = a∗ + θ (∆α̂+ α̂0a
∗) and µ̂θ =

∑
I

α̂θ
Iδx∗

I
= µ∗ + θ

∑
I

(∆α̂I + α̂0a
∗
I) δx∗

I
,

(µ̂θ, ν∗) is a MNE, which will contradict uniqueness of the MNE (µ∗, ν∗). Equivalently, we want to show that the
first variation (µ̂θ)⊤F is everywhere upper-bounded by ρ:

∀ y ∈ Y, ((µ̂θ)⊤F )(y) ≤ ρ.

First remark that:
1. By the non-degeneracy Assumption 6, there exists τ > 0 such that

∀ J, ∀ y,
∥∥y − y∗

J

∥∥ =:
∥∥δy∥∥ ≤ τ =⇒ ((µ∗)⊤F )(y) ≤ ρ− 1

4σmin
∥∥δy∥∥2

.

2. By (19) evaluated at A = a∗, X = x∗, Y = y∗ and B = eJ ,

∀ J, [∆α̂M∗]J −∆α̂M∗b∗ = 0
[∆α̂M∗]J = ∆α̂M∗b∗ = ρ(−α̂0).

3. By (19) evaluated at A = a∗, X = x∗, B = b∗, YJ′ = y∗
J′ for J ′ ̸= J and YJ arbitrary,

∀ J, [∆α̂∂yM
∗]J = 0. (20)

Now,
Fix J ∈ [m∗]. Let us show that there exists θ0 > 0 such that for all θ ≤ θ0, we have ∀ y ∈ By∗

J
,τ , ((µ̂θ)⊤F )(y) ≤

ρ. Indeed for all y ∈ By∗
J

,τ and letting δy = y − y∗
J ,

((µ̂θ)⊤F )(y) = ((µ∗)⊤F )(y) + θ
∑

I

(∆α̂I + α̂0a
∗
I) f(x∗

I , y)

≤ ρ− 1
4σmin

∥∥δy∥∥2 + θ
∑

I

(∆α̂I + α̂0a
∗
I)
[
M∗

IJ + ∂yM
∗
IJ · δy +O(

∥∥δy∥∥2)
]

by point 1. Now∑
I

(∆α̂I + α̂0a
∗
I)M∗

IJ = [∆α̂M∗]J + α̂0[a∗M∗]J

= ρ(−α̂0) + α̂0ρ = 0
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by point 2 and∑
I

(∆α̂I + α̂0a
∗
I) ∂yM

∗
IJ = 0

by point 3. So

((µ̂θ)⊤F )(y) ≤ ρ− 1
4σmin

∥∥δy∥∥2 + θ
[
0 + 0 · δy +O(

∥∥δy∥∥2)
]

≤ ρ−
(

1
4σmin +O(θ)

)∥∥δy∥∥2
.

So clearly we can choose such a θ0.
By the non-degeneracy Assumption 5 there exists ξτ > 0 such that for any y ∈ Y \

(
∪jBy∗

J
,τ

)
, ((µ∗)⊤F )(y) ≤

ρ− ξτ . So for all such y,

((µ̂θ)⊤F )(y) ≤ ρ− ξτ +O
(
θ(
∥∥∆α̂

∥∥+ α̂0)
)
.

So we can indeed choose 0 < θ ≤ θ0 that satisfies the requirement. ◀

C.2.3 Step 3: Leverage homogeneity
▷ Claim 23. There exist a constant C > 0 (dependent only on (f,X ,Y)) such that

∀ Ẑ ∈ Z, max
A∈∆n∗ ,X∈X n∗

B∈∆m∗ ,Y ∈Ym∗

−∆Z⊤H∆Ẑ ≥ C
∥∥∆Ẑ

∥∥.
Proof. Let for concision g(∆Ẑ) = max

A∈∆n∗ ,X∈X n∗

B∈∆m∗ ,Y ∈Ym∗

−∆Z⊤H∆Ẑ. Note that g is continuous and positive-

homogeneous. Since a∗ resp. b∗ lies in the interior of its domain, it is not hard to check that there exists r > 0
(only dependent on a∗, b∗) such that, for any Ẑ ∈ Z, then Z∗ + r ∆Ẑ

∥∆Ẑ∥
∈ Z. In other words, for any Ẑ ∈ Z, we

can write ∆Ẑ = ∥∆Ẑ∥
r ∆Z̃ for some Z̃ ∈ SZ∗,r :=

{
Z̃ ∈ Z;

∥∥∆Z̃
∥∥ = r

}
. Now by Claim 22, g(∆Z̃) > 0 for all

Z̃ ∈ SZ∗,r. Since SZ∗,r is a compact set and g is continuous, we have

∀ Z̃ ∈ Z s.t.
∥∥∆Z̃

∥∥ = r, g(∆Z̃) ≥ inf
SZ∗,r

g > 0

so by positive-homogeneity, ∀ Ẑ ∈ Z, g(∆Ẑ) ≥
(

inf
SZ∗,r

g

) ∥∥∆Ẑ
∥∥

r
=: C

∥∥∆Ẑ
∥∥. ◀

Lemma 18 follows by using Claim 21 to further lower-bound the result of Claim 23, and by substituting
into Claim 20.

C.3 Proof of “local star-convexity-concavity”
▶ Lemma 24. Consider the Lyapunov function V1 as in (12) with the partitions of unity (φI)I and (ψJ)J as
in (13).7 Consider any ẑ = (â, x̂, b̂, ŷ) ∈ ∆n×Xn×∆m×Ym, and let z(∗) = (a(∗), x(∗), b(∗), y(∗)) “proxy solution
particles” similarly as in (14):

x
(∗)
i := x̂i +

∑
I∈[n∗]

φ̂Ii(x∗
I − x̂i) and a

(∗)
i :=

∑
I∈[n∗]

a∗
I

φ̂Iiâi

âI

,

and similarly for a(∗), b(∗). Suppose
(
minI âI

)
∧
(
minJ b̂J

)
≥ c for some c > 0. Then, denoting µ̂ =

∑n
i=1 âiδx̂i

and ν̂ =
∑m

j=1 b̂jδŷj ,

g̃ap(z(∗); ẑ) = â⊤(∧M∗)b∗ − (a∗)⊤(∗M∧)̂b+ 1
2
∑

I

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2
HI

+ 1
2
∑

J

∑
j

ψ̂Jj b̂j

∥∥ŷj − y∗
J

∥∥2
HJ

+O
(
c−1V1(ẑ)3/2

)
+ R where |R| ≤ 2L3c

−1 · λτ · Vpos(ẑ)

≥ F (µ̂, ν∗)− F (µ∗, ν̂) + Vpos(ẑ)
(
σmin − 2L3c

−1 · λτ
)

+O
(
c−1V1(ẑ)3/2

)
.

7 For this lemma, the precise choice of the partitions of unity (φI)I and (ψJ )J does not matter, only the fact that supp(φI) ⊂
Bx∗

I
,λτ and supp(ψJ ) ⊂ By∗

J
,λτ .
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Recall from Lemma 19 that we can always ensure
(
minI âI

)
∧
(
minJ b̂J

)
≥ c for some constant c > 0 by

assuming V1(ẑ) ≤ r for some constant r > 0. In order to recover the informal statement of Section 3.3.3, note
that if in addition λτ ≤ c σmin

4L3
, then

g̃ap(z(∗); ẑ) ≥ F (µ̂, ν∗)− F (µ∗, ν̂) + σmin

2 Vpos(ẑ) +O
(
V1(ẑ)3/2

)
.

The proof proceeds by Taylor expansions to estimate g̃ap(z(∗); ẑ). This involves rather tedious calculations,
so we defer it to Appendix G.2. In a nutshell, we do Taylor expansions of f(x̂i, ŷj) around (x∗

I , ŷj) or (x̂i, y
∗
J ). In

order to make â⊤(∧M∗)b∗ and (a∗)⊤(∗M∧)̂b appear, at first we only expand the side with z(∗) − ẑ (e.g., when
estimating the terms

〈
∇aFn,m(ẑ), â− a(∗)〉 and

〈
∇xFn,m(ẑ), x̂− x(∗)〉, start by expanding only with respect to

x and keeping ŷ, b̂ as is). Once the expansion of g̃ap(z(∗), ẑ) (the equality) is proved, the lower bound follow
straightforwardly.

D Proof of the relation between Lyapunov function and NI error

In this section, we show that the Lyapunov function can be used as a proxy for the NI error. We present the
proof for the general case (Proposition 7), and describe in Appendix D.4 the necessary adaptations to prove the
proposition for the exact-parametrization case (Proposition 3).

As announced in the main text, here is a more quantitative version of Proposition 7.

▶ Proposition 25. Define V1 as in (12) with the partitions of unity (φI)I and (ψJ)J as in (13). Suppose that
λτ ≤ σmin

2L3
. There exist constants C1, C2 dependent on (f,X ,Y) and K dependent on λ, τ such that, for any

ẑ = (â, x̂, b̂, ŷ) ∈ ∆n ×Xn ×∆m × Ym, denoting µ̂ =
∑

i âiδx̂i and ν̂ =
∑

j b̂jδŷj ,

C1K
[(

min
I
âI ∧min

J
b̂J

)
V1(ẑ)

]5/4
≤ NI(µ̂, ν̂) ≤ C2

√
V1(ẑ).

Moreover, there exists r > 0 dependent only on (f,X ,Y) such that, if NI(µ̂, ν̂) ≤ rK, then minI ŵI ≥ c = w∗
min
4 ,

and so

C1c
5/4 K V1(ẑ)5/4 ≤ NI(µ̂, ν̂).

The expression of K can be found in (21). In particular, if λ, τ are chosen as in the proof of convergence for
the general case (23), then K ≍

√
σ.

The rest of this section is dedicated to proving the above proposition, with the exception of the last subsection
where we deal with the exact-parametrization case.

D.1 Proof of the first inequality: NI ≲
√

V1

By bilinearity of F (µ, ν), for any µ̂ =
∑n

i=1 âiδx̂i
, ν̂ =

∑m
j=1 b̂jδŷj

,

NI(µ̂, ν̂) = max
µ,ν

F (µ̂, ν)− F (µ, ν̂) = max
µ,ν

∫
Y

∑
i

âif(x̂i, ·)dν −
∫

X

∑
j

b̂jf(·, ŷj)dµ

= max
x,y

∑
i

âif(x̂i, y)−
∑

j

b̂jf(x, ŷj).

Now, denoting φ̂Ii = φI(x̂i), for any y ∈ Y∑
i

âif(x̂i, y) =
∑

I

∑
i

φ̂Iiâif(x̂i, y) +
∑

i

φ̂0iâif(x̂i, y)

=
∑

I

∑
i

φ̂Iiâi

(
f(x∗

I , y) +O(
∥∥x̂i − x∗

I

∥∥)
)

+O(â0)

=
∑

I

âIf(x∗
I , y) +O

(∑
I

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥)+O(â0)

≤ ρ+O
(∥∥∆â

∥∥
1

)
+O

(√
Vpos(â, x̂)

)
+O(â0) = ρ+O

(√
V1(â, x̂)

)
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where we used Jensen’s inequality on s 7→ s2 and (36) to bound
∑

I,i φ̂Iiâi

∥∥x̂i − x∗
I

∥∥. Similarly, for any x ∈ X ,∑
j b̂jf(x, ŷj) ≥ ρ+O

(√
V1(̂b, ŷ)

)
. Hence

NI(µ̂, ν̂) = max
x,y

∑
i

âif(x̂i, y)−
∑

j

b̂jf(x, ŷj) ≲
√
V1(ẑ).

This shows the first inequality in Proposition 25.

D.2 Proof of the second inequality: NI ≳ [(minI āI ∧minJ b̄J)V1]5/4

Lower bound on “gap” to solution (µ∗, ν∗)

Lemma 15 directly implies a lower bound on NI(µ̂, ν̂) = maxµ,ν F (µ̂, ν) − F (µ, ν̂) ≥ F (µ̂, ν∗) − F (µ∗, ν̂). For
concision, within this section, denote K the constant appearing in that lower bound:

NI(µ̂, ν̂) ≥ K
(
ŵ0 + Vpos(ẑ)

)
where K = 1

2

(
σmin

2 ∧ 2ξ
(λτ)2 ∧

σmin

4
3(λτ)2

λ3 ∧ ξ
)

(21)

and where ξ > 0 is a constant only dependent on (f,X ,Y). It remains to lower-bound NI(µ̂, ν̂) by
∥∥∆ŵ

∥∥
1 with

some exponent.

Lower bound on maximum “gap” to perturbations of the solution

In the remainder of this section, we adopt again the notations of Appendix C.2 (17) for the set Z and the norm
on Z − Z∗.

▷ Claim 26. Suppose λτ ≤ σmin
4L3

. For any A ∈ ∆n∗ , X ∈ Xn∗
, B ∈ ∆m∗ , Y ∈ Ym∗ ,

Fn,m∗(â, x̂, B, Y )− Fn∗,m(A,X, b̂, ŷ)

≥ −


∆A
∆X
∆B
∆Y


⊤ 

0 0 M∗ ∂yM
∗b∗

0 a∗ σmin
2 id a∗∂xM

∗ a∗∂2
xyM

∗b∗

−(M∗)⊤ −(a∗∂xM
∗)⊤ 0 0

−(∂yM
∗b∗)⊤ −(a∗∂2

xyM
∗b∗)⊤ 0 b∗ σmin

2 id




∆â
∆x̂
∆b̂
∆ŷ


+ O

(∥∥∆Ẑ
∥∥3 +

(
ŵ0 + Vpos(ẑ)

)2
+ ∥δz∥2

)
where we denote

[
a∗ σmin

2 id
]

II′ = 1I=I′a∗
I

σmin
2 idX for each I, I ′.

The proof of this claim follows from simple but tedious calculations, which we defer to Appendix G.3.
Essentially, we do Taylor expansions of f around (x∗

I , y
∗
J), rearrange the terms so as to get an expression of

order 2 in ∆Ẑ and of order 1 in ∆Z, and check that the remaining terms are non-negative or negligible.
Denote H the block matrix in the above claim. We reuse the result of Claim 23 (actually it was proved for a

slightly different H, with σmin
2 id replaced by Hx resp. Hy, but the proof can be very easily adapted): There exist

a constant C > 0 (dependent only on (f,X ,Y)) such that

∀ Ẑ ∈ Z, max
A∈∆n∗ ,X∈X n∗

B∈∆m∗ ,Y ∈Ym∗

−∆Z⊤H∆Ẑ ≥ C
∥∥∆Ẑ

∥∥.
We further refine that result slightly by also exploiting the positive-homogeneity with respect to ∆Z instead of
just ∆Ẑ.

▷ Claim 27. There exist constants q1, C > 0 dependent only on (f,X ,Y) such that for any q ≤ q1,

∀ Ẑ ∈ Z, max
∥∆Z∥≤q

−∆Z⊤H∆Ẑ ≥ Cq
∥∥∆Ẑ

∥∥.
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Proof. Let Z̃ = ∆n∗ ×Xn∗ ×∆m∗ × Ym∗ and ∆Z̃ = Z̃ − Z∗, and

D =




∆A
∆X
∆B
∆Y

 ∈ Rn∗
×Xn∗

× Rm∗
× Ym∗

;
∑

I

∆AI =
∑

J

∆BJ = 0 and ∥δz∥ ≤ 1

 .

Since a∗, x∗, b∗, y∗ lie in the (relative) interior of their domains, then there exist q1, q2 > 0 such that q1D ⊂
∆Z̃ ⊂ q2D. So, using Claim 23 for the second inequality,

max
v∈q2D

−v⊤H∆Ẑ ≥ max
v∈∆Z̃

−v⊤H∆Ẑ = max
Z∈Z̃
−∆Z⊤H∆Ẑ ≥ C

∥∥∆Ẑ
∥∥

max
v∈D
−v⊤H∆Ẑ = 1

q2
max

v∈q2D
−v⊤H∆Ẑ ≥ 1

q2
C
∥∥∆Ẑ

∥∥
and so, for any q ≤ q1, since qD ⊂ q1D ⊂ ∆Z̃,

max
Z∈Z̃ s.t. ∥∆Z∥≤q

−∆Z⊤H∆Ẑ = max
v∈qD∩∆Z̃

−v⊤H∆Ẑ = max
v∈qD

−v⊤H∆Ẑ

= qmax
v∈D
−v⊤H∆Ẑ ≥ q

q2
C
∥∥∆Ẑ

∥∥. ◀

With this we can prove the following lower bound on NI(µ̂, ν̂):
▷ Claim 28. There exists a constant C dependent only on (f,X ,Y) such that, for any β ≥ 1,

max
A,X,B,Y

Fn,m∗(â, x̂, B, Y )− Fn∗,m(A,X, b̂, ŷ) ≥ C
∥∥∆Ẑ

∥∥1+β +O

(∥∥∆Ẑ
∥∥2β +

∥∥∆Ẑ
∥∥3 +

(
ŵ0 + Vpos(ẑ)

)2
)
.

In particular for β = 3/2, we have that

NI(µ̂, ν̂) ≥ C
∥∥∆Ẑ

∥∥5/2 +O

(∥∥∆Ẑ
∥∥3 +

(
ŵ0 + Vpos(ẑ)

)2
)
,

and there exists r > 0 such that

∀ (â, x̂, b̂, ŷ) s.t.
∥∥∆Ẑ

∥∥ ≤ r, NI(µ̂, ν̂) ≥ C

2
∥∥∆Ẑ

∥∥5/2 +O

((
ŵ0 + Vpos(ẑ)

)2
)
.

Proof. Note that for any (â, x̂, b̂, ŷ),
∥∥∆Ẑ

∥∥ ≤ 4 + 2R =: R′. To prove the claim, for any fixed (â, x̂, b̂, ŷ),
simply apply Claim 27 with q = q1

∥∆Ẑ∥β

(R′)β and substitute into Claim 26. The second part of the claim follows
straightforwardly. For the third part, let C1 denote the constant hidden in the O( · ) and pick r such that

C
∥∥∆Ẑ

∥∥5/2 − C1
∥∥∆Ẑ

∥∥3 =
∥∥∆Ẑ

∥∥5/2
(
C − C1

∥∥∆Ẑ
∥∥1/2

)
≥
∥∥∆Ẑ

∥∥5/2C

2

for any
∥∥∆Ẑ

∥∥ ≤ r. ◀

This gives the desired bound on a neighborhood of (µ∗, ν∗). Outside of that neighborhood, we can simply use
that NI is non-zero and continuous and has a compact domain.
▷ Claim 29. For any r > 0, there exists C ′ > 0 such that ∀ (â, x̂, b̂, ŷ) s.t.

∥∥∆Ẑ
∥∥ > r, NI(µ̂, ν̂) ≥ C ′.

Proof. It suffices to show that infSn,m,Z∗,r
NI(µ̂, ν̂) > 0 where Sn,m,Z∗,r =

{
(â, x̂, b̂, ŷ);

∥∥∆Ẑ
∥∥ ≥ r}.

The set Sn,m,Z∗,r is closed as a preimage by the continuous function (â, x̂, b̂, ŷ) 7→
∥∥∆Ẑ

∥∥, and compact as a
closed subset of the compact ∆n ×Xn ×∆m × Ym. Furthermore, the mapping

(â, x̂, b̂, ŷ) 7→ NI(µ̂, ν̂) = max
y

∑
i

âif(x̂i, y)−min
x

∑
j

b̂jf(x, ŷj)

is continuous, since each term is continuous as the maximum (or minimum) of uniformly continuous functions.
It just remains to check that NI is non-zero on Sn,m,Z∗,r, which follows from uniqueness of the MNE since
NI(µ̂, ν̂) = 0 =⇒ (µ̂, ν̂) = (µ∗, ν∗) =⇒ Ẑ = Z∗. ◀
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Putting together the two above claims, and using that
∥∥∆Ẑ

∥∥ is anyway bounded by 4 + 2R = O(1), we have
shown that there exists a constant C > 0 dependent only on (f,X ,Y) such that

NI(µ̂, ν̂) ≥ C
∥∥∆Ẑ

∥∥5/2 +O

((
ŵ0 + Vpos(ẑ)

)2
)

(22)

for any (â, x̂, b̂, ŷ).

Conclusion

In the first paragraph we have shown (K is given by Eq. (21))

NI(µ̂, ν̂) ≥ F (µ̂, ν∗)− F (µ∗, ν̂) ≥ K
(
ŵ0 + Vpos(ẑ)

)
.

In the second paragraph we have shown (Eq. (22))

NI(µ̂, ν̂) ≥ max
A,X,B,Y

F (â, x̂, B, Y )− F (A,X, b̂, ŷ) ≥ C
∥∥∆Ẑ

∥∥5/2 − C1

(
ŵ0 + Vpos(ẑ)

)2

for some C,C1 > 0 only dependent on (f,X ,Y); further, using that
∥∥∆Ẑ

∥∥2 ≥ 2(minI ŵI)
∑

I dh(w∗
I , ŵI) +∑

I ŵI

∥∥∆p̂I

∥∥2 (Claim 21), we have

NI(µ̂, ν̂) ≥ C
(

2(min
I
ŵI)

∑
I

dh(w∗
I , ŵI) +

∑
I

ŵI

∥∥∆p̂
∥∥2
)5/4

− C1

((
ŵ0 + Vpos(ẑ)

)2
)

≥ C

(
2(min

I
ŵI)

∑
I

dh(w∗
I , ŵI) +

∑
I

ŵI

∥∥∆p̂
∥∥2
)5/4

− C1(2 +R)︸ ︷︷ ︸
=:C2

(
ŵ0 + Vpos(ẑ)

)
.

Taking a convex combination of these two inequalities with ratio C2
C2+ K

2
, and since K = O(1) by definition,

we get

NI(µ̂, ν̂) ≥ C3K
(

(min
I
ŵI) · V1(â, x̂, b̂, ŷ)

)5/4

for some C3 > 0 only dependent on (f,X ,Y). This concludes the proof of the second inequality of the proposition.

D.3 Proof of the second part of the proposition
We showed in Eq. (22) that there exist constants C,C1 > 0 such that

NI(µ̂, ν̂) ≥ C
∥∥∆Ẑ

∥∥5/2 − C1

(
ŵ0 + Vpos(ẑ)

)2
i.e.,

∥∥∆Ẑ
∥∥5/2 ≤ 1

C
NI(µ̂, ν̂) + C1

C

(
ŵ0 + Vpos(ẑ)

)2
.

Now by Eq. (21), we have

NI(µ̂, ν̂) ≥ K
(
ŵ0 + Vpos(ẑ)

)
i.e., ŵ0 + Vpos(ẑ) ≤

1
K

NI(µ̂, ν̂).

Let r ≤ r1 ∧ r2 where r1, r2 are defined by K
C r1 = C1

C r2
2 = 1

2

(
w∗

min
10

)5/2
. Then, for any (â, x̂, b̂, ŷ) such that

NI(µ̂, ν̂) ≤ rK,

1
C

NI(µ̂, ν̂) ≤ 1
C
r1K = 1

2

(
w∗

min
10

)5/2
and C1

C

(
ŵ0 + Vpos(ẑ)

)2
≤ C1

C
r2

2 = 1
2

(
w∗

min
10

)5/2
,

and so
∥∥∆Ẑ

∥∥5/2 ≤
(

w∗
min
10

)5/2
, and in particular minI âI ,minJ b̂J ≥ w∗

min
4 . Note that by definition, K = O(1),

and so r can be chosen independent of λ, τ and only dependent on (f,X ,Y).
This concludes the proof of Proposition 25, and so of Proposition 7.
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D.4 Proof for the exact-parametrization case (Proposition 3)

The first part of Proposition 3 (the upper bound on NI) follows from exactly the same computations as in the
general case.

The second part of the proposition follows from the same considerations as for the general case; only Eq. (21)
and Claim 26 need to be adapted. For the former, simply use Lemma 17 instead of Lemma 15. For the latter,
the same bound as in the general case holds; indeed this can be deduced from the general case using Claim 16,
by holding λτ constant and letting τ →∞.

E Proof of convergence in the general case

In this section we prove Theorem 9.

Choice of the partitions of unity’s parameters

Our specific choice for the parameters λ, τ appearing in the definition of (φI)I , Eq. (13), will not come into play
until later in the proof, but to fix ideas we give their expressions right away. We choose

λ3 = 1√
σ

and λτ = min
{√

1
2
σ

η
,
c σmin

4L3
,

minI,I′
∥∥x∗

I − x∗
I′

∥∥ ∧minJ,J ′
∥∥y∗

J − y∗
J′

∥∥
4

}
≍ 1. (23)

Intuitively, in terms of the illustration Figure 1a, the cut-off abscissa λτ should be thought of as Θ(1), and
the blue curve as being “spiky” with a scale of τ = Θ(σ1/6), when η, σ are small.

Note that ε = e−λ3/3 = e−1/(3
√

σ) (the value of φI at the cut-off) is exponentially small for σ ≍ η small, so
that ε · poly(η, σ, λ, τ) is arbitrary small for η, σ small enough, where poly(. . . ) is any polynomial expression of
the arguments. Essentially, any term where ε appears can be neglected (will be compensated by other terms),
for η and σ small enough.

E.1 Making the Lyapunov function appear in the characterizing inequality

We start from the characterizing inequality (8); for reference it reads

∀ z, η g̃ap(z; zk+1) ≤
∑

i

(ai − ak+1
i ) log a

k+1
i

ak
i

+
∑

j

(bj − bk+1
j ) log

bk+1
j

bk
j

+ η

σ

∑
i

ak
i

〈
xk+1

i − xk
i , xi − xk+1

i

〉
+ η

σ

∑
j

bk
j

〈
yk+1

j − yk
j , yj − yk+1

j

〉
where

g̃ap(z; ẑ) =
〈

∇a

∇x

−∇b

−∇y

Fn,m(ẑ),


â− a
x̂− x
b̂− b
ŷ − y


〉
.

As announced in Section 3.2, (14), our first step is to evaluate it at “proxy solution particles” (a(∗), x(∗), b(∗), y(∗)) ∈
∆n ×Xn ×∆m × Ym given by

x
(∗)
i = xk+1

i +
∑

I∈[n∗]

φk+1
Ii (x∗

I − xk+1
i ) and a

(∗)
i =

∑
I∈[n∗]

a∗
I

φk+1
Ii ak+1

i

ak+1
I

and similarly for b(∗), y(∗).
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Position terms

The term η
σ

∑
i a

k
i

〈
xk+1

i − xk
i , x

(∗)
i − xk+1

i

〉
on the right-hand side of (8) becomes, by Pythagorean identity and

Eq. (36),∑
I

∑
i

ak
i φ

k+1
Ii

〈
xk+1

i − xk
i , x

∗
I − xk+1

i

〉
= 1

2
∑
I,i

ak
i φ

k+1
Ii

(∥∥x∗
I − xk

i

∥∥2 −
∥∥x∗

I − xk+1
i

∥∥2 −
∥∥xk+1

i − xk
i

∥∥2
)

=

1
2
∑
I,i

ak
i φ

k+1
Ii

∥∥x∗
I − xk

i

∥∥2

−
1

2
∑
I,i

ak
i φ

k+1
Ii

∥∥x∗
I − xk+1

i

∥∥2

−
1

2
∑
I,i

ak
i φ

k+1
Ii

∥∥xk+1
i − xk

i

∥∥2


=

Vpos(ak, xk) + 1
2
∑
I,i

ak
i

(
φk+1

Ii − φk
Ii

) ∥∥x∗
I − xk

i

∥∥2


−

Vpos(ak+1, xk+1) + 1
2
∑
I,i

(
ak

i − ak+1
i

)
φk+1

Ii

∥∥x∗
I − xk+1

i

∥∥2

− [1
2
∑

i

ak
i

(
1− φk+1

0i

) ∥∥xk+1
i − xk

i

∥∥2
]
.

Weight terms

For all I ∈ [0, n∗], let uk+1,I
i = φk+1

Ii
ak+1

i

ak+1
I

, so that uk+1,I ∈ ∆n for each I. Then since a(∗)
i =

∑
I a

∗
Iu

k+1,I
i ,

∑
i

a
(∗)
i log a

k+1
i

ak
i

=
∑

I

∑
i

a∗
Iu

k+1,I
i log a

k+1
i

ak
i

=
∑

I

a∗
I

∑
i

uk+1,I
i log a

k+1
I

ak
I

·
ak+1

i /ak+1
I

ak
i /a

k
I

=
∑

I

a∗
I

(∑
i

uk+1,I
i

)
log a

k+1
I

ak
I

+
∑

I

a∗
I

∑
i

uk+1,I
i log a

k+1
i /ak+1

I

ak
i /a

k
I

= D(a∗, ak)−D(a∗, ak+1) +
∑

I

a∗
I

∑
i

uk+1,I
i log a

k+1
i /ak+1

I

ak
i /a

k
I

and, since ak+1
i =

∑
I∈[0,n∗] a

k+1
I uk+1,I

i , by the same calculation with a∗
I replaced by ak+1

I

∑
i

ak+1
i log a

k+1
i

ak
i

=
∑

I∈[0,n∗]

∑
i

ak+1
I uk+1,I

i log a
k+1
i

ak
i

= D(ak+1, ak) +
∑

I∈[0,n∗]

ak+1
I

∑
i

uk+1,I
i log a

k+1
i /ak+1

I

ak
i /a

k
I

,

and the term for I = 0 in this last sum is equal to

∑
i

φk+1
0i ak+1

i

[
log a

k+1
i

ak
i

− log a
k+1
0
ak

0

]
=
∑

i

φk+1
0i

[
dh(ak+1

i , ak
i ) + ak+1

i − ak
i

]
−
[
dh(ak+1

0 , ak
0) + ak+1

0 − ak
0
]

=
∑

i

φk+1
0i dh(ak+1

i , ak
i )− dh(ak+1

0 , ak
0)−

∑
i

(
φk+1

0i − φk
0i

)
ak

i .

So the weight term on the right-hand side of (8) becomes

∑
i

(a(∗)
i − ak+1

i ) log a
k+1
i

ak
i

= Vwei(ak, xk)− Vwei(ak+1, xk+1)−
∑

I

dh(ak+1
I , ak

I )

+
∑

I

(a∗
I − ak+1

I )
∑

i

uk+1,I
i log a

k+1
i /ak+1

I

ak
i /a

k
I

−
∑

i

φk+1
0i dh(ak+1

i , ak
i ) +

∑
i

(φk+1
0i − φk

0i)ak
i . (24)
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All in all, evaluating the characterizing inequality (8) at (a(∗), x(∗), b(∗), y(∗)) = z(∗) yields

η g̃ap(z(∗); zk+1) ≤ V (zk)− V (zk+1) (25)

−
∑

I

dh(wk+1
I , wk

I )− η

2σ
∑

i

wk
i (1− φk+1

0i )
∥∥pk+1

i − pk
i

∥∥2

+
∑

I

(w∗
I − wk+1

I )
∑

i

φk+1
Ii wk+1

i

wk+1
I

log w
k+1
i /wk+1

I

wk
i /w

k
I

(err1)

−
∑

i

φk+1
0i dh(wk+1

i , wk
i )

+
∑

i

(φk+1
0i − φk

0i)wk
i + η

2σ
∑

I

∑
i

wk
i

(
φk+1

Ii − φk
Ii

) ∥∥p∗
I − pk

i

∥∥2 (err2)

+ η

2σ
∑

I

∑
i

(wk+1
i − wk

i )φk+1
Ii

∥∥p∗
I − pk+1

i

∥∥2 (err3)

where we let for concision wk =
(

ak

bk

)
∈ ∆n × ∆m and pk =

(
xk

yk

)
∈ Xn × Ym, and similarly for wk, w∗ ∈

∆[0,n∗] ×∆[0,m∗] and pk, p∗ ∈ Xn∗ × Ym∗ .
The left-hand side looks like “gap from MNE to iterates” so morally non-negative, which we will show and

quantify. The second line consists of minus “divergence from (k + 1) to k” terms which we will lower-bound. The
last four lines consist of error terms which we will control.

E.2 Preliminary lemmas
As this phrase is used many times in the proof, let us emphasize again that by “for η, σ small enough” we always
mean that a property holds for all η ≤ η0, σ ≤ σ0 for some η0, σ0 only dependent on (f,X ,Y) and Γ0 (the same
constants that may be hidden in O( · )’s).

Next, we state some useful elementary facts about the algorithm. The following equations are clear from
the update rule (6). Alternatively, they can be seen as a consequence of (8) (holding with equality) applied to
(ak+1 + δa, xk+1, bk+1, yk+1) for all δa ∈ {1n}⊤, resp. (ak+1, xk+1 + δx(i0), bk+1, yk+1) where δx(i0)

i = 1i=i0 .

ak+1
i = ak

i e
−η[(Mk+1bk+1)i−ρ]/Z where Z =

∑
i′

ak
i′ e−η[(Mk+1bk+1)i′ −ρ]

and xk+1
i = xk

i − σ
ak+1

i

ak
i

∂xM
k+1
i• bk+1.

(26)

We formalize the trivial fact that iterates move by no more than the step-size at each time-step.

▶ Lemma 30. For all k,

∀ i,
∣∣ak+1

i − ak
i

∣∣ ≤ min{ak
i , a

k+1
i }(e2ηL0 − 1)∥∥ak+1 − ak

∥∥
1 ≤ e

2ηL0 − 1 = O(η)

and in particular ak+1
i = ak

i (1 +O(η)), and similarly for b, and

∀ i,
∥∥xk+1

i − xk
i

∥∥ ≤ σe2ηL0L1 = O(σ)

and similarly for y.

Proof. From (26), we have

∀ i, ak+1
i = ak

i

e−η(Mk+1bk+1)i∑
i′ ak

i′e−η(Mk+1bk+1)i′

and so e−2ηL0 = e−ηL0∑
i′ ak

i′eηL0
≤ ak+1

i

ak
i

≤ eηL0∑
i′ ak

i′e−ηL0
= e2ηL0

from which the first result follows. Furthermore, also from (26),
∥∥xk+1

i − xk
i

∥∥ = σ
ak+1

i

ak
i

∥∥∂xM
k+1
i• bk+1

∥∥ ≤
σ e2ηL0L1. ◀
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Recall from Lemma 19 that locally (i.e. if V (zk) is small enough), we have a constant lower bound on
the iterates’ aggregated weights ak

I , b
k

I . That is, there exists r > 0 (dependent only on a∗, b∗) such that
V (z) ≤ r =⇒ (minI ̸=0 aI) ∧

(
minJ ̸=0 bJ

)
≥ a∗

min∧b∗
min

2 . Thanks to the considerations above, we can show that
locally, the aggregated weights are lower-bounded by a constant for iterates both at k and at k + 1.

▶ Lemma 31. There exists r > 0 (only dependent on a∗, b∗) such that if V (zk) ≤ r, then for small enough η, σ,(
min
I ̸=0

ak
I

)
∧
(

min
I ̸=0

ak+1
I

)
∧
(

min
J ̸=0

b
k

J

)
∧
(

min
J ̸=0

b
k+1
J

)
≥ a∗

min ∧ b∗
min

4 =: c.

The proof is conceptually simple but annoyingly technical due to the fact that, to compare ak
I =

∑
i φI(xk

i )ak
i

and ak+1
I =

∑
i φI(xk+1

i )ak+1
i , we also need to control the variation between φI(xk

i ) and φI(xk+1
i ). Namely we

have the following bound, which will also be useful elsewhere in this appendix.

▶ Lemma 32. For any I ∈ [n∗],∣∣∣∣∣∑
i

(φk+1
Ii − φk

Ii)ak
i

∣∣∣∣∣ ≲ ε
(
ak

0 + ak+1
0
)

+
√
σmin

{
1, V (zk+1)

}
≲ εak

0 +
√
σV (zk+1).

The proof of Lemma 32 is quite technical and is deferred to Appendix E.7. In particular it relies on our
specific choice of partitions of unity (13) and of λ, τ (23).

Proof of Lemma 31. Let r the constant from Lemma 19, so that ηV (z) ≤ r =⇒ minI aI ,minJ bJ ≥ a∗
min∧b∗

min
2 =

2c. This immediately ensures that minI a
k
I ,minI b

k

I ≥ 2c. For any I ∈ [n∗],

ak+1
I − ak

I =
∑

i

φk+1
Ii ak+1

i − φk
Iia

k
i =

∑
i

φk+1
Ii (ak+1

i − ak
i ) +

∑
i

(φk+1
Ii − φk

Ii)ak
i

≥ −O(η)ak+1
I +

∑
i

(φk+1
Ii − φk

Ii)ak
i

ak+1
I ≥ (1−O(η))

[
ak

I +
∑

i

(φk+1
Ii − φk

Ii)ak
i

]
.

Now ak
I ≥ c, and by Lemma 32,

∣∣∑
i(φ

k+1
Ii − φk

Ii)ak
i

∣∣ ≲ ε+
√
σ. So for η, σ small enough, we indeed have ak+1

I ≥ c,
and similarly bk+1

J ≥ c for all J ∈ [m∗]. ◀

In the remainder of this section except Appendix E.6, we assume that the conditions of this lemma are
satisfied. As a first useful consequence, we have that both V (ak, xk) and V (ak+1, xk+1) are uniformly bounded.
Indeed, V (zk) ≤ r and Vpos(a, x) =

∑
I,i φIiai

∥∥xi − x∗
I

∥∥2 ≤ R2 = O(1) for any (a, x) anyway, and

Vwei(ak+1, xk+1) = ak+1
0 +

∑
I

dh(a∗
I , a

k+1
I ) ≤ 1 +

∑
I

1
c

(a∗
I − ak+1

I )2 ≤ 1 + n∗

c
= O(1) (27)

by 1
c -smoothness of h over [c, 1]. A second useful consequence is that, by Claim 21, for (a, x) = (ak, xk) or

(ak+1, xk+1),

a0 +
∥∥a− a∗∥∥2

1 ≍ Vwei(a, x) and max
I

∥∥xI − x∗
I

∥∥2
≲ Vpos(a, x).

E.3 Lower-bounding g̃ap(z(∗); zk+1)
Let us give a quantitative lower bound on the term on the left-hand side of (25): g̃ap(z(∗); zk+1). It is here that
we make use of the “quadratic growth” and “star-convexity-concavity” properties discussed in Sections 3.3.1
and 3.3.3.

▶ Lemma 33. There exists a constant ξ > 0 only dependent on (f,X ,Y) such that

g̃ap(z(∗); zk+1) ≥
[
σmin

4
3(λτ)3

λ3 ∧ ξ
](
ak+1

0 + b
k+1
0

)
+ σmin

2 Vpos(zk+1) +O
(
V (zk+1)3/2

)
.
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Proof. As a direct consequence of Lemma 24, since
(
minI a

k+1
I

)
∧
(
minJ b

k+1
J

)
≥ c, then denoting µk+1 =∑n

i=1 a
k+1
i δxk+1

i
and νk+1 =

∑m
j=1 b

k+1
j δyk+1

j
,

g̃ap(z(∗); zk+1) ≥ F (µk+1, ν∗)− F (µ∗, νk+1) + Vpos(zk+1)
(
σmin − 2L3c

−1 · λτ
)︸ ︷︷ ︸+O

(
V (zk+1)3/2

)
.

Note that by our choice of λτ ≤ cσmin
4L3

, we have σmin − 2L3c
−1 · λτ ≥ σmin

2 . Furthermore, as a direct consequence
of Lemma 15, we have

F (µk+1, ν∗)− F (µ∗, νk+1) ≥
[
σmin

4
3(λτ)2

λ3 ∧ ξ
](
ak+1

0 + b
k+1
0

)
for some constant ξ > 0 only dependent on (f,X ,Y). The lemma follows by combining the two inequalities. ◀

E.4 Controlling the error terms
The proofs for the lemmas in this subsection are all technical, relying on our specific choice of partitions of unity
(φI)I as well as of parameters λ, τ . We defer the proofs to Appendix E.7.

▶ Lemma 34 (Bound for (err1)). For η, σ small enough,

∀ I,
∑

i

φk+1
Ii wk+1

i

wk+1
I

log w
k+1
i /wk+1

I

wk
i /w

k
I

= O
(
εwk

0 +√ηV (zk+1)
)
.

In particular,
∑

I

(w∗
I − wk+1

I )
∑

i

φk+1
Ii wk+1

i

wk+1
I

log w
k+1
i /wk+1

I

wk
i /w

k
I

≲
√
V (zk+1) ·

[
εwk

0 +√ηV (zk+1)
]
.

▶ Lemma 35 (Bound for (err2)). For η, σ small enough,∑
i

(φk+1
0i − φk

0i)wk
i + η

2σ
∑
I,i

wk
i

(
φk+1

Ii − φk
Ii

) ∥∥p∗
I − pk

i

∥∥2
≲ εwk+1

0 + η3/2Vpos(zk+1) +√ηV (zk+1)3/2.

▶ Lemma 36 (Bound for (err3)). For η, σ small enough,

η

2σ
∑

I

∑
i

(wk+1
i − wk

i )φk+1
Ii

∥∥p∗
I − pk+1

i

∥∥2
≲ ηV (zk+1)3/2.

V (zk) does not grow too fast

At this point, we have all we need to show the following.

▶ Lemma 37. For η, σ small enough, V (zk+1) ≤ 2V (zk).

Proof. Starting from (25), upper-bound the second line by 0, lower-bound the left-hand side using Lemma 33
and bound the error terms using Lemmas 34, 35 and 36. Simplify the obtained inequality using that λτ ≍ 1,
λ3 = 1√

σ
, η ≍ σ, and V (zk+1) = O(1) as noted above (27). Rearranging, we get

V (zk+1)− V (zk) ≤ O(ε)V (zk) +O
(√
η · V (zk+1)

)
V (zk+1) ≤ (1 +O(√η))(1 +O(ε))V (zk)

and so V (zk+1) ≤ 2V (zk) for η, σ small enough, as announced. ◀

E.5 Lower-bounding the “divergence from (k + 1) to k” terms
In this subsection, we lower-bound the quantity

D(k + 1, k) :=
∑

I

dh(wk+1
I , wk

I ) + η

2σ
∑

i

wk
i (1− φk+1

0i )
∥∥pk+1

i − pk
i

∥∥2

appearing with a negative sign on the right-hand side of (25). The bound relies on the “error bound”-type
property discussed in Section 3.3.2.
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▶ Lemma 38. There exist constants r, C > 0 only dependent on (f,X ,Y) and Γ0 such that, for V (zk) ≤ r and
small enough η, σ, then D(k + 1, k) is lower-bounded by

D(k + 1, k) ≥ Cη2

(∑
I

dh(w∗
I , w

k+1
I ) +

∑
I

wk+1
I

∥∥∆pk+1
I

∥∥2
)

+O
((
εwk

0
)2 + ηV (zk+1)2

)
.

The remainder of this subsection is dedicated to proving this lemma.
For any (AI)I∈[n∗], (BJ)J∈[m∗] (and A0 = B0 = 0) and (XI)I∈[n∗], (YJ)J∈[m∗], define “proxy particles” as

in (16):

xi = xk+1
i +

∑
I

φk+1
Ii (XI − xk+1

i ) and ai =
∑

I

AI
φk+1

Ii ak+1
i

ak+1
I

,

similarly for b and y and let z = (a, x, b, y), leaving the dependence on A,X,B and Y implicit to lighten notation.
For concision, let as usual w = ( a

b ), p = ( x
y ), W = ( A

B ), and P = ( X
Y ). We proceed by upper- and lower-bounding

the gradient-norm-like quantity maxA,X,B,Y g̃ap(z; zk+1).

Upper bound on the gradient-norm-like quantity

▷ Claim 39. There exists C > 0 only dependent on (f,X ,Y) and Γ0 such that

max
A,X,B,Y

g̃ap(z; zk+1) ≤ C

η

√
D(k + 1, k) + 1

η
O
(
εwk

0 +√ηV (zk+1)
)
.

Proof. Evaluate (8) at the proxy particles z = (a, x, b, y):

∀ A,X,B, Y, η g̃ap(z; zk+1) ≤
∑

i

(wi − wk+1
i ) log w

k+1
i

wk
i

+ η

σ

∑
i

wk
i

〈
pk+1

i − pk
i , pi − pk+1

i

〉
.

On the right-hand side, we get for the position terms∑
i

wk
i

〈
pk+1

i − pk
i , pi − pk+1

i

〉
=
∑

I

∑
i

wk
i φ

k+1
Ii

〈
pk+1 − pk

i , PI − pk+1
i︸ ︷︷ ︸

∥ · ∥≤R

〉
≤ R

∑
I

∑
i

wk
i φ

k+1
Ii

∥∥pk+1
i − pk

i

∥∥ = R
∑

i

wk
i (1− φk+1

0i )
∥∥pk+1

i − pk
i

∥∥
≤ R

√∑
i

wk
i (1− φk+1

0i )

︸ ︷︷ ︸
≤

√
2

√∑
i

wk
i (1− φk+1

0i )
∥∥pk+1

i − pk
i

∥∥2
.

In the last inequality, we used Cauchy–Schwarz inequality. For the weight terms, by the same calculation as
for (24) with w∗ replaced by W ,

∑
i

(wi − wk+1
i ) log w

k+1
i

wk
i

=
∑

I

WI log w
k+1
I

wk
I

−
∑

I

dh(wk+1
I , wk

I )

+
∑

I

(WI − wk+1
I )

∑
i

φk+1
Ii ak+1

i

ak+1
I

log w
k+1
i /wk+1

I

wk
i /w

k
I

−
∑

i

φk+1
0i dh(wk+1

i , wk
i ) +

∑
i

(φk+1
0i − φk

0i)wk
i .

The second and fourth terms are non-positive, the third term is bounded by O
(
εwk

0 +√ηV (zk+1)
)

by Lemma 34,
and so is the last term by Lemma 32. Further upper-bound the first term, using that wk

I ≥ c (Lemma 31), by

∑
I

WI log w
k+1
I

wk
I

≤
∑

I

WI

wk
I

(
wk+1

I − wk
I

)
≤ 1
c

∑
I

∣∣wk+1
I − wk

I

∣∣
≤
√
n∗ +m∗

c

√∑
I

∣∣wk+1
I − wk

I

∣∣2 ≤ √2(n∗ +m∗)
c

√∑
I

dh(wk+1
I , wk

I )
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since h is 1-strongly convex over [0, 1]. Thus,∑
i

(wi − wk+1
i ) log w

k+1
i

wk
i

≤
√

2(n∗ +m∗)
c

√∑
I

dh(wk+1
I , wk

I ) +O
(
εwk

0 +√ηV (zk+1)
)
.

By putting the two parts together and using that
√
A+
√
B ≤

√
2
√
A+B, we obtain

η max
A,X,B,Y

g̃ap(z; zk+1) ≤ 2
(√

n∗ +m∗

c
∨R

√
η

σ

)√
D(k + 1, k) + O

(
εwk

0 +√ηV (zk+1)
)

and the claim follows directly. ◀

Lower bound on the gradient-norm-like quantity

As a direct application of Lemma 18, there exist r′, C ′ > 0 only dependent on (f,X ,Y) and Γ0 such that if
V (zk+1) ≤ r′, then

max
A,X,B,Y

g̃ap(z; zk+1) ≥ C ′
√∑

I

dh(w∗
I , w

k+1
I ) +

∑
I

wk+1
I

∥∥∆pk+1
I

∥∥2 +O
(
V (zk+1)

)
.

Note that thanks to Lemma 37, we can indeed assume V (zk+1) ≤ r′ by choosing r small enough in the statement
of Lemma 38.

Putting the two bounds together

All in all, we showed that (assuming V (zk) ≤ r for some r small enough)

C

η

√
D(k+1, k) + 1

η
O
(
εwk

0 +√ηV (zk+1)
)
≥ C ′

√∑
I

dh(w∗
I , w

k+1
I )+

∑
I

wk+1
I

∥∥∆pk+1
I

∥∥2 +O
(
V (zk+1)

)
for some C,C ′ only dependent on (f,X ,Y) and Γ0. Rearranging and taking squares,

D(k + 1, k) ≥
(
C ′

C

)2
η2

(∑
I

dh(w∗
I , w

k+1
I ) +

∑
I

wk+1
I

∥∥∆pk+1
I

∥∥2
)

+O
(
(εwk

0)2 + ηV (zk+1)2).
This concludes the proof of Lemma 38.

E.6 Proof conclusion
It just remains to put everything together by substituting the terms by their lower bound in (25). Our choice of
λ, τ and our assumption that σ ≍ η simplify things considerably. The only subtlety is that some of the terms in
the upper bound of Lemma 34 and Lemma 35 need to be compensated by the lower bound of Lemma 33, which
can be done by assuming η, σ small enough.

In the remainder of this subsection, C1, C2, · · · > 0 will denote constants dependent only on (f,X ,Y) and Γ0
(the same things as what we hide in O( · )).

Putting all the bounds together

Assume that V (zk) ≤ r and that r, η, σ are small enough so that all of the lemmas apply. Just substitute the
terms in (25) by their bounds:

V (zk+1)− V (zk) ≤ −η g̃ap(z(∗); zk+1)−D(k + 1, k) + (err1) + (err2) + (err3).

By Lemma 33, there exist C1, C2 such that

η g̃ap(z(∗); zk+1) ≥ η · C1
√
σwk+1

0 + η · C2Vpos(zk+1) +O
(
ηV (zk+1)3/2

)
.

By Lemma 38, there exists C3 such that

D(k + 1, k) ≥ C3η
2

(∑
I

dh(w∗
I , w

k+1
I ) +

∑
I

wk+1
I

∥∥∆pk+1
I

∥∥2
)

+O
((
εwk

0
)2 + ηV (zk+1)2

)
.
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By Lemma 34,

(err1) ≲ √ηV (zk+1)3/2 + εwk
0 ·
√
V (zk+1)

≲
√
ηV (zk+1)3/2 + ε

(
wk

0
)2 + εV (zk+1).

By Lemma 35,

(err2) ≲ εwk+1
0 + η3/2Vpos(zk+1) +√ηV (zk+1)3/2.

By Lemma 36,

(err3) ≲ ηV (zk+1)3/2.

All in all, since wk
0 = O(V (zk)) by Eq. (37), we get

V (zk+1)− V (zk) ≤ −
(
C1η

3/2 −O(ε)
)
wk+1

0 − (C2 −O(√η)) ηVpos(zk+1)

− C3η
2

(∑
I

dh(w∗
I , w

k+1
I ) +

∑
I

wk+1
I

∥∥∆pk+1
I

∥∥2
)

+O
(√

ηV (zk+1)3/2
)

+O
(
εV (zk+1)

)
+O

(
εV (zk)2) .

To be explicit, this means that there exists a constant M > 0 dependent only on (f,X ,Y) and Γ0 such that

V (zk+1)− V (zk) ≤ −
(
C1η

3/2 −Mε
)
wk+1

0 − (C2 −M
√
η) ηVpos(zk+1)

− C3η
2

(∑
I

dh(w∗
I , w

k+1
I ) +

∑
I

wk+1
I

∥∥∆pk+1
I

∥∥2
)

+M
(√

ηV (zk+1)3/2 + εV (zk+1) + εV (zk)2
)
.

Since ε = e−λ3/3 = e
− 1

3
√

σ and σ ≍ η, then for small enough η, σ, we have C1η
3/2 −Mε ≥ C1

2 η
3/2. Furthermore,

for small enough η, we have C2 −M
√
η ≥ C2

2 . Thus, there exists C4 > 0 such that

V (zk+1)− V (zk) ≤ −C4η
2V (zk+1) +M

(√
ηV (zk+1)3/2 + εV (zk+1) + εV (zk)2

)
.

Moreover for small enough η, σ, we have C4η
2 −Mε ≥ C4

2 η
2. Then,

V (zk+1)− V (zk) ≤ −(C4/2)η2V (zk+1) +M
(√

ηV (zk+1)3/2 + εV (zk)2
)

V (zk+1)
[
1 + (C4/2)η2 −M√η

√
V (zk+1)

]
≤ V (zk)

[
1 +MεV (zk)

]
.

Sufficient decrease of the Lyapunov function

For a fixed r0 > 0 to be chosen (small enough so that all of the lemmas apply), assume that V (zk) ≤ r0.
By Lemma 37, we can assume η, σ small enough such that V (zk+1) ≤ 2r0. We then have that

V (zk+1)
[
1 + (C4/2)η2 −M

√
2ηr0

]
≤ V (zk) [1 +Mεr0]

V (zk+1)
V (zk) ≤

1 +Mεr0

1 + (C4/2)η2 −M
√

2ηr0
=: 1− κ.

(28)

Clearly r0 can be chosen (dependent on η) such that the right-hand side is strictly less than 1, i.e., κ > 0. By
induction, if V (z0) ≤ r0, then for all k, V (zk+1) ≤ r0 and

∀ k, V (zk+1)
V (zk) ≤ 1− κ

V (zk) ≤ V (z0)(1− κ)k.

This concludes the proof of Theorem 9.

▶ Remark 40. More precisely, for the right-hand side of (28) to be less than 1, r0 needs to be chosen less than η3

times a constant (dependent on (f,X ,Y) and Γ0). The rate κ can be seen to be of order η2, for any admissible
choice of r0.
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E.7 Delayed technical proofs
In some of the proofs of this subsection we use the expressions and a priori bounds for Vpos and Vwei from Ap-
pendix F.1 without explicit mention.

E.7.1 Auxiliary claims
As a consequence of the fact that

∥∥xk+1
i − xk

i

∥∥ = O(σ) (Lemma 30), we can meaningfully classify the particles
according to which supp(φI) they belong to, both at k and at k + 1. For a fixed k, denote

∀ I ∈ [n∗], N (I) =
{
i; xk+1

i ∈ Bx∗
I

,λτ or xk
i ∈ Bx∗

I
,λτ

}
and N (0) = [n] \ (∪IN (I)) .

Since xk+1
i −xk

i = O(σ), for σ chosen small enough compared to minI ̸=I′
∥∥x∗

I−x∗
I′

∥∥ we have that xk
i ∈ Bx∗

I
,λτ =⇒

∀ I ′ ̸= I, xk
i , x

k+1
i ̸∈ Bx∗

I′ ,λτ , and so the N (I) are pair-wise disjoint. In other words,
⊔

I∈[0,n∗]N (I) then forms a
partition of [n]; and similarly for the (yj)j∈[m]. In the remainder of this section, we assume σ small enough so
that this is the case.

Let

∀ x ∈ X , φ̃I(x) = exp
(
−
∥∥x− x∗

I

∥∥3

3τ3

)

so that φI(x) coincides with φ̃I(x) if and only if
∥∥x− x∗

I

∥∥ ≤ λτ .
▷ Claim 41. For any I ∈ [n∗],∑

i

(φk+1
Ii − φk

Ii)ak
i =

∑
i∈N (I)

(φ̃k+1
Ii − φ̃k

Ii)ak
i +O

(
ε(ak+1

0 + ak
0)
)
.

Proof. Since φI(x) coincides with φ̃I(x) if and only if
∥∥x− x∗

I

∥∥ ≤ λτ ,
if i ̸∈ N (I), i.e., if both xk+1

i , xk
i ̸∈ Bx∗

I
,λτ , then φk+1

Ii − φk
Ii = 0;

if i ∈ N (I),∣∣(φk+1
Ii − φk

Ii)− (φ̃k+1
Ii − φ̃k

Ii)
∣∣ ≤ ∣∣φk+1

Ii − φ̃k+1
Ii

∣∣+
∣∣φk

Ii − φ̃k
Ii

∣∣
≤ ε · 1

[
xk+1

i ̸∈ Bx∗
I

,λτ ∧ xk
i ∈ Bx∗

I
,λτ

]
+ ε · 1

[
xk+1

i ∈ Bx∗
I

,λτ ∧ xk
i ̸∈ Bx∗

I
,λτ

]
.

Further note that, by definition,∑
I

∑
i∈N (I)

ε1
[
xk+1

i ̸∈ Bx∗
I

,λτ ∧ xk
i ∈ Bx∗

I
,λτ

]
ak

i ≤ ε
∑

i

φ0(xk+1
i )ak

i ≤ ε(1 +O(η))ak+1
0

and
∑

I

∑
i∈N (I)

ε1
[
xk+1

i ∈ Bx∗
I

,λτ ∧ xk
i ̸∈ Bx∗

I
,λτ

]
ak

i ≤ ε
∑

i

φ0(xk
i )ak

i = εak
0 .

Thus∣∣∣∣∣∣
∑

i

(φk+1
Ii − φk

Ii)ak
i −

∑
i∈N (I)

(φ̃k+1
Ii − φ̃k

Ii)ak
i

∣∣∣∣∣∣ ≤ ε ((1 +O(η))ak+1
0 + ak

0
)

and hence the announced estimate. ◀

The following claim follows from a Taylor expansion of x 7→
∥∥x− x∗

I

∥∥3.
▷ Claim 42. For any i, I, we have∥∥xk+1

i − x∗
I

∥∥3 −
∥∥xk

i − x∗
I

∥∥3 = 3
〈
xk+1

i − xk
i , x

k+1
i − x∗

I

〉 ∥∥xk+1
i − x∗

I

∥∥
+O

(∥∥xk+1
i − xk

i

∥∥2∥∥xk+1
i − x∗

I

∥∥+
∥∥xk+1

i − xk
i

∥∥3
)
.

Proof. The first and second derivatives of ∥ · − x∗
I∥3 are given, up to translation, by

(∇∥ · ∥3)(x) = 3∥x∥x and 0 ⪯ (∇2∥ · ∥3)(x) = 3∥x∥ id +3∥x∥ xx
⊤

∥x∥2 ⪯ 6∥x∥ id .
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By Taylor expansion of ∥ · − x∗
I∥3 centered at xk+1

i with remainder in Lagrange form, there exists θ ∈ [0, 1] such
that∥∥xk+1

i − x∗
I

∥∥3 −
∥∥xk

i − x∗
I

∥∥3 = 3
〈
xk+1

i − xk
i , x

k+1
i − x∗

I

〉 ∥∥xk+1
i − x∗

I

∥∥−R

where

R = 1
2(xk+1

i − xk
i )⊤ [(∇2∥ · − x∗

I∥3) (θxk+1
i + (1− θ)xk

i

)]
(xk+1

i − xk
i )

2 |R| ≤ 6
∥∥xk+1

i − xk
i

∥∥2∥∥θ(xk+1
i − x∗

I) + (1− θ)(xk
i − x∗

I)
∥∥

≤ 6
∥∥xk+1

i − xk
i

∥∥2
(∥∥xk+1

i − x∗
I

∥∥+
∥∥xk

i − x∗
I

∥∥︸ ︷︷ ︸
≤∥xk+1

i
−x∗

I
∥+∥xk+1

i
−xk

i
∥

)

≤ 12
∥∥xk+1

i − xk
i

∥∥2∥∥xk+1
i − x∗

I

∥∥+ 6
∥∥xk+1

i − xk
i

∥∥3
. ◀

We will repeatedly use the following Taylor expansions of the local payoff matrices.
▷ Claim 43. For any i, I,

(Mk+1bk+1)i = ρ+ 1
2
∥∥xk+1

i − x∗
I

∥∥2
HI

+O
(∥∥xk+1

i − x∗
I

∥∥3)+O

(√
V (bk+1, yk+1)

)
(29)

and more precisely if
∥∥xk+1

i − x∗
I

∥∥ ≤ σmin
2L3

, then

(Mk+1bk+1)i ≥ ρ+ 1
4σmin

∥∥xk+1
i − x∗

I

∥∥2 +O

(√
V (bk+1, yk+1)

)
. (30)

Furthermore,

∂xM
k+1
i• bk+1 = (xk+1

i − x∗
I)⊤HI +O

(∥∥xk+1
i − x∗

I

∥∥2)+O

(
min

{
1,
√
V (bk+1, yk+1)

})
(31)

and more precisely if
∥∥xk+1

i − x∗
I

∥∥ ≤ σmin
2L3

, then

(xk+1
i − x∗

I)⊤∂xM
k+1
i• bk+1 ≥ σmin

2
∥∥xk+1

i − x∗
I

∥∥2 +O

(∥∥xk+1
i − x∗

I

∥∥√V (bk+1, yk+1)
)
. (32)

Note that our choice of λ, τ implies λτ ≤ σmin
4L3

, and that for all i ∈ N (I),
∥∥xk+1

i − x∗
I

∥∥ ≤ λτ +O(σ). In the
remainder of this section, we assume σ small enough so that

∥∥xk+1
i − x∗

I

∥∥ ≤ σmin
2L3

holds for all i ∈ N (I) and
similarly for the yj , y

∗
J .

Proof. To lighten notation in the calculations, denote x̂ = xk+1, ŷ = yk+1 and b̂ = bk+1. By Taylor expansion,
for all i, I,

(Mk+1bk+1)i = (M̂ b̂)i =
∑

J

∑
j

ψ̂Jj

[
(∧M∗)iJ + M̂ij − (∧M∗)iJ

]
b̂j +

∑
j

ψ̂0jM̂ij b̂j

=
∑

J

(∧M∗)iJ b̂J +
∑

J

∑
j

ψ̂JjO(
∥∥ŷj − y∗

J

∥∥)̂bj +O(̂b0)

=
∑

J

[
M∗

IJ + (x̂i − x∗
I)⊤∂xM

∗
IJ + 1

2((x̂i − x∗
I)2)⊤∂2

xxM
∗
IJ +O

(∥∥x̂i − x∗
I

∥∥3)]
b̂J +O

(√
Vpos(̂b, ŷ)

)
+O(̂b0)

= ρ+
∑

J

M∗
IJ∆b̂J +

∑
J

(x̂i − x∗
I)⊤∂xM

∗
IJ∆b̂J + 1

2
∥∥x̂i − x∗

I

∥∥2
HI

+O
(∥∥x̂i − x∗

I

∥∥3)+O

(√
V (̂b, ŷ)

)
= ρ+ 1

2
∥∥x̂i − x∗

I

∥∥2
HI

+O
(∥∥x̂i − x∗

I

∥∥3)+O

(√
V (̂b, ŷ)

)
.

More precisely,

(M̂ b̂)i ≥ ρ+ 1
2
∥∥x̂i − x∗

I

∥∥2
HI
− L3

2
∥∥x̂i − x∗

I

∥∥3 +O

(√
V (̂b, ŷ)

)
≥ ρ+ 1

4σmin
∥∥x̂i − x∗

I

∥∥2 +O

(√
V (̂b, ŷ)

)
if

∥∥x̂i − x∗
I

∥∥ ≤ σmin

2L3
.
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Also by Taylor expansion, for all i, I,

∂xM
k+1
i• bk+1 = ∂xM̂i•b̂ =

∑
J

∑
j

ψ̂Jj

[
∂x(∧M∗)iJ + ∂xM̂ij − ∂x(∧M∗)iJ

]
b̂j +

∑
j

ψ̂0j∂xM̂ij b̂j

=
∑

J

∂x(∧M∗)iJ b̂J +
∑

J

∑
j

ψ̂JjO(
∥∥ŷj − y∗

J

∥∥)̂bj +O(̂b0)

=
∑

J

[
∂xM

∗
IJ + (x̂i − x∗

I)⊤∂2
xxM

∗
IJ +O(

∥∥x̂i − x∗
I

∥∥2)
]
b̂J +O

(√
Vpos(̂b, ŷ)

)
+O(̂b0)

= ∂xM
∗
I•∆b̂+

∑
J

(x̂i − x∗
I)⊤∂2

xxM
∗
IJ b̂J +O(

∥∥x̂i − x∗
I

∥∥2) +O

(
min

{
1,
√
V (̂b, ŷ)

})
= (x̂i − x∗

I)⊤HI +O(
∥∥x̂i − x∗

I

∥∥2) +O

(
min

{
1,
√
V (̂b, ŷ)

})
.

On lines 4 and 5, the fact that the last error term is O(1) can be checked by noting that b̂0,
∥∥∆b̂

∥∥ ≤ 2 and
Vpos(̂b, ŷ) =

∑
J

∑
j ψ̂Jj b̂j

∥∥ŷj − y∗
J

∥∥2 ≤ R2. More precisely, for any δx,

〈
δx, ∂xM̂i•b̂

〉
≥ ⟨δx,HI(x̂i − x∗

I)⟩ − L3
∥∥δx∥∥∥∥x̂i − x∗

I

∥∥2 +O

(∥∥δx∥∥√V (̂b, ŷ)
)
.

So if
∥∥x̂i − x∗

I

∥∥ ≤ σmin
2L3

, then

(x̂i − x∗
I)⊤∂xM̂i•b̂ ≥ σmin

∥∥x̂i − x∗
I

∥∥2 − L3
∥∥x̂i − x∗

I

∥∥3 +O

(∥∥x̂i − x∗
I

∥∥√V (̂b, ŷ)
)

≥ σmin

2
∥∥x̂i − x∗

I

∥∥2 +O

(∥∥x̂i − x∗
I

∥∥√V (̂b, ŷ)
)
. ◀

E.7.2 Proof of Lemma 32
Note that the proof does not make use of the fact that V (zk+1) = O(1) (inequality (27)), so as to avoid circular
reasoning since we showed that fact as a consequence of Lemma 32.

Proof. Fix I ∈ [n∗]. We showed in Claim 41 that∑
i

(φk+1
Ii − φk

Ii)ak
i =

∑
i∈N (I)

(φ̃k+1
Ii − φ̃k

Ii)ak
i +O

(
ε(ak+1

0 + ak
0)
)

and it remains to upper- and lower-bound the first term.
First note that

φ̃k
Ii − φ̃k+1

Ii = φ̃k
Ii ·

(
1− φ̃k+1

Ii

φ̃k
Ii

)
≤ φ̃k

Ii ·
(
log φ̃k

Ii − log φ̃k+1
Ii

)
= φ̃k

Ii ·
1

3τ3

(∥∥xk+1
i − x∗

I

∥∥3 −
∥∥xk

i − x∗
I

∥∥3
)

(33)

and that

φ̃k
Ii − φ̃k+1

Ii = φ̃k+1
Ii ·

(
φ̃k

Ii

φ̃k+1
Ii

− 1
)
≥ φ̃k+1

Ii ·
(
log φ̃k

Ii − log φ̃k+1
Ii

)
= φ̃k+1

Ii · 1
3τ3

(∥∥xk+1
i − x∗

I

∥∥3 −
∥∥xk

i − x∗
I

∥∥3
)
.

Furthermore, by Claim 42,∣∣∣∥∥xk+1
i −x∗

I

∥∥3−
∥∥xk

i −x∗
I

∥∥3
∣∣∣ ≤ 3

∥∥xk+1
i −xk

i

∥∥∥∥xk+1
i −x∗

I

∥∥2 +O
(∥∥xk+1

i −xk
i

∥∥2∥∥xk+1
i −x∗

I

∥∥+
∥∥xk+1

i −xk
i

∥∥3
)

≲
∥∥xk+1

i −xk
i

∥∥∥∥xk+1
i −x∗

I

∥∥+
∥∥xk+1

i −xk
i

∥∥2

and by the update equation (26) and the expansion (31), since ak
i = (1 +O(η))ak+1

i ≍ ak+1
i by Lemma 30,

∥∥xk+1
i − xk

i

∥∥ = σ
ak+1

i

ak
i

∥∥∂xM
k+1
i• bk+1∥∥ ≲ σ

(∥∥xk+1
i − x∗

I

∥∥ + 1 ∧
√
V (bk+1, yk+1)

)
,
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and so∣∣∣∥∥xk+1
i − x∗

I

∥∥3 −
∥∥xk

i − x∗
I

∥∥3
∣∣∣

≲ σ
∥∥xk+1

i − x∗
I

∥∥2 + σ

[
1 ∧

√
V (bk+1, yk+1)

] ∥∥xk+1
i − x∗

I

∥∥+ σ2 [1 ∧ V (bk+1, yk+1)
]

≲ σ
∥∥xk+1

i − x∗
I

∥∥2 + σ
[
1 ∧ V (bk+1, yk+1)

]
where we used that ab ≤ a2

2 + b2

2 to bound the second term of the first line. So∑
i∈N (I)

(φ̃k
Ii − φ̃k+1

Ii )ak
i ≤

1
3τ3

∑
i∈N (I)

φ̃k
Iia

k
i ·
(∥∥xk+1

i − x∗
I

∥∥3 −
∥∥xk

i − x∗
I

∥∥3
)

≲ σ
λ3

(λτ)3

∑
i∈N (I)

φ̃k
Iia

k+1
i

(∥∥xk+1
i − x∗

I

∥∥2 +
[
1 ∧ V (bk+1, yk+1)

])

≲
√
σ

 ∑
i∈N (I)

φ̃k
Iia

k+1
i

∥∥xk+1
i − x∗

I

∥∥2 +
[
1 ∧ V (bk+1, yk+1)

]
where the last line follows from our choice of λ3 = 1√

σ
and λτ ≍ 1. Similarly, on the other side,

∑
i∈N (I)

(φ̃k+1
Ii − φ̃k

Ii)ak
i ≲
√
σ

 ∑
i∈N (I)

φ̃k+1
Ii ak+1

i

∥∥xk+1
i − x∗

I

∥∥2 +
[
1 ∧ V (bk+1, yk+1)

]
Finally, it remains to bound

∑
i∈N (I) φ̃

k
Iia

k+1
i

∥∥xk+1
i − x∗

I

∥∥2 as well as
∑

i∈N (I) φ̃
k+1
Ii ak+1

i

∥∥xk+1
i − x∗

I

∥∥2, in
terms of

∑
i φ

k+1
Ii ak+1

i

∥∥xk+1
i − x∗

I

∥∥2 = O
(
σVpos(ak+1, xk+1)

)
. This is done in the following Claim 44.

By putting everything together, we obtain that
∣∣∑

i(φ
k+1
Ii − φk

Ii)ak
i

∣∣ ≲ ε
(
ak

0 + ak+1
0
)

+
√
σ
[
1 ∧ V (zk+1)

]
,

which is the first inequality of the lemma. The second inequality of the lemma follows by noting that εak+1
0 =

O
(√
σV (zk+1)

)
, since ε = e−1/(3

√
σ) = O(

√
σ). ◀

▷ Claim 44. For small enough η and σ, for any I ∈ [n∗],∑
i∈N (I)

φ̃k
Iia

k+1
i

∥∥xk+1
i −x∗

I

∥∥2
≲

∑
i∈N (I)

φ̃k+1
Ii ak+1

i

∥∥xk+1
i −x∗

I

∥∥2
≲ εak+1

0 +
∑

i∈N (I)

φk+1
Ii ak+1

i

∥∥xk+1
i −x∗

I

∥∥2
.

Proof. By the same reasoning as in the proof of Claim 41, one can show that∑
i∈N (I)

(
φ̃k+1

Ii − φk+1
Ii

)
ak+1

i

∥∥xk+1
i − x∗

I

∥∥2 ≤ εak+1
0 R2.

Hence the second inequality. For the first inequality: As we saw in (33),∑
i∈N (I)

(
φ̃k

Ii − φ̃k+1
Ii

)
ak+1

i

∥∥xk+1
i − x∗

I

∥∥2 ≤ 1
3τ3

∑
i∈N (I)

φ̃k
Iia

k+1
i

∥∥xk+1
i − x∗

I

∥∥2
(∥∥xk+1

i − x∗
I

∥∥3 −
∥∥xk

i − x∗
I

∥∥3
)
,

and by Claim 42 and Lemma 30,
∥∥xk+1

i − x∗
I

∥∥3 −
∥∥xk

i − x∗
I

∥∥3
≲
∥∥xk+1

i − xk
i

∥∥ = O(σ). So, by our choice of
λ3 = 1√

σ
and λτ ≍ 1,

∑
i∈N (I)

(
φ̃k

Ii − φ̃k+1
Ii

)
ak+1

i

∥∥xk+1
i − x∗

I

∥∥2
≲ σ

λ3

(λτ)3︸ ︷︷ ︸
≍

√
σ

·
∑

i∈N (I)

φ̃k
Iia

k+1
i

∥∥xk+1
i − x∗

I

∥∥2
.

Thus,

(1−O(
√
σ))

∑
i∈N (I)

φ̃k
Iia

k+1
i

∥∥xk+1
i − x∗

I

∥∥2 ≤
∑

i∈N (I)

φ̃k+1
Ii ak+1

i

∥∥xk+1
i − x∗

I

∥∥2

∑
i∈N (I)

φ̃k
Iia

k+1
i

∥∥xk+1
i − x∗

I

∥∥2 ≤ (1 +O(
√
σ))

∑
i∈N (I)

φ̃k+1
Ii ak+1

i

∥∥xk+1
i − x∗

I

∥∥2
. ◀
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E.7.3 Proof of Lemma 34 (bound on (err1))
▷ Claim 45. For any I ∈ [n∗],

∑
i

φk+1
Ii ak+1

i

ak+1
I

log a
k+1
i /ak+1

I

ak
i /a

k
I

= O

(∑
i

(φk+1
Ii − φk

Ii)ak
i

)
+ η2O

(
V (zk+1)

)
.

Lemma 34 follows straightforwardly from the claim and from Lemma 32.

Proof of the claim. Fix I ∈ [n∗]. Let uk+1,I
i = φk+1

Ii
ak+1

i

ak+1
I

, and we want to bound

∑
i

uk+1,I
i log a

k+1
i /ak+1

I

ak
i /a

k
I

=
∑

i

uk+1,I
i log Za

k+1
i

ak
i

+ log ak
I

Zak+1
I

.

By (26), we have log ak+1
i

ak
i

= −η[(Mk+1bk+1)i − ρ]− logZ where Z =
∑

i′ ak
i′ e−η[(Mk+1bk+1)i′ −ρ], so

∑
i

uk+1,I
i log Za

k+1
i

ak
i

=
∑

i

uk+1,I
i (−η)[(Mk+1bk+1)i − ρ]

and

log ak
I

Zak+1
I

= log
∑

i φ
k
Iia

k
i

Z
∑

i φ
k+1
Ii ak+1

i

= log
∑

i φ
k
Iia

k
i∑

i φ
k+1
Ii ak

i

+ log
∑

i φ
k+1
Ii ak

i

Z
∑

i φ
k+1
Ii ak+1

i

= log
∑

i φ
k
Iia

k
i∑

i φ
k+1
Ii ak

i

+ log
∑

i φ
k+1
Ii ak+1

i eη[(Mk+1bk+1)i−ρ]∑
i φ

k+1
Ii ak+1

i

= log
∑

i φ
k
Iia

k
i∑

i φ
k+1
Ii ak

i

+ log
∑

i

uk+1,I
i eη[(Mk+1bk+1)i−ρ].

Now by Jensen inequality on concavity of log, since
∑

i u
k+1,I
i = 1,

log
[∑

i

uk+1,I
i eη[(Mk+1bk+1)i−ρ]

]
+
∑

i

uk+1,I
i (−η)[(Mk+1bk+1)i − ρ] ≥ 0.

Furthermore, since log x ≤ x− 1 and ex = 1 + x+O(x2) and using (29),

log
[∑

i

uk+1,I
i eη[(Mk+1bk+1)i−ρ]

]
+
∑

i

uk+1,I
i (−η)[(Mk+1bk+1)i − ρ]

≤
∑

i

uk+1,I
i

(
eη[(Mk+1bk+1)i−ρ] − 1− η[(Mk+1bk+1)i − ρ]

)
=
∑

i

uk+1,I
i O

(
η2[(Mk+1bk+1)i − ρ]2

)
= η2

∑
i

φk+1
Ii ak+1

i

ak+1
I

O
(∥∥xk+1

i − x∗
I

∥∥2 + V (bk+1, yk+1)
)

≲ η2O
(
V (zk+1)

)
.

Thus,∑
i

uk+1,I
i log a

k+1
i /ak+1

I

ak
i /a

k
I

= log
∑

i φ
k
Iia

k
i∑

i φ
k+1
Ii ak

i

+ η2O
(
V (zk+1)

)
.

To upper- and lower-bound the first term, note that by Lemma 31∑
i

φk
Iia

k
i = ak

I ≥ c and
∑

i

φk+1
Ii ak

i ≥
∑

i

φk+1
Ii ak+1

i (1−O(η)) = ak+1
I (1−O(η)) ≥ c(1−O(η)).
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So just by bounding the derivative of log we have∣∣∣∣∣log
∑

i

φk
Iia

k
i − log

∑
i

φk+1
Ii ak

i

∣∣∣∣∣ ≤ 1
c(1−O(η))︸ ︷︷ ︸

=O(1)

∣∣∣∣∣∑
i

(φk+1
Ii − φk

Ii)ak
i

∣∣∣∣∣ . ◀

E.7.4 Proof of Lemma 35 (bound on (err2))
Proof. Focus on the a terms. The quantity we want to upper-bound is∑

i

(φk+1
0i − φk

0i)ak
i + η

2σ
∑

I

∑
i

ak
i

(
φk+1

Ii − φk
Ii

)∥∥x∗
I − xk

i

∥∥2

=
∑

I

∑
i

(
φk

Ii − φk+1
Ii

)
ak

i

[
1− η

2σ
∥∥x∗

I − xk
i

∥∥2
]
.

Fix I ∈ [n∗]. Note that the sum is only over indices i ∈ N (I) (otherwise φk+1
Ii = φk

Ii = 0) and that we have for
all such i∥∥x∗

I − xk
i

∥∥2 ≤ (λτ +O(σ))2 ≤ 2(λτ)2 +O(σ2) ≤ σ

η
+O(σ2)

η

2σ
∥∥x∗

I − xk
i

∥∥2 ≤ 1
2 +O(ησ)

due to our choice of λ, τ that ensures that (λτ)2 ≤ 1
2

σ
η . So for small enough η, σ, we have for all i ∈ N (I) that

0 ≤ 1− η
2σ

∥∥x∗
I − xk

i

∥∥2 ≤ 1. Following a similar reasoning as for Claim 41, but taking into account that we know
the sign of the objects involved and that we are only interested in an upper bound, one can check that∑

i

(
φk

Ii − φk+1
Ii

)
ak

i

[
1− η

σ

∥∥x∗
I − xk

i

∥∥2
]
≤

∑
i∈N (I)

(
φ̃k

Ii − φ̃k+1
Ii

)
ak

i

[
1− η

σ

∥∥x∗
I − xk

i

∥∥2
]

+ ε(1 +O(η))ak+1
0

(note that ak
0 does not appear on the right-hand side). It remains to bound the first term. As we already saw in

the proof of Lemma 32 (Eq. (33)), we have

φ̃k
Ii − φ̃k+1

Ii = φ̃k
Ii ·

(
1− φ̃k+1

Ii

φ̃k
Ii

)
≤ φ̃k

Ii ·
(
log φ̃k

Ii − log φ̃k+1
Ii

)
= φ̃k

Ii ·
1

3τ3

(∥∥xk+1
i − x∗

I

∥∥3 −
∥∥xk

i − x∗
I

∥∥3
)

and by Claim 42, we have the Taylor expansion∥∥xk+1
i − x∗

I

∥∥3 −
∥∥xk

i − x∗
I

∥∥3 = 3
〈
xk+1

i − xk
i , x

k+1
i − x∗

I

〉 ∥∥xk+1
i − x∗

I

∥∥
+O

(∥∥xk+1
i − xk

i

∥∥2∥∥xk+1
i − x∗

I

∥∥+
∥∥xk+1

i − xk
i

∥∥3
)
.

Now by the update equation (26) and the expansion (32), for any i ∈ N (I),

〈
xk+1

i − xk
i , x

k+1
i − x∗

I

〉
=
〈
−σa

k+1
i

ak
i

∂xM
k+1
i• bk+1, xk+1

i − x∗
I

〉
= −σa

k+1
i

ak
i

(xk+1
i − x∗

I)⊤∂xM
k+1
i• bk+1

≤ −σa
k+1
i

ak
i

σmin

2
∥∥xk+1

i − x∗
I

∥∥2 + σ
ak+1

i

ak
i

O

(∥∥xk+1
i − x∗

I

∥∥√V (bk+1, yk+1)
)

≤ σ(1 +O(η))O
(∥∥xk+1

i − x∗
I

∥∥√V (bk+1, yk+1)
)

and so the terms arising from the order-1 terms in the Taylor expansion of
∥∥xk+1

i − x∗
I

∥∥3 −
∥∥xk

i − x∗
I

∥∥3 are
upper-bounded by∑

i∈N (I)

φ̃k
Iia

k
i

[
1− η

σ

∥∥x∗
I − xk

i

∥∥2
]
· 1
τ3

〈
xk+1

i − xk
i , x

k+1
i − x∗

I

〉 ∥∥xk+1
i − x∗

I

∥∥
≲

σ

τ3

∑
i∈N (I)

φ̃k
Iia

k+1
i

[
1− η

σ

∥∥x∗
I − xk

i

∥∥2
]
·
∥∥xk+1

i − x∗
I

∥∥2 ·
√
V (bk+1, yk+1)

≲ σ
λ3

(λτ)3

 ∑
i∈N (I)

φ̃k
Iia

k+1
i

∥∥xk+1
i − x∗

I

∥∥2

√V (bk+1, yk+1). (34)
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Here in the last line we just bounded
∣∣∣1− η

σ

∥∥x∗
I − xk

i

∥∥2
∣∣∣ by 1. Further, by the update equation (26) and the

expansion (31),∥∥xk+1
i − xk

i

∥∥ = σ
ak+1

i

ak
i

∥∥∂xM
k+1
i• bk+1∥∥ ≲ σ(1 +O(η))

(∥∥xk+1
i − x∗

I

∥∥+
√
V (bk+1, yk+1)

)
so the terms arising from higher-order terms (the O( · ) terms) in the Taylor expansion of

∥∥xk+1
i −x∗

I

∥∥3−
∥∥xk

i −x∗
I

∥∥3

are upper-bounded by∑
i∈N (I)

φ̃k
Iia

k
i

[
1− η

σ

∥∥x∗
I − xk

i

∥∥2
]
· 1
τ3O

(∥∥xk+1
i − xk

i

∥∥2∥∥xk+1
i − x∗

I

∥∥+
∥∥xk+1

i − xk
i

∥∥3
)

≲
1
τ3

∑
i∈N (I)

φ̃k
Iia

k+1
i ·

(
σ2∥∥xk+1

i − x∗
I

∥∥3 + σ2 · V (bk+1, yk+1) ·
∥∥xk+1

i − x∗
I

∥∥+ σ3 [V (bk+1, yk+1)
]3/2)

≲
1
τ3

∑
i∈N (I)

φ̃k
Iia

k+1
i ·

(
σ2∥∥xk+1

i − x∗
I

∥∥3 + σ2 [V (bk+1, yk+1)
]3/2)

≲ σ2 λ3

(λτ)2

 ∑
i∈N (I)

φ̃k
Iia

k+1
i

∥∥xk+1
i − x∗

I

∥∥2

+ σ2 λ3

(λτ)3

[
V (bk+1, yk+1)

]3/2 (35)

where in the second line we just bounded
∣∣∣1− η

σ

∥∥x∗
I − xk

i

∥∥2
∣∣∣ by 1 again, the third line follows from Young’s

inequality, and the last line uses that
∥∥xk+1

i − x∗
I

∥∥ = O(λτ + σ) = O(λτ) for i ∈ N (I).
Putting everything together, by summing (34) and (35) and by using Claim 44 to bound∑

i∈N (I) φ̃
k
Iia

k+1
i

∥∥xk+1
i − x∗

I

∥∥2, we get∑
I

∑
i

(
φk

Ii − φk+1
Ii

)
ak

i

[
1− η

2σ
∥∥x∗

I − xk
i

∥∥2
]

≲ ε(ak+1
0 + ak

0) + σ2 λ3

(λτ)3

[
V (bk+1, yk+1)

]3/2

+ σ
λ3

(λτ)3

∑
I

∑
i∈N (I)

φ̃k
Iia

k+1
i

∥∥xk+1
i − x∗

I

∥∥2

(√V (bk+1, yk+1) + σλτ

)

≲ ε(ak+1
0 + ak

0) + σ2 λ3

(λτ)3

[
V (bk+1, yk+1)

]3/2

+ σ
λ3

(λτ)3

(
εak+1

0 + Vpos(ak+1, xk+1)
)(√

V (bk+1, yk+1) + σλτ

)
.

Finally, we use that λτ ≍ 1 and that λ3 = 1√
σ

and that η ≍ σ to simplify the bound, and we obtain as announced
that the above is upper-bounded up to a constant factor by

ε(ak+1
0 + ak

0) +
√
σ · σVpos(ak+1, xk+1) +

√
σV (zk+1)3/2. ◀

E.7.5 Proof of Lemma 36 (bound on (err3))

Proof. Focus on the a terms. We want to bound η
2σ

∑
I

∑
i(a

k+1
i − ak

i )φk+1
Ii

∥∥x∗
I − xk+1

i

∥∥2. By the update
equation (26),

ak+1
i = ak

i e
−η[(Mk+1bk+1)i−ρ]/Z where Z =

∑
i′

ak
i′ e−η[(Mk+1bk+1)i′ −ρ]

i.e. ak+1
i − ak

i = ak+1
i

[
1− eη[(Mk+1bk+1)i−ρ]Z

]
= ak+1

i

[
1− eη[(Mk+1bk+1)i−ρ] + eη[(Mk+1bk+1)i−ρ](1− Z)

]
.

So ∑
I

∑
i

(ak+1
i − ak

i )φk+1
Ii

∥∥x∗
I − xk+1

i

∥∥2 =
∑

I

∑
i

φk+1
Ii ak+1

i

∥∥x∗
I − xk+1

i

∥∥2
(

1− eη[(Mk+1bk+1)i−ρ]
)

+
∑

I

∑
i

φk+1
Ii ak+1

i

∥∥x∗
I − xk+1

i

∥∥2
eη[(Mk+1bk+1)i−ρ] (1− Z).
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For the first term, since 1− ex ≤ −x, then by the expansion (30),

1− eη[(Mk+1bk+1)i−ρ] ≤ −η[(Mk+1bk+1)i − ρ] ≤ −η
[

1
4σmin

∥∥xk+1
i − x∗

I

∥∥2 +O

(√
V (bk+1, yk+1)

)]
≲ η

√
V (bk+1, yk+1).

So we get∑
I

∑
i

φk+1
Ii ak+1

i

∥∥x∗
I − xk+1

i

∥∥2
(

1− eη[(Mk+1bk+1)i−ρ]
)
≲
∑

I

∑
i

φk+1
Ii ak+1

i

∥∥x∗
I − xk+1

i

∥∥2 · η
√
V (bk+1, yk+1)

≲ Vpos(ak+1, xk+1) · η
√
V (bk+1, yk+1).

For the second term, write Z as

∀ i ∈ [n], ak+1
i = ak

i e
−η[(Mk+1bk+1)i−ρ]/Z =⇒ 1/Z =

∑
i

ak+1
i eη[(Mk+1bk+1)i−ρ].

So using the expansion (29),

1
Z
− 1 =

∑
i

ak+1
i

(
eη[(Mk+1bk+1)i−ρ] − 1

)
=
∑

i

ak+1
i O

(
η[(Mk+1bk+1)i − ρ]

)
=
∑

I

∑
i

φk+1
Ii ak+1

i O
(
η[(Mk+1bk+1)i − ρ]

)
+
∑

i

φk+1
0i ak+1

i O
(
η[(Mk+1bk+1)i − ρ]

)
= η

∑
I

∑
i

φk+1
Ii ak+1

i O

(∥∥xk+1
i − x∗

I

∥∥2 +
√
V (bk+1, yk+1)

)
+ O(ηak+1

0 )

= ηO

(
σVpos(ak+1, xk+1) +

√
V (bk+1, yk+1) + ak+1

0

)
= ηO

(√
V (zk+1)

)
.

So, since eη[(Mk+1bk+1)i−ρ] ≤ e2η0L0 and Z =
∑

i′ ak
i′ e−η[(Mk+1bk+1)i′ −ρ] ≤ e2η0L0 = O(1), we get

∑
I

∑
i

φk+1
Ii ak+1

i

∥∥x∗
I − xk+1

i

∥∥2
eη[(Mk+1bk+1)i−ρ] (1− Z) ≤

∑
I

∑
i

φk+1
Ii ak+1

i

∥∥x∗
I − xk+1

i

∥∥2 · e4η0L0

∣∣∣∣ 1
Z
− 1
∣∣∣∣

≲ Vpos(ak+1, xk+1)
∣∣∣∣ 1
Z
− 1
∣∣∣∣

≲ Vpos(ak+1, xk+1) · η
√
V (zk+1).

Putting the two bounds together gives the announced inequality. ◀

F Auxiliary lemmas

▶ Lemma 46 (KL- vs. χ2-divergence comparison). For any a, â ∈ ∆n, denoting D(a, â) the KL-divergence and
χ2(a, â) =

∑
i

(âi−ai)2

âi
the χ2-divergence,

D(a, â) ≤ log
(
1 + χ2(a, â)

)
≤ χ2(a, â) and D(a, â) ≥

(
max

i

ai

âi

)−1
χ2(a, â).

Proof. For the first inequality, use Jensen’s inequality on log, and that log(1 + x) ≤ x for all x. For the second
inequality, recall that the f -divergence of a w.r.t. â is defined as

∑n
i=1 âif

(
ai

âi

)
. The KL-divergence D(a, â) is

the f -divergence for fD(t) = t log(t) and the χ2-divergence χ2(a, â) is the f -divergence for fχ2(t) = t2 − t. Note
that for any c > 0,

∀ t ≤ c, fD(t) ≥ 1
c
fχ2(t).

The claimed inequality follows by evaluating at t = ai

âi
and taking the sum weighted by âi. ◀
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▶ Lemma 47. Let DΦ denote the Bregman divergence associated to an arbitrary differentiable function Φ : X → R,
that is, DΦ(x, y) = Φ(x)− Φ(y)− ⟨∇Φ(y), x− y⟩.
DΦ is non-negative if and only if Φ is convex, and DΦ is zero if and only if Φ is linear.
If Φ is convex, then DΦ(x, y) is convex in x (but not in y in general).
DΦ is linear in Φ, and DDΦ(·,z)(x, y) = DΦ(x, y).
We have the three-point identity (or Pythagorean identity)

∀ x, y, z ∈ X, DΦ(x, z) = DΦ(x, y) +DΦ(y, z)− ⟨∇Φ(z)−∇Φ(y), x− y⟩ .

In particular,

∀ x, y, z ∈ X, ∇yDΦ(y, z)⊤(x− y) = DΦ(x, z)−DΦ(x, y)−DΦ(y, z).

For any fixed y0 and y1, x 7→ DΦ(x, y1)−DΦ(x, y0) is affine in x.

The following lemma is just a rewriting of the facts remarked in Section 2.1 about the structure of the
problem.

▶ Lemma 48. Under the Assumptions 1-6, letting ρ = F (µ∗, ν∗),

∀ x ∈ X , (Fν∗)(x) ≥ ρ ∀ y ∈ Y, ((µ∗)⊤F )(y) ≤ ρ

and ∀ x ∈ supp(µ∗), (Fν∗)(x) = ρ ∀ y ∈ supp(ν∗), ((µ∗)⊤F )(y) = ρ

and we have the first- and second-order conditions

∀ x ∈ supp(µ∗), ∂x(Fν∗)(x) = 0 ∀ y ∈ supp(ν∗), ∂y((µ∗)⊤F )(y) = 0

and ∂2
xx(Fν∗)(x) ≻ 0 ∂2

yy((µ∗)⊤F )(y) ≺ 0.

Using the shorthand notations detailed in Appendix A, this means that

∀ I ∈ [n∗], M∗
I•b

∗ = ρ ∀ J ∈ [m∗], (a∗)⊤M∗
•J = ρ

and ∂xM
∗
I•b

∗ = 0 (a∗)⊤∂yM
∗
•J = 0

and ∂2
xxM

∗
I•b

∗ =: HI ≻ 0 (a∗)⊤∂2
yyM

∗
•J =: −HJ ≺ 0.

F.1 Useful expressions and a priori bounds for Vwei and Vpos

In many technical proofs, it will be helpful to keep in mind the following decomposition of the Lyapunov function:
By Pythagorean identity, we have the bias-variance decomposition

2Vpos(a, x) =
∑

I

aI

(∥∥x∗
I − xI

∥∥2 + Tr(ΣI)
)

=
∑

I

∑
i

aiφIi

(∥∥x∗
I − xI

∥∥2 +
∥∥xi − xI

∥∥2
)

=
∑

I

∑
i

aiφIi

(∥∥x∗
I − xi

∥∥2 + 2 ⟨x∗
I − xI , xi − xI⟩

)
=
∑

I

∑
i

aiφIi

∥∥x∗
I − xi

∥∥2
. (36)

In particular, note that by Jensen’s inequality,
∑

I

∥∥(a⊙∆x)I

∥∥ =
∑

I

∥∥∑
i φIiai(xi − x∗

I)
∥∥ ≤∑I,i φIiai

∥∥xi −

x∗
I

∥∥ ≤√∑I,i φIiai

∥∥xi − x∗
I

∥∥2 =
√

2Vpos(a, x).
The stray weights a0, b0 play a special role. Indeed since a∗

0 = 0, then dh(a∗
0, a0) = a0, so

Vwei(a, x) = D(a∗, a) =
∑

I

dh(a∗
I , aI) + a0. (37)

Now dh(s, s′) ≥ 0. So Vwei can be viewed as a sum of two terms, both positive: The first one measures the
(unnormalized entropic Bregman) distance between a∗ and (aI)I∈I∗ in RI∗

+ , and the second one accounts for
the stray weights a0. In particular, a0 = O(Vwei(a, x)), while for I ̸= 0 we only have |aI − a∗

I | ≤
∥∥a− a∗

∥∥
1 =

O(
√
Vwei(a, x)) (by Pinsker’s inequality or by 1-strong convexity of h).



Guillaume Wang & Lénaïc Chizat 55

G Calculations

In this section we present the simple but tedious calculations that constitute the proofs of Claim 20, Lemma 24
and Claim 26. They all consist in writing Taylor expansions of f around (x∗

I , y
∗
J) or (x̂i, y

∗
J) or (x∗

I , ŷj), and
applying the facts collected in Lemma 48 and Appendix F.1, which we will use without explicit mention
throughout this subsection.

We will also repeatedly use that as a consequence of (36) and (37),∑
I

∥∥(∆a⊙∆x)I

∥∥ =
∑

I

|∆a∗
I |
∥∥∆xI

∥∥ =
∑

I

1
aI
|∆a∗

I |
∥∥aI∆xI

∥∥
≤
(

min
I
aI

)−1 ∥∥∆a∗∥∥
1 max

I

∥∥aI∆xI

∥∥
= O

((
min

I
aI

)−1√
Vwei(a, x)

√
Vpos(a, x)

)
= O

((
min

I
aI

)−1
V1(a, x)

)
.

G.1 Proof of Claim 20

Proof of Claim 20. Let us compute separately the four terms of g̃ap(z; ẑ) =
〈(

∇a

∇x

−∇b

−∇y

)
Fn,m(ẑ),

(
â−a
x̂−x

b̂−b
ŷ−y

)〉
, where

for ease of reference we recall that xi := x̂i +
∑

I φ̂Ii(XI − x̂i) and ai :=
∑

I AI
φ̂Iiâi

âI

. Focus on the ∇aFn,m term

(and the −∇bFn,m term is dealt with analogously). By definition ⟨δa,∇aFn,m(ẑ)⟩ = (δa)⊤M̂ b̂, so

⟨∇aFn,m(ẑ), â− a⟩ = â⊤M̂ b̂− a⊤M̂ b̂

and by Taylor expansions of f around (x∗
I , y

∗
J),

− a⊤M̂ b̂ = −
∑

I

AI

∑
ij

φ̂Iiâi

âI

M̂ij b̂j

= −
∑
IJ

AI

âI

∑
ij

φ̂IiψJj · âi

[
M∗

IJ + (x̂i − x∗
I)⊤∂xM

∗
IJ + ∂yM

∗
IJ(ŷj − y∗

J)

+O(∥x̂i − x∗
I∥2 + ∥ŷj − y∗

J∥2)
]
b̂j +O

(
b̂0

)
= −A⊤M∗b̂− (A⊙ (x̂−x∗))⊤∂xM

∗b̂−A⊤∂yM
∗((ŷ− y∗)⊙ b̂) +O

(
b̂0 + (min

I
âI)−1Vpos(â, x̂) +Vpos(̂b, ŷ)

)
= −A⊤M∗b̂− (A⊙∆x̂)⊤∂xM

∗∆b̂−∆A⊤∂yM
∗(∆ŷ ⊙ b̂) +O

((
min

I
ŵI

)−1
V1(ẑ)

)
= −A⊤M∗b̂−∆A⊤∂yM

∗(∆ŷ ⊙ b∗) +O

((
min

I
ŵI

)−1
V1(ẑ)

)
.

For the ∇xFn,m term (and the −∇yFn,m term is dealt with analogously), by definition ⟨δx,∇xFn,m(ẑ)⟩ =
(â⊙ δx)⊤∂xM̂ b̂, so

⟨∇xFn,m(ẑ), x̂− x⟩ =
∑

i

âi(x̂i − xi)⊤∂xM̂i•b̂ =
∑

I

∑
i

φ̂Iiâi(x̂i −XI)⊤∂xM̂i•b̂

=
∑
IJ

∑
ij

φ̂Iiψ̂Jj · âi(x̂i −XI)⊤
[
∂xM

∗
IJ + (x̂i − x∗

I)⊤∂2
xxM

∗
IJ + ∂2

xyM
∗
IJ(ŷj − y∗

J)

+O
(∥∥x̂i − x∗

I

∥∥2 +
∥∥ŷj − y∗

J

∥∥2
)]
b̂j +O

(
b̂0

)
= (â⊙ (x̂−X))⊤∂xM

∗b̂+
∑
I,i

φ̂Iiâi(x̂i −XI , x̂i − x∗
I)⊤∂2

xxM
∗
I•b̂+ (â⊙ (x̂−X))⊤∂2

xyM
∗((ŷ − y∗)⊙ b̂)

+O
(
b̂0 + Vpos(ẑ)

)
= (â⊙ (x̂−X))⊤∂xM

∗∆b̂+
∑
I,i

φ̂Iiâi ⟨x̂i −XI , x̂i − x∗
I⟩HI

+ (â⊙ (x̂−X))⊤∂2
xyM

∗((ŷ − y∗)⊙ b̂)

+O (V1(ẑ))

= −(â⊙∆X)⊤∂xM
∗∆b̂+

∑
I,i

φ̂Iiâi ⟨x̂i −XI , x̂i − x∗
I⟩HI

− (â⊙∆X)∂2
xyM

∗(∆ŷ ⊙ b̂) +O (V1(ẑ))
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= −(a∗ ⊙∆X)⊤∂xM
∗∆b̂+

∑
I,i

φ̂Iiâi ⟨x̂i −XI , x̂i − x∗
I⟩HI

− (a∗ ⊙∆X)⊤∂2
xyM

∗(∆ŷ ⊙ b∗)

+O

((
min

I
ŵI

)−1
V1(ẑ)

)
.

Further transform the second term as∑
I,i

φ̂Iiâi ⟨x̂i −XI , x̂i − x∗
I⟩HI

=
∑
I,i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2
HI

+
∑
I,i

φ̂Iiâi ⟨x∗
I −XI , x̂i − x∗

I⟩HI

= O (Vpos(â, x̂))−
∑

I

âI

〈
∆XI ,∆x̂I

〉
HI

.

Putting everything together, and using that

−A⊤M∗b̂+ â
⊤
M∗B = −A⊤M∗∆b̂+ ∆â⊤

M∗B = −∆A⊤M∗∆b̂+ ∆â⊤
M∗∆B +O

(
â0 + b̂0

)
,

we get the desired estimate. ◀

G.2 Proof of Lemma 24

Proof of Lemma 24. Let us compute separately the four terms of g̃ap(z(∗); ẑ) =
〈(

∇a

∇x

−∇b

−∇y

)
Fn,m(ẑ),

 â−a(∗)

x̂−x(∗)

b̂−b(∗)

ŷ−y(∗)

〉,

where for ease of reference we recall that x(∗)
i := x̂i +

∑
I φ̂Ii(x∗

I − x̂i) and a
(∗)
i :=

∑
I a

∗
I

φ̂Iiâi

âI

.
In the calculations below, we write ε, εIij ∈ [−1, 1] or ∈ B0,1 to denote quantities possibly dependent on

summation indices, and that may change from line to line. This is done in order to track error terms with more
precision than using O( · )’s. Focus on the ∇aFn,m term (and the −∇bFn,m term is dealt with analogously). By
definition ⟨δa,∇aFn,m(ẑ)⟩ = (δa)⊤M̂ b̂, so

⟨∇aFn,m(ẑ), â− a⟩ = â⊤M̂ b̂− (a(∗))⊤M̂ b̂,

and by Taylor expansions of f around (x∗
I , ŷj),

− (a(∗))⊤M̂ b̂ = −
∑

I

a∗
I

∑
ij

φ̂Iiâi

âI

M̂ij b̂j

= −
∑

I

a∗
I

∑
ij

φ̂Iiâi

âI

[
(∗M∧)Ij + (x̂i−x∗

I)⊤∂x(∗M∧)Ij + 1
2((x̂i−x∗

I)2)⊤∂2
xx(∗M∧)Ij +L3εIij

∥∥x̂i−x∗
I

∥∥3
]
b̂j

= −(a∗)⊤(∗M∧)̂b− (a∗ ⊙∆x̂)⊤∂x(∗M∧)̂b− 1
2
∑

I

a∗
I

∑
i

φ̂Iiâi

âI

((x̂i − x∗
I)2)⊤∂2

xx(∗M∧)I•b̂

+ L3ε
∑

I

a∗
I

∑
i

φ̂Iiâi

âI

∥∥x̂i − x∗
I

∥∥3
.

Now for any I, J, j, ∂2
xx(∗M∧)Ij = ∂2

xxM
∗
IJ +O

(∥∥ŷj − y∗
J

∥∥), so∑
I

a∗
I

∑
i

φ̂Iiâi

âI

((x̂i − x∗
I)2)⊤∂2

xx(∗M∧)I•b̂

=
∑
IJ

a∗
I

âI

∑
ij

φ̂IiψJj · âi((x̂i − x∗
I)2)⊤∂2

xx(∗M∧)I•b̂j +
∑

I

a∗
I

âI

∑
ij

φ̂Iiψ0j · âi((x̂i − x∗
I)2)⊤∂2

xx(∗M∧)I•b̂j

=
∑
IJ

a∗
I

âI

∑
ij

φ̂IiψJj · âi((x̂i − x∗
I)2)⊤ [∂2

xxM
∗
IJ +O

(∥∥ŷj − y∗
J

∥∥)] b̂j +O

(∑
I

a∗
I

âI

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2 · b̂0

)

=
∑
IJ

a∗
I

âI

∑
i

φ̂Iiâi((x̂i − x∗
I)2)⊤∂2

xxM
∗
IJ b̂J +O

(∑
I

a∗
I

âI

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2
(√

Vpos(̂b, ŷ) + b̂0

))

=
∑

I

a∗
I

âI

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2
HI

+O

((
min

I
âI

)−1
Vpos(â, x̂)

(√
Vpos(̂b, ŷ) +

∥∥∆b̂
∥∥

1

))
.
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For the ∇xFn,m term (and the −∇yFn,m term is dealt with analogously), by definition ⟨δx,∇xFn,m(ẑ)⟩ =
(â⊙ δx)⊤∂xM̂ b̂, so〈

∇xFn,m(ẑ), x̂− x(∗)
〉

=
∑

i

âi(x̂i − x(∗)
i )⊤∂xM̂i•b̂ =

∑
I

∑
i

φ̂Iiâi(x̂i − x∗
I)⊤∂xM̂i•b̂

=
∑

I

∑
ij

φ̂Iiâi(x̂i − x∗
I)⊤

[
∂x(∗M∧)Ij + (x̂i − x∗

I)⊤∂2
xx(∗M∧)Ij + L3εIij

∥∥x̂i − x∗
I

∥∥2
]
b̂j

= (â⊙∆x̂)⊤∂x(∗M∧)̂b+
∑

I

∑
i

φ̂Iiâi((x̂i − x∗
I)2)⊤∂2

xx(∗M∧)I•b̂+ L3ε
∑

I

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥3
.

Now by the same calculation as previously,∑
I

∑
i

φ̂Iiâi((x̂i − x∗
I)2)⊤∂2

xx(∗M∧)I•b̂ =
∑

I

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2
HI

+O

(
Vpos(â, x̂)

√
V1(̂b, ŷ)

)
.

Putting everything together we get

g̃ap(z; ẑ) = â⊤(∧M∗)b∗ − (a∗)⊤(∗M∧)̂b

+ ((â− a∗)⊙∆x̂)⊤∂x(∗M∧)̂b− â⊤∂y(∧M∗)(∆ŷ ⊙ (̂b− b∗))

+
∑

I

(
1− 1

2
a∗

I

âI

)∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2
HI

+
∑

J

(
1− 1

2
b∗

J

b̂J

)∑
j

ψ̂Jj b̂j

∥∥ŷj − y∗
J

∥∥2
HJ

+ L3ε
∑

I

(
1 + w∗

I

ŵI

)∑
i

φ̂Iiŵi

∥∥p̂i − p∗
I

∥∥3 +O

((
min

I
âI

)−1
V1(ẑ)3/2

)
.

Now,
The terms on the second line are negligible, as

∂x(∗M∧)I•b̂ =
∑

J

∑
j

ψ̂Jj

[
∂xM

∗
IJ +O(

∥∥ŷj − y∗
J

∥∥)
]
b̂j +O

(
b̂0

)
= ∂xM

∗
I•∆b̂+O

(√
Vpos(̂b, ŷ)

)
+O

(
b̂0

)
= O

(√
V1(̂b, ŷ)

)
so ((â− a∗)⊙∆x̂)⊤∂x(∗M∧)̂b = O

((
min

I
âI

)−1
V1(â, x̂) ·

√
V1(̂b, ŷ)

)
.

Part of the terms on the third line turn out to be negligible, as∑
I

(
1
2 −

1
2
a∗

I

âI

)∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2
HI

= 1
2
∑

I

âI − a∗
I

âI

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2

= O

((
min

I
âI

)−1 ∥∥â− a∗∥∥
1Vpos(â, x̂)

)
.

On the last line, the term in L3ε is absolutely bounded by

L3 · 1 ·
∑

I

2
(

min
I
ŵI

)−1
φ̂Iiŵi

∥∥p̂i − p∗
I

∥∥2 · λτ ≤ 2L3

(
min

I
ŵI

)−1
· Vpos(ẑ) · λτ.

So as announced,

g̃ap(z; ẑ) = â⊤(∧M∗)b∗ − (a∗)⊤(∗M∧)̂b+ 1
2
∑

I

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2
HI

+ 1
2
∑

J

∑
j

ψ̂Jj b̂j

∥∥ŷj − y∗
J

∥∥2
HJ

+O

((
min

I
ŵI

)−1
V1(ẑ)3/2

)
+ ε ·

[
2L3

(
min

I
ŵI

)−1
· Vpos(ẑ) · λτ

]
. ◀

G.3 Proof of Claim 26
Proof of Claim 26. Let any ẑ = (â, x̂, b̂, ŷ) ∈ ∆n×Xn×∆m×Ym and Z = (A,X,B, Y ) ∈ ∆n∗ ×Xn∗ ×∆m∗ ×
Ym∗ , and denote Ẑ = (â, x̂, b̂, ŷ). Recall that, as defined in (17), for any X̃ ∈ Xn∗ ,

∥∥∆X̃
∥∥ = maxI

∥∥∆X̃I

∥∥, and
for any Z̃ = (Ã, X̃, B̃, Ỹ ),

∥∥∆Z̃
∥∥2 =

∥∥∆Ã
∥∥2

1 +
∥∥∆X̃

∥∥2 +
∥∥∆B̃

∥∥2
1 +

∥∥∆Ỹ
∥∥2.
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In the calculations below, we write ε, εIi, εIJi ∈ [−1, 1] to denote quantities possibly dependent on summation
indices, and that may change from line to line. This is done in order to track error terms with more precision
than using O( · )’s. By Taylor expansions of f around (x∗

I , y
∗
J), we have

Fn,m∗(â, x̂, B, Y ) =
n∑

i=1

∑
J∈[m∗]

âif(x̂i, YJ)BJ

=
∑
IJ

∑
i

φ̂IiâiBJ

[
M∗

IJ + (x̂i − x∗
I)⊤∂xM

∗
IJ + ∂yM

∗
IJ(YJ − y∗

J) + (x̂i − x∗
I)⊤∂2

xyM
∗
IJ(YJ − y∗

J)

+ 1
2((x̂i − x∗

I)2)⊤∂2
xxM

∗
IJ + L3εIJi

∥∥x̂i − x∗
I

∥∥3 +O
(∥∥YJ − y∗

J

∥∥2
)]

+
∑

J

∑
i

φ̂0iâiBJ

[
(∧M∗)iJ +O

(∥∥YJ − y∗
J

∥∥)]
= â

⊤
M∗B + (â⊙∆x̂)⊤∂xM

∗B + â
⊤
∂yM

∗(∆Y ⊙B) + (â⊙∆x̂)⊤∂2
xyM

∗(∆Y ⊙B)

+ 1
2
∑

I

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2
HI

+
∑
IJ

∑
i

φ̂Iiâi∆BJO
(∥∥x̂i − x∗

I

∥∥2
)

+
∑

I

∑
i

φ̂IiâiL3εIi

∥∥x̂i − x∗
I

∥∥3

+ (φ̂0 ⊙ â)⊤(∧M∗)B +O
(
â0
∥∥∆Y

∥∥)+O
(∥∥∆Y

∥∥2
)

= â
⊤
M∗B + (φ̂0 ⊙ â)⊤(∧M∗)B

+ (â⊙∆x̂)⊤∂xM
∗B + â

⊤
∂yM

∗(∆Y ⊙B) + (â⊙∆x̂)⊤∂2
xyM

∗(∆Y ⊙B)

+ 1
2
∑

I

∑
i

φ̂Iiâi

(∥∥x̂i − x∗
I

∥∥2
HI

+ 2L3εIi

∥∥x̂i − x∗
I

∥∥3
)

+O
(
â0
∥∥∆Y

∥∥)+O
(∥∥∆Y

∥∥2
)

+O
(∥∥∆B

∥∥
1 · Vpos(â, x̂)

)
.

The first line can be rewritten as

â
⊤
M∗B + (φ̂0 ⊙ â)⊤(∧M∗)B = (1− â0)ρ+ â

⊤
M∗∆B + (φ̂0 ⊙ â)⊤(∧M∗)B

= (1− â0)ρ+ ∆â⊤
M∗∆B + (φ̂0 ⊙ â)⊤(∧M∗)B

= ρ+ ∆â⊤
M∗∆B + (φ̂0 ⊙ â)⊤ [(∧M∗)B − ρ1

]
= ρ+ ∆â⊤

M∗∆B + (φ̂0 ⊙ â)⊤ [(∧M∗)b∗ − ρ1
]︸ ︷︷ ︸

≥0

+O
(
â0
∥∥∆B

∥∥
1

)
.

On the second line, it is not hard to check that

(â⊙∆x̂)⊤∂xM
∗B = (â⊙∆x̂)⊤∂xM

∗∆B = (a∗ ⊙∆x̂)⊤∂xM
∗∆B +O

(∥∥∆â
∥∥

1

∥∥∆x̂
∥∥∥∥∆B

∥∥
1

)
and likewise for the other terms, and so

(â⊙∆x̂)⊤∂xM
∗B + â

⊤
∂yM

∗(∆Y ⊙B) + (â⊙∆x̂)⊤∂2
xyM

∗(∆Y ⊙B)

= (a∗ ⊙∆x̂)⊤∂xM
∗∆B + ∆â⊤

∂yM
∗(∆Y ⊙ b∗) + (a∗ ⊙∆x̂)⊤∂2

xyM
∗(∆Y ⊙ b∗) +O

(∥∥∆Ẑ
∥∥3 + ∥δz∥3

)
.

We can lower-bound the first term on the third line as

1
2
∑

I

∑
i

φ̂Iiâi

(∥∥x̂i − x∗
I

∥∥2
HI

+ 2L3εIi

∥∥x̂i − x∗
I

∥∥3
)
≥ 1

2
∑

I

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2 (σmin − 2L3εIi · λτ)︸ ︷︷ ︸
≥ σmin

2

by our assumption that λτ ≤ σmin
4L3

. Further, we can decompose this lower bound as∑
I

∑
i

φ̂Iiâi

∥∥x̂i − x∗
I

∥∥2 =
∑

I

âI

∥∥x̂I − x∗
I

∥∥2 +
∑

I

âI Tr(Σ̂I)︸ ︷︷ ︸
≥0

≥
∑

I

a∗
I

∥∥x̂I − x∗
I

∥∥2 +O
(∥∥∆â

∥∥
1

∥∥∆x̂
∥∥2
)
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and transform the remaining quadratic term, using that 2 ⟨a, b⟩ ≤ 2
∥∥a∥∥∥∥b∥∥ ≤ ∥∥a∥∥2 +

∥∥b∥∥2, as∑
I

a∗
I

∥∥x̂I − x∗
I

∥∥2 ≥
∑

I

a∗
I

(
−2
〈

∆x̂I ,∆XI

〉
−
∥∥∆XI

∥∥2
)

= −2
∑

I

a∗
I

〈
∆x̂I ,∆XI

〉
+O

(∥∥∆X
∥∥2
)
.

Thus, combining the above bounds, we have

Fn,m∗(â, x̂, B, Y ) ≥ ρ+ ∆â⊤
M∗∆B

+ (a∗ ⊙∆x̂)⊤∂xM
∗∆B + ∆â⊤

∂yM
∗(∆Y ⊙ b∗) + (a∗ ⊙∆x̂)⊤∂2

xyM
∗(∆Y ⊙ b∗)

− σmin

2
∑

I

a∗
I

〈
∆x̂I ,∆XI

〉
+O

(∥∥∆Ẑ
∥∥3 + ∥δz∥2 + ∥δz∥

(
â0 + Vpos(â, x̂)

))
.

One can derive the analogous upper bound for Fn∗,m(A,X, b̂, ŷ). Combining the two, we obtain

Fn,m∗(â, x̂, B, Y )− Fn∗,m(A,X, b̂, ŷ)

≥ −


∆A
∆X
∆B
∆Y


⊤ 

0 0 M∗ ∂yM
∗b∗

0 a∗ σmin
2 id a∗∂xM

∗ a∗∂2
xyM

∗b∗

−(M∗)⊤ −(a∗∂xM
∗)⊤ 0 0

−(∂yM
∗b∗)⊤ −(a∗∂2

xyM
∗b∗)⊤ 0 b∗ σmin

2 id




∆â
∆x̂
∆b̂
∆ŷ


+O

(∥∥∆Ẑ
∥∥3 + ∥δz∥

(
ŵ0 + σVpos(ẑ)

)
+ ∥δz∥2

)
.

It just remains to note that ∥δz∥
(
ŵ0 + σVpos(ẑ)

)
≤ 1

2∥δz∥
2 + 1

2

(
ŵ0 + σVpos(ẑ)

)2
. ◀

H Proof of convergence of CP-MP in the exact-parametrization case

In this section we prove Proposition 6, which states that CP-MP converges under the same conditions and with
the same rate as CP-PP. The proof essentially combines the convergence result for CP-PP with the general
fact that the Mirror Prox and Proximal Point updates coincide up to order-3 terms, a consequence of the two
following lemmas.

▶ Lemma 49. Let A ∈ Rm×d and b ∈ Rm for some m < d, with A having full rank, and denote Z ={
z ∈ Rd;Az = b

}
. Define the semi-norm

∀ v ∈ Rd, ∥v∥∗Z = max
∥δ∥≤1
Aδ=0

⟨δ, v⟩

where
∥∥δ∥∥ is the usual Euclidean norm. Consider some function F : Rd → R with Lipschitz-continuous second-

order differentials. Let D : Z × Z → R+ such that for any z0 in some subset Z0 ⊂ Z,
D0(z) := D(z, z0) is strongly convex and smooth over z ∈ Z, and the constants do not depend on z0.
There exist H = Hij ≻ 0 and K = Kijk an order-3 symmetric tensor (that depend on z0) such that
∇D0(z) = H(z − z0) + K

2 (z − z0)2 +O
(∥∥z − z0

∥∥3
)

. That is, using Einstein’s summation notation,

[∇D0(z)]i = Hij(z − z0)j + 1
2Kijk(z − z0)j(z − z0)k +O

(∥∥z − z0∥∥3
)
.

To be clear, we assume that σmin(H)−1 and the norms of H and K, as well as the constant hidden in the O( · )
in the above equation, are all bounded by a constant that does not depend on z0. Consider the Mirror Prox (MP)
update zk+1

MP = MP(zk; η) defined by

ẑ = arg min
Az=b

〈
∇F (zk), z

〉
+ 1
η
D(z, zk)

zk+1
MP = arg min

Az=b
⟨∇F (ẑ), z⟩+ 1

η
D(z, zk).

Then, if zk ∈ Z0 (and for η small enough),

zk+1
MP − z

k = −ηH−1P∇F (zk) + η2H−1P ·
(
∇2F (zk)H−1P∇F (zk)− 1

2K
[
H−1P∇F (zk)

]2)
+O

(
η3∥∥∇F (zk)

∥∥2
∗Z

)
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where O( · ) hides only the aforementioned constant and the smoothness constants of F , and where

P = I −A⊤ [AH−1A⊤]−1
AH−1.

▶ Lemma 50. Under the same conditions and using the same notations as in the previous lemma, the Proximal
Point (PP) update zk+1

PP = PP(zk; η) defined by

zk+1
PP = arg min

Az=b
F (z) + 1

η
D(z, zk)

satisfies

zk+1
PP − z

k = −ηH−1P∇F (zk) + η2H−1P ·
(
∇2F (zk)H−1P∇F (zk)− 1

2K
[
H−1P∇F (zk)

]2)
+O

(
η3∥∥∇F (zk)

∥∥
∗Z

)
.

That is, zk+1
PP − z

k+1
MP = O

(
η3
∥∥∇F (zk)

∥∥
∗Z

)
.

▶ Remark 51. One can check that P 2 = P and that H−1P is symmetric, i.e., P is a projection which is
orthogonal for ⟨ · , · ⟩H−1 . Furthermore, PA⊤ = 0, i.e., P⊤ projects onto the kernel of A, and so the semi-norm
∥Pv∥ = max∥δ∥≤1 ⟨δ, Pv⟩ is dominated by ∥v∥∗Z (the operator norm of P⊤ being bounded by a constant).

▶ Remark 52. In the Euclidean case where D( · , · ) = 1
2
∥∥ · − · ∥∥2, we recover the formulas from [29, Prop. 2]. In

the case where the divergence function D( · , · ) is a Bregman divergence, we provide a finer (order-2) expansion
than [1, Prop. 1] (which was order-1).

In the next subsection we show how to prove Proposition 6 using (a min-max version of) the two above
lemmas, and in the two following subsections we prove Lemma 49 and Lemma 50 respectively.

H.1 Proof of Proposition 6
In this subsection we assume the exact-parametrization setting, i.e. n = n∗,m = m∗, and we use the notations
introduced in Appendix A.

Preliminaries

For all z, ẑ ∈ ∆n ×Xn ×∆m × Ym, denote

D ((a, x), (â, x̂)) = D(a, â) + η

2σ
∑

i

âi

∥∥xi − x̂i

∥∥2
,

similarly for D
(
(b, y), (̂b, ŷ)

)
, and D(z, ẑ) = D

(
(a, x), (â, x̂)

)
+ D

(
(b, y), (̂b, ŷ)

)
; in particular we have V (ẑ) =

D(z∗, ẑ). Also let∥∥z − ẑ∥∥2 =
∥∥a− â∥∥2

1 + max
i

∥∥xi − x̂i

∥∥2 +
∥∥b− b̂∥∥2

1 + max
j

∥∥yj − ŷj

∥∥2

and recall from Claim 21 that divergence and squared norm are equivalent in the sense that, if ai, âi, bj , b̂j ≥ c =
Θ(1) for all i, j, then

∥∥z − ẑ∥∥2
≲ D(z, ẑ) ≲

∥∥z − ẑ∥∥2.

Furthermore, denote g(z) =
(

∇a

∇x

−∇b

−∇y

)
Fn,m(z) and define the semi-norm

∥v∥∗Z = max
δz∈Rn×X n×Rm×Ym

∥δz∥≤1
1⊤δa=1⊤δb=0

⟨δz, v⟩ .

By definition, z∗ is a stationary point of the vector flow g(z) under the constraint z ∈ ∆n × Xn ×∆m × Ym,
and z∗ belongs to the relative interior of that domain. So by smoothness of Fn,m,∥∥g(z)

∥∥
∗Z =

∥∥g(z)− g(z∗)
∥∥

∗Z ≲
∥∥z − z∗∥∥.
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Comparing the CP-MP and CP-PP updates

Starting from zk, the CP-MP update z̃k+1 is given by

ẑ = arg min
a∈∆n

x∈X n

arg max
b∈∆m

y∈Ym

〈
g(zk), z

〉
+ 1
η

[
D
(
(a, x), (ak, xk)

)
−D

(
(b, y), (bk, yk)

)]
z̃k+1 = arg min

a∈∆n

x∈X n

arg max
b∈∆m

y∈Ym

⟨g(ẑ), z⟩+ 1
η

[
D
(
(a, x), (ak, xk)

)
−D

(
(b, y), (bk, yk)

)]
and the CP-PP update zk+1 by

zk+1 = arg min
a∈∆n

x∈X n

arg max
b∈∆m

y∈Ym

Fn,m(z) + 1
η

[
D
(
(a, x), (ak, xk)

)
−D

(
(b, y), (bk, yk)

)]
.

It is not hard to adapt the proofs of Lemma 49 and Lemma 50 to cover min-max updates of these forms,
as D(a, â) = +∞ for a on the relative boundary of ∆n so that the constraints reduce to 1⊤a = 1⊤b = 1.
Furthermore, it is not hard to show that

∥∥∆z̃k+1
∥∥,∥∥∆zk+1

∥∥ ≲
∥∥∆zk

∥∥+ η, so in particular by choosing r0 and η
small enough, we may assume zk, zk+1, z̃k+1 ∈ Z0 = {z; mini ai,minj bj ≥ c}, and the assumptions of Lemma 49
and Lemma 50 on D( · , zk) are satisfied. Thus we have∥∥z̃k+1 − zk+1∥∥ ≲ η3∥∥g(zk)

∥∥
∗Z ≲ η3∥∥∆zk

∥∥.
Let us convert the above bound on

∥∥z̃k+1−zk+1
∥∥ into a bound on

∣∣V (zk+1)− V (z̃k+1)
∣∣. Since we can assume

zk+1, z̃k+1 ∈ Z0, by using that h : s 7→ s log s − s + 1 is c-smooth over [c, 1] one easily checks that, denoting
w = (a, b) and p = (x, y),

D(w∗, wk+1)−D(w∗, w̃k+1) = D(w̃k+1, wk+1)−
∑

i

(
h′(wk+1

i )− h′(w̃k+1
i )

) (
w∗

i − w̃k+1
i

)
= O

(∥∥wk+1 − w̃k+1∥∥2 +
∥∥wk+1 − w̃k+1∥∥∥∥∆w̃k+1∥∥)

by Bregman three-point identity; and similarly, for each i∥∥p∗
i − pk+1

i

∥∥2 −
∥∥p∗

i − p̃k+1
i

∥∥2 = O
(∥∥pk+1

i − p̃k+1
i

∥∥2 +
∥∥pk+1

i − p̃k+1
i

∥∥∥∥∆p̃k+1
i

∥∥) .
Now it is not hard to show (in fact this is just (38) below) that

∥∥z̃k+1 − zk
∥∥ ≲ η

∥∥∇g(zk)
∥∥ and so

∥∥∆z̃k+1
∥∥ ≲∥∥∆zk

∥∥. So∣∣V (zk+1)− V (z̃k+1)
∣∣ =

∣∣D(z∗, zk+1)−D(z∗, z̃k+1)
∣∣ ≲ η3∥∥∆zk

∥∥2
≲ η3D(z∗, zk) = η3V (zk).

Proof conclusion

In the proof of Theorem 5 we showed that

V (zk+1) ≤ V (zk)− (C/2)η2V (zk+1)

for some C dependent only on (f,X ,Y) and Γ0, for η, σ small enough and r0 small enough (depending on
η, σ). So

V (z̃k+1) ≤ V (zk)− (C/2)η2V (z̃k+1) +O
(
η3V (zk)

)
,

and we can conclude to the local exponential convergence of the sequence of CP-MP iterates in exactly the same
way as for Theorem 5.

H.2 Proof of Lemma 49
To lighten notation and since we focus on a single iteration, instead of “zk+1

MP = MP(zk; η)” we will consider
MP(z0; η) = z2 with

z1 = arg min
Az=b

〈
∇F (z0), z

〉
+ 1
η
D(z, z0) (U1)

z2 = arg min
Az=b

〈
∇F (z1), z

〉
+ 1
η
D(z, z0). (U2)
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The goal is to get an order-2 expansion for δz := z2 − z0.
Also to lighten notation, we will write

∥∥∇F (z0)
∥∥ for

∥∥∇F (z0)
∥∥

∗Z (and similarly for ∇F (z1)).

First estimates

By Lagrangian duality, there exist λ1, λ2 ∈ Rm such that

∇F (z0) + 1
η
∇D0(z1)−A⊤λ1 = 0 (S1)

and ∇F (z1) + 1
η
∇D0(z2)−A⊤λ2 = 0. (S2)

As a first consequence, since (z1 − z0)⊤A⊤ = 0, we get that

(z1 − z0)⊤
[
∇F (z0) + 1

η
∇D0(z1)

]
= 0

µ

2 ∥z
1 − z0∥2 ≤ (z1 − z0)⊤ (∇D0(z1)−∇D0(z0)

)
≤ η∥z1 − z0∥

∥∥∇F (z0)
∥∥

∥z1 − z0∥ ≲ η
∥∥∇F (z0)

∥∥
and also consequently

∥∥∇F (z1)
∥∥ ≤ ∥∥∇F (z0)

∥∥+O(∥z1 − z0∥) ≲
∥∥∇F (z0)

∥∥. Similarly since (z2 − z0)⊤A⊤ = 0,∥∥z2 − z0∥∥ ≲ η
∥∥∇F (z1)

∥∥ ≲ η
∥∥∇F (z0)

∥∥. (38)

An order-1 expansion for the first update (U1)

Next we want to get an explicit approximate expression for ∇F (z1) only in terms of z0, based on the expansion

∇F (z1) = ∇F (z0) +∇2F (z0)(z1 − z0) +O
(
∥z1 − z0∥)2) .

For this we want to get an explicit approximate expression for z1 − z0.
From (S1) and an order-1 expansion of ∇D0, we have

η∇F (z0) +H(z1 − z0)− ηA⊤λ1 = O(∥z1 − z0∥2)

z1 − z0 = ηH−1 (−∇F (z0) +A⊤λ1)+O(∥z1 − z0∥2)

and this will get us an expression of z1 − z0 of the correct order for this paragraph’s purpose. It remains to
identify A⊤λ1. An approximate expression of it can be obtained simply by

1
η
A(z1 − z0) = 0 = AH−1 (−∇F (z0) +A⊤λ1)+ 1

η
O(∥z1 − z0∥2)

AH−1A⊤λ1 = AH−1∇F (z0) + 1
η
O(∥z1 − z0∥2)

λ1 =
[
AH−1A⊤]−1

AH−1∇F (z0) + 1
η
O(∥z1 − z0∥2)

since AH−1A⊤ is invertible as an m×m product of full-rank matrices. Thus we get

z1 − z0 = −ηH−1
(
I −A⊤ [AH−1A⊤]−1

AH−1
)

︸ ︷︷ ︸
=P

∇F (z0) +O(∥z1 − z0∥2). (P)

To recap, we showed that

∇F (z1) = ∇F (z0)− η∇2F (z0)H−1P∇F (z0) +O(∥z1 − z0∥2). (39)

An order-2 expansion of δz (the second update (U2))

Recall that we denote δz = z2−z0. From (S2) and an order-1 expansion of ∇D0, by exactly the same calculations
as in the previous paragraph,

λ2 =
[
AH−1A⊤]−1

AH−1∇F (z1) + 1
η
O(∥δz∥2)

and δz = −ηH−1P∇F (z1) +O(∥δz∥2).
(40)
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However this is not precise enough for our goal, as the error is order-2 in η.
From (S2) and an order-2 expansion of ∇D0, we have

η∇F (z1) +Hijδz
j + 1

2Kijkδz
jδzk − ηA⊤λ2 = O(∥δz∥3)(

Hij + 1
2Kijkδz

k

)
δzj = −η∇F (z1) + ηA⊤λ2 +O(∥δz∥3)

where unmarked vectors are implicitly indexed by subscript i. Denoting for concision

Gij := 1
2Kijkδz

k and v := H−1 (∇F (z1)−A⊤λ2)
(note that G is symmetric since K is), the above equation writes

(H +G)δz = −ηHv +O(∥δz∥3)
(I +H−1G)δz = −ηv +O(∥δz∥3).

Now
∥∥G∥∥ ≲ ∥δz∥ ≲ η

∥∥∇F (z0)
∥∥ so (I+H−1G)−1 = I−H−1G+O

(
η2
∥∥∇F (z0)

∥∥2
)

, and by our order-1 estimates
from (40) we have ∥v∥ ≲

∥∥P∇F (z1)
∥∥+ 1

η∥δz∥
2 ≲

∥∥∇F (z0)
∥∥ using that ∥P•∥ ≲ ∥•∥∗Z by Remark 51. So

δz = −η(I −H−1G)v +O(η3∥∥∇F (z0)
∥∥3). (41)

It remains to estimate v, and namely the A⊤λ2 term, up to O
(
η2
∥∥∇F (z0)

∥∥) error terms. To do this just
write

Aδz = 0 = −ηA(I −H−1G)v +O
(
η3∥∥∇F (z0)

∥∥3
)

A(I −H−1G)v = O
(
η2∥∥∇F (z0)

∥∥3
)
.

We already have an estimate of G of the correct order thanks to (40):

Gij = 1
2Kijkδz

k

= 1
2Kijk

[
−ηH−1P∇F (z1)

]k︸ ︷︷ ︸
=:G̃ij

+O(∥δz∥2). (42)

Since ∥v∥ ≲
∥∥∇F (z0)

∥∥ we just need to solve for A⊤λ2 in A(I −H−1G̃)v = O
(
η2
∥∥∇F (z0)

∥∥3
)

:

A(I −H−1G̃)H−1 (∇F (z1)−A⊤λ2) = O
(
η2∥∥∇F (z0)

∥∥3
)

A(I −H−1G̃)H−1A⊤λ2 = A(I −H−1G̃)H−1∇F (z1) +O
(
η2∥∥∇F (z0)

∥∥3
)

λ2 =
[
A(I −H−1G̃)H−1A⊤

]−1
A(I −H−1G̃)H−1∇F (z1)

+O
(
η2∥∥∇F (z0)

∥∥3
)
.

Since
∥∥G̃∥∥ ≲ η

∥∥∇F (z0)
∥∥, we have the expansion

A(I −H−1G̃)H−1A⊤ = AH−1A⊤ −AH−1G̃H−1A⊤

= AH−1A⊤
(
I −

[
AH−1A⊤]−1

AH−1G̃H−1A⊤
)

[
A(I −H−1G̃)H−1A⊤

]−1
=
(
I −

[
AH−1A⊤]−1

AH−1G̃H−1A⊤
)−1 [

AH−1A⊤]−1

=
(
I +

[
AH−1A⊤]−1

AH−1G̃H−1A⊤
) [
AH−1A⊤]−1 +O

(
η2∥∥∇F (z0)

∥∥2
)

=
([
AH−1A⊤]−1 +

[
AH−1A⊤]−1

AH−1G̃H−1A⊤ [AH−1A⊤]−1)
+O

(
η2∥∥∇F (z0)

∥∥2
)
.
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Substituting and expanding the product, and neglecting the terms in
∥∥G̃∥∥2∥∥∇F (z0)

∥∥, we get the following
expression for λ2; as a sanity-check, when we neglect the terms in

∥∥G̃∥∥∥∥∇F (z0)
∥∥, we recover the estimate

from (40).

λ2 +O
(
η2∥∥∇F (z0)

∥∥3
)

=
([
AH−1A⊤]−1 +

[
AH−1A⊤]−1

AH−1G̃H−1A⊤ [AH−1A⊤]−1)
A(I −H−1G̃)H−1∇F (z1)

=
([
AH−1A⊤]−1

A+
[
AH−1A⊤]−1

AH−1G̃H−1A⊤ [AH−1A⊤]−1
A−

[
AH−1A⊤]−1

AH−1G̃
)
H−1∇F (z1)

=
([
AH−1A⊤]−1

A−
[
AH−1A⊤]−1

AH−1G̃
(
I −H−1A⊤ [AH−1A⊤]−1

A
))

H−1∇F (z1)

=
([
AH−1A⊤]−1

AH−1 −
[
AH−1A⊤]−1

AH−1G̃H−1
(
I −A⊤ [AH−1A⊤]−1

AH−1
))
∇F (z1)

=
([
AH−1A⊤]−1

AH−1 −
[
AH−1A⊤]−1

AH−1G̃H−1P
)
∇F (z1).

Substituting, we get the following expression for v = H−1 (∇F (z1)−A⊤λ2):
−Hv = A⊤λ2 −∇F (z1)

=
(
A⊤ [AH−1A⊤]−1

AH−1 −A⊤ [AH−1A⊤]−1
AH−1G̃H−1P − I

)
∇F (z1) +O

(
η2∥∥∇F (z0)

∥∥3
)

=
(
−P −A⊤ [AH−1A⊤]−1

AH−1G̃H−1P
)
∇F (z1) +O

(
η2∥∥∇F (z0)

∥∥3
)

v = H−1
(
I +A⊤ [AH−1A⊤]−1

AH−1G̃H−1
)
P∇F (z1) +O

(
η2∥∥∇F (z0)

∥∥3
)
.

Substituting into (41) and using
∥∥G− G̃∥∥ ≲ η2

∥∥∇F (z0)
∥∥2, we get the following expression for δz:

δz = −η(I −H−1G̃)v +O
(
η3∥∥∇F (z0)

∥∥3
)

= −η(I −H−1G̃)H−1
(
I +A⊤ [AH−1A⊤]−1

AH−1G̃H−1
)
P∇F (z1) +O

(
η3∥∥∇F (z0)

∥∥3
)

= −ηH−1(I − G̃H−1)
(
I +A⊤ [AH−1A⊤]−1

AH−1G̃H−1
)
P∇F (z1) +O

(
η3∥∥∇F (z0)

∥∥3
)

= −ηH−1
(
I −

(
I −A⊤ [AH−1A⊤]−1

AH−1
)
G̃H−1

)
P∇F (z1) +O

(
η3∥∥∇F (z0)

∥∥3
)

= −ηH−1
(
I − PG̃H−1

)
P∇F (z1) +O

(
η3∥∥∇F (z0)

∥∥3
)
.

Expanding and recalling the definition of G̃ (42), we get that[
G̃H−1P∇F (z1)

]
i

= G̃ij

[
H−1P∇F (z1)

]j
= 1

2Kijk

[
−ηH−1P∇F (z1)

]k [
H−1P∇F (z1)

]j
= −η 1

2Kijk

[
H−1P∇F (z1)

]k [
H−1P∇F (z1)

]j
or in shorthand, G̃H−1P∇F (z1) = −η 1

2K
[
H−1P∇F (z1)

]2
.

So finally, we can write δz as

δz = −ηH−1P∇F (z1)− η2H−1P · 1
2K

[
H−1P∇F (z1)

]2 +O
(
η3∥∥∇F (z0)

∥∥3
)
. (43)

To make the expression of δz fully explicit and conclude the analysis, let us substitute the expression of
∇F (z1) from (39). Note that doing so makes us lose an order of precision in

∥∥∇F (z0)
∥∥ for the first term.

δz = −ηH−1P
[
∇F (z0)− η∇2F (z0)H−1P∇F (z0)

]
+ η2H−1P · 1

2K
[
H−1P∇F (z0)

]2 +O
(
η3∥∥∇F (z0)

∥∥2
)

= −ηH−1P∇F (z0) + η2H−1P ·
(
∇2F (z0)H−1P∇F (z0)− 1

2K
[
H−1P∇F (z0)

]2)+O
(
η3∥∥∇F (z0)

∥∥2
)
.

(44)
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H.3 Proof of Lemma 50
We keep the notations of the previous section, and this time we are interested in getting a similar Taylor
expansion for the Proximal Point (PP) update PP(z0; η) = z∞ defined by

z∞ = arg min
Az=b

F (z) + 1
η
D(z, z0). (U∞)

The goal is to get an order-2 expansion for δz := z∞ − z0.
Also again to lighten notation, we will write

∥∥∇F (z0)
∥∥ for

∥∥∇F (z0)
∥∥

∗Z and similarly for ∇F (z∞).
By Lagrangian duality, there exists λ ∈ Rm such that

∇F (z∞) + 1
η
∇D0(z∞)−A⊤λ = 0. (S∞)

By similar calculations as for MP, we get that

∥δz∥ ≲ η
∥∥∇F (z∞)

∥∥ ≲ η
∥∥∇F (z0)

∥∥.
An order-1 expansion of δz

From (S∞) and an order-1 expansion of ∇D0, we have

η∇F (z∞) +Hδz − ηA⊤λ = O(∥δz∥2)

δz = ηH−1 (−∇F (z∞) +A⊤λ
)

+O(∥δz∥2).

We can get an approximate expression of A⊤λ by
1
η
Aδz = 0 = AH−1 (−∇F (z∞) +A⊤λ

)
+ 1
η
O(∥δz∥2)

AH−1A⊤λ = AH−1∇F (z∞) + 1
η
O(∥δz∥)

λ =
[
AH−1A⊤]−1

AH−1∇F (z∞) + 1
η
O(∥δz∥2).

Thus we get

δz = −ηH−1
(
I −A⊤ [AH−1A⊤]−1

AH−1
)

︸ ︷︷ ︸
=P

∇F (z∞) +O(∥δz∥2).

This limited-order expansion is sufficient for us to get an approximate expression of ∇F (z∞) in terms of z0.
Indeed,

∇F (z∞) = ∇F (z0) +∇2F (z0)δz +O(∥δz∥2)
= ∇F (z0)− η∇2F (z0)H−1P∇F (z∞) +O(∥δz∥2)(

I + η∇2F (z0)H−1P
)
∇F (z∞) = ∇F (z0) +O(∥δz∥2)
∇F (z∞) =

(
I − η∇2F (z0)H−1P

)
∇F (z0) +O

(
η2∥∥∇F (z0)

∥∥)
(45)

using Remark 51 to control the error in the last line.

An order-2 expansion of δz.

From (S∞) and this time an order-2 expansion of ∇D0, we have more precisely

η∇F (z∞) +Hijδz
j + 1

2Kijkδz
jδzk − ηA⊤λ = O(∥δz∥3)(

Hij + 1
2Kijkδz

k

)
δzj = −η∇F (z∞) + ηA⊤λ+O(∥δz∥3)

(46)

where unmarked vectors are implicitly indexed by subscript i. Denote for concision

Gij := 1
2Kijkδz

k and v := H−1 (∇F (z∞)−A⊤λ
)
.
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We can unroll the exact same calculations as in the last paragraph of Appendix H.2 with ∇F (z1) replaced
by ∇F (z∞), and we obtain an equivalent of (43) for PP:

δz = −ηH−1P∇F (z∞)− η2H−1P · 1
2K

[
H−1P∇F (z∞)

]2 +O
(
η3∥∥∇F (z0)

∥∥3
)
.

Since the expression of ∇F (z∞) in terms of z0 for PP (45) is exactly the same as the one of ∇F (z1) for
MD (39), the very last step of the calculations is also the same, and we get

δz = −ηH−1P∇F (z0)+η2H−1P ·
(
∇2F (z0)H−1P∇F (z0)− 1

2K
[
H−1P∇F (z0)

]2)+O
(
η3∥∥∇F (z0)

∥∥). (47)

The only difference is that we lose yet another order of precision in
∥∥∇F (z0)

∥∥ in the error term compared to (44).

I Proof of the main result

In this section we show in detail how our main result Theorem 2 follows from combining Proposition 7,
Proposition 8 and Theorem 9.

Proof. Fix Γ0 ≥ 1. Choose η0, σ0 as in Theorem 9. Fix any η ≤ η0, σ ≤ σ0 with Γ−1
0 ≤ σ

η ≤ Γ0. Let λ, τ as

in (23), let (φI)I , (ψJ)J as in (13), and let V1 and V as in (12). Let C̃, C̃ ′, r̃ as in Proposition 7. Let ˜̃C, ˜̃r as
in Proposition 8. Let K resp. R0 the quantities denoted κ resp. r0 in Theorem 9.

Let r0 = min
{
r̃, ˜̃r, C̃ ′(R0

Γ0

)5/4}. Denote (zk)k the CP-PP iterates and µk =
∑n

i=1 a
k
i δxk

i
, νk =

∑m
j=1 b

k
j δyk

j
.

Suppose NI(µ0, ν0) ≤ r0, then by the second part of Proposition 7,

C̃ ′V1(z0)5/4 ≤ NI(µ0, ν0) ≤ r0

=⇒ V1(z0) ≤
(
r0

C̃ ′

)4/5

=⇒ V (z0) ≤ Γ0V1(z0) ≤ Γ0

(
r0

C̃ ′

)4/5
≤ R0.

So by Theorem 9, V (zk) ≤ V (z0)(1−K)k, and so by the first part of Proposition 7,

NI(µk, νk) ≤ C̃
√
V (zk) ≤ C̃

√
V (z0)

(√
1−K

)k

≤ C̃
√
V (z0)

(
1− K

2

)k

.

This proves the first inequality of Theorem 2 by letting C = C̃
√
R0 and κ = K

2 .
Moreover, by Proposition 8,

WFR2
2(µk, µ∗) + WFR2

2(νk, ν∗) ≤ 2V (zk)
(

1 + ˜̃C η
σ

(λτ)2
)

≤ 2V (z0)(1−K)k
(

1 + ˜̃C Γ−1
0 (λτ)2

)
≤ 2R0

(
1 + ˜̃C Γ−1

0 (λτ)2
)

︸ ︷︷ ︸(1− κ)k,

which proves the second inequality of Theorem 2 by letting C ′ be the underbraced expression. ◀
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