
C EN T R E
MER S ENN E

Open Journal of Mathematical Optimization is a member of the
Centre Mersenne for Open Scientific Publishing

http://www.centre-mersenne.org/
e-ISSN: 2777-5860

Open Journal of
Mathematical
Optimization

Marc Goerigk, Jannis Kurtz, Martin Schmidt & Johannes Thürauf
Connections between Robust and Bilevel Optimization
Volume 6 (2025), article no. 2 (17 pages)
https://doi.org/10.5802/ojmo.38

Article submitted on June 22, 2023, revised on May 28, 2024,
accepted on December 5, 2024.

© The author(s), 2025.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

http://www.centre-mersenne.org/
https://doi.org/10.5802/ojmo.38
http://creativecommons.org/licenses/by/4.0/


Connections between Robust and Bilevel Optimization

Marc Goerigk
University of Passau, Business Decisions and Data Science, Dr.-Hans-Kapfinger Str. 30, 94032 Passau, Germany
marc.goerigk@uni-passau.de

Jannis Kurtz
Amsterdam Business School, University of Amsterdam, 1018 TV Amsterdam, Netherlands
j.kurtz@uva.nl

Martin Schmidt
Trier University, Department of Mathematics, Universitätsring 15, 54296 Trier, Germany
martin.schmidt@uni-trier.de

Johannes Thürauf
University of Technology Nuremberg (UTN), Department Liberal Arts and Social Sciences, Discrete Optimization Lab, Dr.-
Luise-Herzberg-Str. 4, 90461 Nuremberg, Germany
johannes.thuerauf@utn.de

Abstract
Robust and bilevel optimization share the common feature that they involve a certain multilevel structure. Hence, although
they model something rather different when used in practice, they seem to have a similar mathematical structure. In
this paper, we analyze the connections between different types of robust problems (static robust problems with and
without decision-dependence of their uncertainty sets, worst-case regret problems, and two-stage robust problems) as
well as of bilevel problems (optimistic problems, pessimistic problems, and robust bilevel problems). It turns out that
bilevel optimization seems to be more general in the sense that for most types of robust problems, one can find proper
reformulations as bilevel problems but not necessarily the other way around. We hope that these results pave the way for
a stronger connection between the two fields—in particular to use both theory and algorithms from one field in the other
and vice versa.
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2020 Mathematics Subject Classification 90C70, 91A65.
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1 Introduction

Both robust and bilevel optimization have been highly active fields of research in mathematical optimization and
operations research over the last years and decades. When seen from a more general point of view, both types of
problems involve a certain kind of multilevel structure. In bilevel optimization, the decision maker at the first
level (also called the leader) decides first while anticipating the optimal reaction of the second-level player (also
called the follower), whose optimization problem is parameterized by the leader’s decision. Moreover, the leader’s
problem itself depends on the reaction of the follower so that the first and second level are interdependent and
cannot be solved in a sequential way. In case that the follower’s reaction is not unique, the most favorable
optimal reaction w.r.t. the leader is chosen in optimistic bilevel optimization whereas in pessimistic bilevel
optimization the most harmful follower’s reaction is considered. For a general overview of the field, we refer to
the books [15, 17], the annotated bibliography [16], or the recent survey [21]. In robust optimization, there are
also two types of players acting. The first one is the decision maker, who usually wants to take a decision so that
feasibility is guaranteed for all possible “choices” of the other agent and that, among all these so-called robust
feasible points, the best one is chosen. We use quotation marks here since in robust optimization, the second
agent is usually not an actual human decision maker but is used to model the realization of uncertain parameters
in some prescribed uncertainty set. The key feature of robust optimization is that the latter realization is studied
in some kind of worst-case paradigm. For more details we refer to the seminal papers [7, 29] as well as to the
books and surveys [5, 8, 9, 13].
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2 Connections between Robust & Bilevel Optimization

This informal discussion already highlights the similarities of robust and bilevel optimization: two “decision
makers” are acting and their problems depend on each other. The usual setting of robust optimization is that
the objective of the “uncertainty player” is simply to harm the other decision maker. With respect to this, bilevel
optimization is more general by allowing arbitrary objective functions of the second player that can, but do not
need to, aim for harming the other player. We will later see that this feature of bilevel optimization renders this
class more general than robust optimization.

For quite some time, the communities of robust optimization on the one hand and bilevel optimization on the
other hand both had the vague intuition that there is some strong connection between these two fields. However,
and maybe because the mentioned two communities have been rather disjoint, no systematic study of the
connections of these two fields has been carried out. This changed at the 2022 Dagstuhl workshop “Optimization
at the second level” that had the explicit aim to bring together researchers of the two fields to discuss the
commonalities and the differences of their fields and to understand how one field can benefit from the theory
and algorithms from the other field and vice versa; see also the workshop report [11].

The aim of this paper is to follow the spirit of this workshop and to shed some first light on the connections of
robust and bilevel optimization. To formally study these connections, throughout the paper we provide answers
to questions of the following form:

If P is an instance of problem class P and if A is an algorithm for solving instances of problem class Q,
can then A also be used to solve P?

Let us make this more clear using the example of one of the basic results provided in this paper: One can use
an algorithm A for solving optimistic bilevel optimization problems Q for solving a static robust optimization
problem P . To derive such connections between two problem classes we focus in this work on what we call
reformulations. Given a formulation of an arbitrary instance IQ in problem class Q, we derive a formulation
corresponding to an instance IP in problem class P such that all optimal solutions of the formulation of IP

correspond to optimal solutions of IQ. It follows that any algorithm that solves instances of problem class P
can also solve instances of problem class Q. We are particularly interested in reformulations that do not use
complex optimality certificates such as, e.g., optimal-value functions that are not given in closed form. While our
reformulation concept can be interpreted as a special case of a reduction as it is known in complexity theory, we
want to refrain from making complexity theoretical arguments in this work, since we study general problem
formulations described by arbitrary functions, involving problems for which no polynomial certificates exist.
However, we want to point out that for certain problem classes, our results indeed can lead to new complexity
results.

So far, we explained the motivation and contribution using the example of static robust optimization problems
as well as of optimistic bilevel problems. However, we also go a few steps further and additionally present
connections between static robust optimization problems with decision-dependent uncertainty sets, two-stage
robust optimization, and worst-case regret problems as well as pessimistic bilevel problems and robust bilevel
problems. For the latter and particularly new class of robust bilevel problems, we refer to the two recent
papers [2, 3]. For the other, more established, problem classes we give some pointers to the classic literature when
discussing the respective class. In the following, we focus on the mentioned problem classes, which currently
belong to the most popular ones in the literature. However, we note that other variants of bilevel and robust
problems such as, e.g., simple bilevel problems [28] or two-stage worst-case regret problems [27, 19] exist, for
which corresponding connections can be analyzed as well in future works.

To the best of our knowledge, there are only two papers in the literature that explicitly mention and discuss
a connection between robust and bilevel optimization. First, in [24] the authors survey nonlinear and robust
optimization and mention what they call the “bilevel approach to robust optimization”. By doing so, the authors
highlighted that robust optimization problems with decision-dependent uncertainty can be written as bilevel
problems. Second, in [33] the authors study pessimistic bilevel optimization and exploit the key idea that the
standard pessimistic bilevel problem can be written as a robust optimization problem with decision-dependent
uncertainty sets.

Finally, we also would like to mention that there exists another highly related class of problems, namely
(generalized) semi-infinite optimization problems, which are equivalent to static robust optimization problems
(with decision-dependent uncertainty sets in the generalized setting). We do not explicitly analyze the connections
of semi-infinite optimization to robust and bilevel optimization but refer to the book [30], in which the connection
to bilevel optimization is studied in detail and where also robust optimization is mentioned as a special case; see
also [7] for the latter relation.
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The remainder of the paper is structured as follows. In Section 2 we formally introduce all problem classes that
we study afterward. Then, we discuss the connections between (optimistic and pessimistic) bilevel optimization
and static robust optimization (with and without decision-dependence of the uncertainty sets) in Section 3.
Afterward, in Section 4 we study the relations between bilevel optimization and worst-case regret problems.
Lastly, the connections between two-stage robust and robust bilevel problems is considered in Section 5. The
paper closes with some discussion of the results and future research directions in Section 6. We summarize our
findings in Figure 1 at the end of Section 2.

2 Problem Statements and Reformulations

2.1 Bilevel Optimization

We consider bilevel optimization problems given by

“ min
x

” F (x, y) (1a)

s.t. G(x, y) ≤ 0, (1b)
y ∈ S(x), (1c)

where S(x) denotes the set of optimal solutions of the x-parameterized problem

min
y

f(x, y) (2a)

s.t. g(x, y) ≤ 0. (2b)

Problem (1) is referred to as the upper-level (or the leader’s) problem and Problem (2) is the so-called lower-level
(or the follower’s) problem. In the literature, one often finds further upper- as well as lower-level constraints x ∈ X

and y ∈ Y . We do not state them here explicitly but consider them as being part of the feasible sets described
by G(x, y) ≤ 0 and g(x, y) ≤ 0, respectively. The objective functions are given by F, f : Rnx × Rny → R and the
constraint functions by G : Rnx × Rny → Rm as well as g : Rnx × Rny → Rℓ. In the case that the lower-level
problem does not have a unique optimal solution, the bilevel problem (1) and (2) is ill-posed. This ambiguity is
expressed by the quotation marks in (1a). To overcome this issue, it is common to pursue either an optimistic
or a pessimistic approach to bilevel optimization; see, e.g., [15]. In the optimistic setting, the leader chooses
the follower’s response among the multiple optimal solutions of the lower-level problem such that it favors the
leader’s objective function value. Hence, the leader also minimizes over the optimal solutions of the follower, i.e.,
we consider the problem

min
x,y

F (x, y) (3a)

s.t. G(x, y) ≤ 0, (3b)
y ∈ S(x). (3c)

In the pessimistic setting, the leader anticipates that, among the multiple optimal solutions of the follower,
the worst possible response w.r.t. the upper-level objective function will be chosen by the follower. Thus, one
studies the problem

min
x

max
y∈S(x)

F (x, y) (4a)

s.t. G(x, y′) ≤ 0 ∀ y′ ∈ S(x); (4b)

see also [33].
A point (x, y) is called (bilevel) feasible for the bilevel problem (1) if x, y satisfy the upper-level constraints

of (1) and y is an optimal solution of the follower’s problem (2) for the given x. A point is bilevel optimal for
Problem (1), i.e., an optimal solution of (1), if it is bilevel feasible and obtains the smallest upper-level objective
value among all bilevel feasible solutions.
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2.2 Static Robust Optimization
We also discuss static robust optimization problems of the form

min
x

H(x) (5a)

s.t. hi(x, ui) ≤ 0 ∀ i ∈ I, ∀ ui ∈ Ui, (5b)
hj(x) ≤ 0 ∀ j ∈ J, (5c)

with I, J ⊂ N, I ∩ J = ∅, |I| < ∞, |J | < ∞ as well as H : Rnx → R, hi : Rnx × Rnui → R for all i ∈ I,
and hj : Rnx → R for all j ∈ J . We suppose that the uncertainty sets Ui ⊆ Rnui are described by finitely
many constraints. For the ease of notation, we assume that the objective function H does not depend on the
uncertainty u, which is without loss of generality. Otherwise, we may introduce a new variable to represent the
objective value and add an uncertain epigraph constraint to the model; see, e.g., [8]. Note that for modeling static
robust optimization, we use scalar constraint functions hk for all k ∈ I ∪J , which is mainly based on the following
reasons. Using scalar constraint functions is a rather standard notion in static robust optimization problems
since we can, w.l.o.g., consider the uncertainty constraint-wise, i.e., we can consider a separate uncertainty set
per constraint. For a more detailed discussion we refer to [8]. In addition, the use of scalar constraint functions
will simplify the presentation and proofs of some of the following results.

We further denote Problem (5) as a static robust optimization problem with decision-dependent uncertainty
set if for at least one i ∈ I, the corresponding uncertainty set depends on the decision variables x, i.e., for i ∈ I,
the uncertainty sets Ui(x) ⊆ Rnui are given by finitely many constraints that can additionally depend on the
decision variables x.

A point x ∈ Rnx is static robust feasible for Problem (5) if it is feasible for Constraints (5c) and also
satisfies (5b) for all realizations within the uncertainty sets. Note that a robust feasible point does not include
any realization of the uncertainty. A robust feasible point that obtains the smallest objective value among all
robust feasible solutions is then robust optimal, i.e., an optimal solution to Problem (5).

2.3 Worst-Case Regret Optimization
While the classic robust counterpart considers the worst-case performance of solutions over all possible scenarios,
alternative decision criteria have been studied as well. Indeed, an axiomatic consideration of decision criteria,
see, e.g., [18], reveals that there is no perfect criterion that can fulfill all desired properties simultaneously.

The worst-case regret criterion is most commonly defined with uncertainty only in the objective; see, e.g.,
[1, 20, 23]. The idea is to find a solution that minimizes the difference to the best possible objective value over
all scenarios. Formally, for an optimization problem with uncertain objective function H(x, u) and uncertain
constraints h(x, u), we define the worst-case regret optimization problem as

min
x

max
u∈U

{
H(x, u) − min

{y : h(y,u)≤0}
H(y, u)

}
(6a)

s.t. h(x, u) ≤ 0 ∀ u ∈ U (6b)

with H : Rnx × Rnu → R denoting the uncertain objective function and h : Rnx × Rnu → Rℓ denoting the
uncertain constraints; see also [10]. Further, the set U ⊆ Rnu denotes the uncertainty set that is described by
finitely many constraints. As in the static robust case, a feasible point to the worst-case regret problem usually
does not include any realization of the uncertainty. Note that here we do not assume constraint-wise uncertainty
and thus use a vector-based notation for the constraints. Further note that the decision maker’s solution needs
to be feasible in every scenario, which is the same requirement as in static robust optimization. Finally, let us
emphasize that we state the problem as a min-max problem while the same problem is also often defined as a
min-sup problem in the literature. This may lead to the case that some of the problems stated as such are not
solvable since a respective supremum may not be attained. We do this for the ease of presentation and since it is
not conflicting with the theoretical results that we will present later. There, we either only make statements
about the case that the respective problems have a solution or state sufficient conditions for that this is the case.

2.4 Two-Stage Robust Optimization
We also consider two-stage robust optimization in which in addition to here-and-now decisions x (also called
first-stage decisions), there are wait-and-see decisions y (also called second-stage decisions) that can be decided
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after the uncertainty is revealed. We denote by

Y (x, u) = {y ∈ Rny : h(x, y, u) ≤ 0}

the set of all feasible wait-and-see decisions for a given here-and-now decision x and scenario u. The two-stage
robust problem is then defined as

min
x∈X

max
u∈U

min
y∈Y (x,u)

H(x, y) (7)

Here, X ⊆ Rnx is the set of feasible here-and-now decisions and U ⊆ Rnu denotes the uncertainty set. We
suppose that the uncertainty set U ⊆ Rnu is described by finitely many constraints. Further, we assume that
H : Rnx × Rny → R and h : Rnx × Rny × Rnu → Rℓ holds. Problem (7) is a two-stage robust optimization
problem with uncertainty set U . Again, we consider w.l.o.g. an objective function H independent from the
uncertainty; see, e.g., [8]. Note that the set Y (x, u) only contains constraints which depend on x, y and u. In
case there exist constraints which only depend on x and u the robust version of the constraints can be added to
the set X. Moreover, we state the problem here as a min-max-min instead of a min-sup-min problem with the
same arguments as those discussed at the end of the previous section.

Analogously to the case of static robust optimization, the uncertainty set can also depend on the decision
variables x. For a given here-and-now decision x, we then describe the decision-dependent uncertainty set U(x) ⊆
Rnu by finitely many constraints that can additionally depend on x. Note that for two-stage robust optimization,
we generally cannot consider a separate uncertainty set for each constraint as it is possible in static robust
optimization since both variants are not equivalent; see, e.g., [25].

We denote a point x as (two-stage) robust feasible for Problem (7) if for each uncertainty u ∈ U(x), there
is a feasible point y that satisfies the second-stage constraints h(x, y, u) ≤ 0. Thus, a two-stage robust feasible
point does neither include the second-stage decisions y nor any realization of the uncertainty. A two-stage robust
feasible point x ∈ X that attains the minimum objective value among all two-stage robust feasible solutions is
then optimal, i.e., an optimal solution of Problem (7).

2.5 Robust Bilevel Problems
We now consider robust versions of optimistic bilevel problems. More precisely, we consider robust bilevel
problems with “here-and-now follower” and with “wait-and-see follower”.

In the variant with a here-and-now follower, first the leader and the follower have to make their decisions.
Afterward, the uncertain parameters are revealed. This setting can be modeled as

min
x,y

F (x, y) (8a)

s.t. G(x, y) ≤ 0, (8b)
y ∈ S(x), (8c)

where S(x) is the set of optimal solutions of the x-parameterized problem

min
y

{f(x, y) : g(x, y, u) ≤ 0 ∀ u ∈ U(x)} , (9)

which models a here-and-now follower. The decision-dependent uncertainty set U(x) ⊆ Rnu is given by finitely
many constraints that can depend on the decisions x. For the constraint functions we suppose G : Rnx ×Rny → Rm

and g : Rnx × Rny × Rnu → Rℓ. As in robust optimization, we can w.l.o.g. consider a lower-level objective
function f : Rnx × Rny → R that is independent from the uncertainty.

We call a point (x, y) (bilevel) feasible for the robust bilevel problem (8) with here-and-now follower if (x, y)
satisfy G(x, y) ≤ 0 and if y is an optimal static robust solution of the follower’s problem (9) for the given x. The
point (x, y) is an optimal solution of Problem (8) if it is bilevel feasible and if it obtains the smallest upper-level
objective value among all bilevel feasible solutions.

In the variant with a wait-and-see follower, first the leader takes a here-and-now-decision, then the uncertainty
is revealed, and afterward the follower makes a wait-and-see decision. The corresponding bilevel problem is
given by

min
x∈X

max
u∈U(x)

min
y

{F (x, y) : y ∈ S(x, u)} (10)



6 Connections between Robust & Bilevel Optimization

with S(x, u) being the set of optimal solutions of the (x, u)-parameterized problem

min
y

f(x, y) s.t. g(x, y, u) ≤ 0. (11)

The decision-dependent uncertainty set U(x) ⊆ Rnu is again given by finitely many constraints, which may
depend on the decisions x. In addition, the set X ⊆ Rnx represents the set of feasible solutions of the leader and
the lower-level constraints are given by g : Rnx × Rny × Rnu → Rℓ.

We denote a point x as a bilevel feasible point of the optimistic robust bilevel problem (10) with wait-and-see
follower if x ∈ X and for every u ∈ U(x) there exists y ∈ S(x, u), i.e., S(x, u) ̸= ∅ holds. Again, a point x is
optimal for Problem (10) if it is bilevel feasible for Problem (10) and it attains the smallest objective value
among all bilevel feasible solutions.

Note that the representation of a solution of the robust bilevel problem with wait-and-see follower (10) only
consists of the first-stage decision variables x. We explicitly do not include the wait-and-see decisions y as part
of a solution since these decision depend on the realization of the uncertainty. This is in line with two-stage
robust optimization, in which the solution also only consists of the first-stage decisions.

2.6 Representation of Solutions
We note that in the literature on bilevel and robust optimization, the representation of feasible and optimal
solutions varies, which we brieflydiscuss in the following.

For deterministic bilevel problems of the form (1), both in their optimistic and pessimistic variant, we denote
a solution by (x, y), i.e., we explicitly state the response of the follower in the solution of the bilevel problem.
This representation of solutions is common in the literature and allows us to better illustrate the links between
bilevel and robust optimization. However, we also note that a solution of the bilevel problem (1) is also given
only in terms of the upper-level decision x in the literature; see, e.g., [31].

For static robust optimization, a solution consists of the here-and-now decision x throughout the literature, i.e.,
a realization of the uncertainty is not part of the solution. For two-stage robust optimization, the representation
of solutions in the literature is not as consistent as for static robust optimization. In general, there are two
different representations of solutions in the literature. First, a two-stage robust solution is given by the first-stage
decisions x and the second-stage variables y are not considered as part of the solution; see [6]. Second, a two-stage
robust solution can also be given in terms of first- and second-stage variables by representing the second-stage
variables by so-called decision rules, i.e., a solution is given by (x, y( · )) in which y : U(x) → Rny is a mapping
from the uncertainty set to the image space of the second-stage variables. However, the representation of these
decision rules is often only possible if they are restricted to certain classes such as affine decision rules; see, e.g.,
[34]. Since we focus on rather general functions in this article, we use the first representation of solutions in
terms of the first-stage decisions only.

We now turn to the representation of solutions for robust bilevel problems. Since this field of research is
very young, a consistent representation of solutions is not yet finally established in the literature. In robust
bilevel problems with here-and-now follower as in (8), the follower’s problem is a static robust optimization
problem. Consequently, we represent a solution of the robust bilevel problem (8) by the leader’s and follower’s
decisions (x, y), but do not consider any realization of the uncertainty as part of a solution. A robust bilevel
problem with wait-and-see follower as in (10) is a bilevel problem containing so-called second-stage variables y

whose values are determined after the realization of the uncertainty u. Thus, this class of problems combines
aspects of bilevel and two-stage robust optimization. Consequently, we represent our solution in terms of the
first-stage decisions x in line with our representation of two-stage robust solutions.

3 Connections Between Bilevel and Static Robust Optimization

For the results in this section, we need one more assumption regarding the uncertainty set and the constraint
functions of (5).

▶ Assumption A. For every robust feasible point x of Problem (5) and i ∈ I, the constraint functions hi(x, ·)
are continuous. Additionally, for i ∈ I, the uncertainty set Ui(x) is non-empty and compact.

This assumption is rather natural in robust optimization and guarantees by Weierstraß’ theorem that
optimizing the uncertain constraints over the uncertainty has a finite optimum that is attained. We note that
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Static Robust
Optimization

Decision-Dependent
Static Robust
Optimization

Worst-Case Regret
Optimization

Two-Stage
Robust

Optimization

Pessimistic Bilevel
Optimization

Optimistic Bilevel
Optimization

Robust Bilevel Optimization
(wait-and-see follower)

Rem. 6

Cor. 5

Thm. 1 & 7

Rem. 6

Thm. 17

Thm. 13
& 16

Thm. 11

Figure 1 Summary of the relations between bilevel and robust optimization. An arrow from A to B
stands for the statement that we provided a reformulation without using optimal-value functions so
that an instance of A can be solved by solving an instance of B. Note that we do not include arrows
between two robust or two bilevel problems to simplify the overview. However, introducing the latter
would lead to further connections between robust and bilevel problems.

all presented reformulations are also valid if integer restrictions are imposed on (some of) the variables. Since
we can model these integer restrictions using our general constraint functions, we do not explicitly split the
variables into continuous and integer ones in the following for the ease of readability.

We now start with a result that is also mentioned in [24].

▶ Theorem 1. Let Assumption A be satisfied. Let further (x∗, u∗) be an optimal solution of the optimistic bilevel
problem

min
x,u

H(x) (12a)

s.t. hi(x, ui) ≤ 0 ∀ i ∈ I, (12b)
hj(x) ≤ 0 ∀ j ∈ J, (12c)
u ∈ S(x), (12d)

where S(x) is the set of solutions of the x-parameterized lower-level problem

max
u=(ui)i∈I

∑
i∈I

hi(x, ui) s.t. ui ∈ Ui(x) ∀ i ∈ I. (13)

Then, x∗ is an optimal solution of the static robust optimization problem (5) with decision-dependent uncertainty
sets Ui(x), i ∈ I.

Proof. Let (x∗, u∗) be an optimal solution of Problem (12). To prove feasibility of x∗ for Problem (5) note that
the lower-level problem is separable w.r.t. the index i. Hence, for the solution u∗ = (u∗

i )i∈I we have that u∗
i is an

optimal solution of

max
ui

hi(x∗, ui) s.t. ui ∈ Ui(x∗).

Since (x∗, u∗) is feasible for (12b), it follows hi(x∗, ui) ≤ 0 for all ui ∈ Ui(x), which proves that x∗ is feasible
for Constraints (5b). Furthermore, Constraints (5c) and (12c) are equivalent, which proves feasibility of x∗ for
Problem (5).
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We now prove optimality of x∗ for Problem (5). Due to Assumption A, it follows that for each robust feasible
point x̄ of Problem (5) the x̄-parameterized lower-level problem (13) admits a solution ū. Consequently, (x̄, ū) is
a bilevel feasible point of Problem (12). Since the objective functions of (12) and (5) are the same, it follows
that x∗ is also optimal for (5). ◀

Note that the compactness of the uncertainty set (i.e. it is bounded and closed), as required in Assumption A,
is necessary for the validity of the theorem, which is shown in the following two examples. In Example 2, we
show that when relaxing the closedness assumption of the uncertainty set Theorem 1 is not valid anymore. In
Example 3, we show the same for the case that the uncertainty set is not bounded.

Furthermore, the examples show a significant difference between robust and bilevel optimization. Since in the
classic bilevel setting a feasible solution involves the follower’s solution, this solution has to be attained in the
follower’s problem. In contrast, in the robust setting the uncertain parameters only restrict the feasible region of
the decision variables x but the worst-case parameter does not have to be attained in the robust constraint.

▶ Example 2. Consider the static robust problem

min
x

x s.t. − ux ≤ 1 ∀ u ∈ U,

where the open uncertainty set is given by U = (−2, 2). Note that Assumption A does not hold in this case since
U is not compact. The optimal static robust solution of the latter problem is x∗ = −1/2. The bilevel formulation
in Theorem 1 is given as

min
x,u

x s.t. − ux ≤ 1, u ∈ S(x),

where S(x) is the set of optimal solutions of the x-parameterized lower-level problem

sup
u

−ux s.t. u ∈ (−2, 2).

Note that we use sup instead of max since the uncertainty set is not compact and, thus, it is not necessarily
guaranteed that the maximum is attained. The latter problem has an optimal solution if and only if x = 0. Hence,
the optimal solutions of the bilevel problem are given by (x, u) = (0, u) with u ∈ U , which is a contradiction to
the result in Theorem 1 if one would neglect that the uncertainty set is compact.

▶ Example 3. Consider the static robust problem

min
x

−x s.t. x ∈ [0, 2], − 1
u

x ≤ 0 ∀ u ∈ U,

where the unbounded uncertainty set is given by U = [1, ∞). Note that Assumption A does not hold in this
case since U is not compact. The optimal static robust solution of the latter problem is x∗ = 2. The bilevel
formulation in Theorem 1 is given as

min
x,u

−x s.t. x ∈ [0, 2], − 1
u

x ≤ 0 u ∈ S(x),

where S(x) is the set of optimal solutions of the x-parameterized lower-level problem

sup
u

− 1
u

x s.t. u ∈ [1, ∞).

Note that we use sup instead of max since the uncertainty set is not compact and, thus, it is not necessarily
guaranteed that the maximum is attained. The latter problem has an optimal solution that is attained if and
only if x = 0. Hence, the optimal solutions of the bilevel problem are given by (x, u) = (0, u) with u ∈ U , which
is a contradiction to the result in Theorem 1 if one would neglect the compactness assumption of the theorem.

▶ Remark 4.
i. Theorem 1 shows that one can solve decision-dependent and static robust optimization problems by solving

appropriately chosen optimistic bilevel problems in which the follower computes the required worst-case
uncertainties by optimizing over the respective constraints of the uncertainty sets.

ii. From the proof of Theorem 1, it also follows that for every bilevel feasible point (x, y) of Problem (12), the
same x is a robust feasible point for (5). Under Assumption A every robust feasible point x can also be
extended to a bilevel feasible point (x, u).
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iii. In general, it is desired in bilevel optimization to have convex lower-level problems that satisfy a constraint
qualification since these usually allow for single-level reformulations. For Problem (12) this is the case if
the uncertain constraints depend on the uncertainty in a concave way and if the uncertainty sets Ui(x) are
convex (and have an interior point) as it is often an assumption in robust optimization. If the static robust
optimization problem is even linear with polyhedral uncertainty sets, the corresponding bilevel problem (12)
has both a linear upper- and lower-level problem.

If we simply consider Ui(x) being independent of x, we obtain the following result with the same proof.

▶ Corollary 5. Let Assumption A be satisfied. Let further (x∗, u∗) be an optimal solution of the bilevel problem (12)
with Ui(x) = Ui. Then, x∗ is an optimal solution of the static robust optimization problem (5).

In the following, we show that each static robust problem can be reformulated as a pessimistic bilevel problem
without requiring Assumption A.

▶ Remark 6. An optimal static robust solution of Problem (5) can also be computed by a pessimistic bilevel
problem with a constant objective function in the lower-level problem. To this end, let (x∗, u∗) be an optimal
solution of the pessimistic bilevel problem

min
x

max
u∈S(x)

H(x)

s.t. hi(x, ui) ≤ 0 ∀ i ∈ I, ∀ u = (ui)i∈I ∈ S(x),
hj(x) ≤ 0 ∀ j ∈ J,

where S(x) is the set of optimal solutions of the lower-level problem

min
u=(ui)i∈I

42 s.t. ui ∈ Ui(x) ∀ i ∈ I. (14)

Then, x∗ is an optimal solution of the static robust optimization problem (5) with decision-dependent uncertainty
sets Ui(x). Note that in Problem (14) the objective function is constant. Consequently, the set of optimal
solutions of the lower-level problem coincides with the feasible region of the follower, which is the uncertainty
set. Thus, the pessimistic problem is directly equivalent to the static robust optimization problem and it is
not necessary to assume that the uncertainty set is compact. Note that in the optimistic case of Theorem 1,
the lower-level player computes the realization of the uncertainty that violates the feasibility of the upper-level
player the most. To ensure that this most violating uncertainty exists, we have to require that the uncertainty
set is compact in the optimistic formulation of Theorem 1.

From the latter results we can conclude that static robust optimization problems (both with and without
decision-dependent uncertainty sets) can be written as bilevel problems—both in the optimistic and the pessimistic
sense. For the classes of optimistic bilevel optimization problems and static robust optimization problems with
decision-dependent uncertainty sets, we now also prove the reverse direction (see also similar formulations
presented in [32, 35]).

▶ Theorem 7. Let (x∗, y∗) be an optimal solution of the static robust problem

min
x,y

F (x, y) (15a)

s.t. f(x, y) ≤ f(x, ỹ) ∀ ỹ ∈ U(x), (15b)
G(x, y) ≤ 0, (15c)
g(x, y) ≤ 0, (15d)

where the decision-dependent uncertainty set is given by

U(x) := {ỹ ∈ Rny : g(x, ỹ) ≤ 0} .

Then, (x∗, y∗) is an optimal bilevel solution of the optimistic bilevel problem (3).

Proof. Let (x∗, y∗) be an optimal solution of the static robust problem (15). The point (x∗, y∗) satisfies the
upper-level constraints of (3) due to (15c). For fixed decisions x, the decision-dependent uncertainty set U(x)
equals the feasible region of the x-parameterized follower’s problem (2). Consequently, Constraints (15b) and (15d)
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ensure that y∗ is feasible and optimal for the x∗-parameterized lower-level problem (2). Thus, (x∗, y∗) is a bilevel
feasible point for the optimistic bilevel problem (3).

To prove optimality of (x∗, y∗) for Problem (3), we note that every bilevel feasible point of (3) is also feasible
for Problem (15). Since the objective function of (15) equals the leader’s objective function in (3), it follows
that (x∗, y∗) is also optimal for the optimistic bilevel problem (3). ◀

▶ Remark 8.
i. The latter theorem shows that one can solve optimistic bilevel problems by solving appropriately chosen static

robust optimization problems with decision-dependent uncertainty sets, in which the decision-dependent
uncertainty set represents the feasible region of the x-parameterized follower’s problem.

ii. Note that in Theorem 7 we do not assume that the uncertainty set is compact. Thus, the uncertainty set can
be unbounded as considered in [12].

iii. In the proof, we show that every feasible static robust solution of (15) is a bilevel feasible point of (3) and
the other way around.

iv. If the optimistic bilevel problem (3) consists of linear objective functions and constraints, then the cor-
responding static robust problem (15) has a linear objective function and linear constraints as well. The
decision-dependent uncertainty set is then an x-parameterized polyhedral set depending on continuous
“here-and-now” variables x.

v. Note that for bilevel problems in which the follower’s constraints g do not depend on the leader’s decision x,
Problem (15) becomes a static robust optimization problem with classic (non-decision dependent) uncertainty
set U .

In line with [33], we can draw the following connection for pessimistic bilevel and robust optimization.

▶ Remark 9. An optimal solution of the pessimistic bilevel problem (4) can be computed by solving the following
static robust problem with decision-dependent uncertainty set

min
x,y

F (x, y) (16a)

s.t. F (x, y) ≥ F (x, y′) ∀ y′ ∈ U(x), (16b)
G(x, y′) ≤ 0 ∀ y′ ∈ U(x), (16c)
f(x, y) ≤ f(x, y′) ∀ y′ ∈ U(x), (16d)
G(x, y) ≤ 0, (16e)
g(x, y) ≤ 0, (16f)

with uncertainty set

U(x) := {ỹ : f(x, ỹ) ≤ χ(x), g(x, ỹ) ≤ 0} .

Here, χ(x) is the optimal-value function of the x-parameterized lower-level problem (2). Constraints (16b)
and (16c) model the pessimistic view of the follower by enforcing the worst-case objective value and the feasibility
of the coupling constraints for all lower-level solutions. The remaining constraints model that the computed
decisions y are an optimal solution of the lower-level problem. We note that Constraint (16d) can also be modeled
by explicitly using the optimal-value function, i.e., f(x, y) ≤ χ(x).

We stress that, although reformulations using optimal-value functions can be of great importance when
it comes to developing algorithms for multilevel optimization problems, the optimal-value function of an
optimization problem is, in general, not known or cannot be represented in a compact way. However, for specific
classes of problems such as linear or convex problems (under an additional constraint qualification), there exist
compact representations of the corresponding optimal-value function. For computing such representations of
optimal-value functions, additional effort is necessary in general. Nevertheless, these explicit formulations have
been exploited to derive solution methods in bilevel and robust optimization; see, e.g., the classic textbooks [15]
and [5]. Exemplarily, for linear problems and convex problems under additional constraint qualifications, the
optimal-value function can be represented by finitely many constraints and variables using the corresponding
Karush–Kuhn–Tucker (KKT) conditions or the strong-duality theorem. Alternatively, we now describe how one
of the main reformulation techniques of robust optimization can be used to derive an explicit description of the
constraint f(x, ỹ) ≤ χ(x) of Remark 9 under specific assumptions.
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▶ Remark 10. For a given point x ∈ X, let χ(x) be the optimal-value function of the x-parameterized lower-level
problem (2). For the variable y ∈ Rny , we now consider the constraint

f(x, y) ≤ χ(x). (17)

We further assume that the dual of the follower’s problem is given by

max
α

p(x, α) s.t. v(x, α) ≤ 0

with the functions p : Rnx × Rℓ → R and v : Rnx × Rℓ → Rk. If strong duality holds, i.e., the optimal value of
the dual of the follower’s problem equals the optimal value of the follower’s problem (2), we can equivalently
reformulate Inequality (17) as

f(x, y) ≤ p(x, α), v(x, α) ≤ 0.

This reformulation is one of the main reformulation techniques in robust optimization and can be generalized to
nonlinear uncertain inequalities that are concave in the uncertainty under specific assumptions; see [4].

4 Connections Between Bilevel and Worst-Case Regret Optimization

For the results in this section, we again need to make an assumption regarding the existence of worst-case
scenarios. Using Weierstraß’ theorem, these conditions then ensure that worst-case solutions are attained and
the inner maximization is well-defined.

▶ Assumption B. We assume that U is non-empty and compact. Furthermore, we assume that functions h(x, u)
and H(x, u) are continuous in x and in u and the set {x : h(x, u) ≤ 0} is bounded for each u ∈ U .

We now consider worst-case regret problems through the lens of bilevel optimization.

▶ Theorem 11. Let Assumption B hold. Let (x∗, y∗) be an optimal solution of the pessimistic bilevel problem

min
x

{
max

(y1,y2)∈S(x)
H(x, y1) − H(y2, y1) : h(x, y′

1) ≤ 0 ∀ y′ = (y′
1, y′

2) ∈ S(x)
}

(18)

with y = (y1, y2) and S(x) = arg miny{42 : y1 ∈ U, h(y2, y1) ≤ 0}. Then, x∗ is an optimal solution to the
worst-case regret problem (6), if it is feasible.

Proof. Let (x∗, y∗) be an optimal solution of Problem (18). It then holds that h(x∗, y1) ≤ 0 for all y = (y1, y2) ∈
S(x). By assumption, Problem (6) is feasible. Hence, S(x) projected onto y1 equals U and h(x∗, u) ≤ 0 for all
u ∈ U .

Furthermore, note that for all x we have

max
(y1,y2)∈S(x)

(H(x, y1) − H(y2, y1))

= max
y1∈U

max
y2:h(y2,y1)≤0

(H(x, y1) − H(y2, y1))

= max
u∈U

(
H(x, u) − min

y2:h(y2,u)≤0
H(y2, u)

)
,

so x∗ is an optimal solution to the corresponding worst-case regret problem. ◀

▶ Remark 12.
i. Theorem 11 shows that we can solve worst-case regret problems by solving pessimistic bilevel problems with

a specific structure.
ii. We actually prove a stronger result that the set of feasible first-stage decisions x of the bilevel problem is the

same as for the worst-case regret problem, and each solution has the same objective value if both problems
are feasible.

iii. Similar to the discussion presented in Remark 6, the lower-level problem uses a constant objective function
(set to the arbitrary value 42 in this case).
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iv. Note that we assumed that Problem (6) is feasible. Indeed, without this assumption it is possible that the
bilevel problem (18) is feasible, whereas the worst-case regret problem is infeasible. Imagine a ”very bad”
scenario u ∈ U , for which no feasible solution exists. Then, there is no (y1, y2) ∈ S(x) with y1 = u and the
bilevel problem can ignore this scenario, whereas the worst-case regret problem becomes infeasible.

If the uncertainty only affects the objective function, we can compute a solution of the worst-case regret
problem (6) by an optimistic bilevel problem.

▶ Theorem 13. Let Assumption B hold. Let (x∗, y∗) be an optimal solution to the optimistic bilevel problem

min
x,y∈S(x)

{H(x, y1) − H(y2, y1) : h(x) ≤ 0}

with y = (y1, y2) and S(x) = arg miny{H(y2, y1) − H(x, y1) : y1 ∈ U, h(y2) ≤ 0}. Then, x∗ is an optimal solution
to the worst-case regret problem (6) without uncertainty in the constraints.

Proof. As the set of feasible solutions X = {x : h(x) ≤ 0} is the same for both problems, we only need to
consider the objective function. It holds for all feasible x that

min
y∈S(x)

(H(x, y1) − H(y2, y1))

= min
y

{H(x, y1) − H(y2, y1) : y ∈ arg min
y′

{H(y′
2, y′

1) − H(x, y′
1) : y′

1 ∈ U, h(y′
2) ≤ 0}}

= max
y

{H(x, y1) − H(y2, y1) : y1 ∈ U, h(y2) ≤ 0}

= max
y1∈U

{H(x, y1) − min
y2:h(y2)≤0

H(y2, y1)},

which completes the proof. ◀

▶ Remark 14. We can extend Theorem 13 to the case that constraints are uncertain as well. To this end, we
use a higher-dimensional follower problem, where an additional set of variables is provided for each uncertainty
constraint. We then include a term in the follower objective that maximizes the constraint violation of each
constraint.

Most commonly, worst-case regret problems are considered for combinatorial problems with interval uncer-
tainty; see, e.g., [20]. The reason is the following result of the literature, which is crucial to treat these worst-case
regret problems.

▶ Lemma 15 ([1]). Let X ⊆ {0, 1}n and consider the worst-case regret problem with uncertain linear objective:

min
x∈X

reg(x) with reg(x) = max
c∈U

 ∑
i∈[n]

cixi − min
y∈X

∑
i∈[n]

ciyi

 .

For interval uncertainty U = ×i∈[n][ci, c̄i] with di = c̄i − ci ≥ 0, it holds that

reg(x) =
∑
i∈[n]

c̄ixi − min
y∈X

{ci + dixi} yi.

We can now derive the following result for the special case of combinatorial worst-case regret problems with
interval uncertainty affecting only the objective function. Compared to the general case in Theorem 13, we obtain
a reformulation as an optimistic bilevel problem in which the number of variables in the lower-level problem are
significantly reduced by exploiting Lemma 15.

▶ Theorem 16. Let (x∗, y∗) be an optimal solution to the optimistic bilevel problem

min
x∈X,y∈S(x)

∑
i∈[n]

c̄ixi −
∑
i∈[n]

(ci + dixi)yi

for X ⊆ {0, 1}n with di = c̄i − ci ≥ 0 and

S(x) = arg min
y

 ∑
i∈[n]

(ci + dixi)yi : y ∈ X

 .
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Then, x∗ is an optimal solution to the worst-case regret problem

min
x∈X

max
c∈U

 ∑
i∈[n]

cixi − min
y∈X

∑
i∈[n]

ciyi


with interval uncertainty U = ×i∈[n][ci, c̄i].

Proof. By construction, x∗ ∈ X and, thus, it is feasible for the worst-case regret problem. Using Lemma 15, for
all x ∈ X we obtain

min
y∈S(x)

∑
i∈[n]

c̄ixi −
∑
i∈[n]

(ci + dixi)yi

=
∑
i∈[n]

c̄ixi − max
y∈S(x)

∑
i∈[n]

(ci + dixi)yi

=
∑
i∈[n]

c̄ixi − max
y∈X

 ∑
i∈[n]

(ci + dixi)yi : y ∈ arg min
y′∈X

∑
i∈[n]

(ci + dixi)y′
i


=

∑
i∈[n]

c̄ixi − min
y∈X

∑
i∈[n]

(ci + dixi)yi

and x∗ is therefore an optimal worst-case regret solution. ◀

5 Connections Between Robust Bilevel Optimization and Two-Stage Robust
Optimization

In this section, we consider the connection between optimistic robust bilevel problems and two-stage robust
optimization.

5.1 Wait-and-See Follower
We first show that we can cast any two-stage robust optimization problem as a robust bilevel problem with
wait-and-see follower.

In the following, we assume that maximization and minimization problems are well-defined. This is the case,
e.g., if the conditions of Berge’s maximum theorem are fulfilled.

▶ Theorem 17. Let x∗ be an optimal solution of the optimistic robust bilevel problem with wait-and-see follower

min
x∈X

max
u∈U(x)

min
y

{H(x, y) : y ∈ S(x, u)} (19)

where X ⊆ Rnx , U(x) ⊆ Rnu , and S(x, u) is the set of optimal solutions of the (x, u)-parameterized lower-level
problem

min
y

H(x, y) s.t. h(x, y, u) ≤ 0,

where we assume that each minimization and maximization problem takes some finite value. Then, x∗ is an
optimal solution of the two-stage robust problem (7) with decision-dependent uncertainty set U(x).

Proof. Let x∗ be an optimal solution of Problem (19). Robust feasibility of x∗ for the two-stage robust
problem (7) directly follows since the first-stage feasible region X coincides with the feasible region of the
leader, the uncertainty set U(x) coincides with the uncertainty set in (19), and the second-stage feasible region
Y (x, u) = {y : h(x, y, u) ≤ 0} of Problem (7) coincides with the feasible region of the follower.

Every solution x to the two-stage robust problem (7) is also a robust bilevel feasible point of Problem (19)
since the leader and follower minimize the same objective function in Problem (19). From the same observation,
the optimality of x∗ follows. Hence, x∗ has the same objective value in (7) as in (19), which proves optimality. ◀
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▶ Remark 18.
i. The latter theorem shows that one can solve two-stage robust problems by solving appropriately chosen

optimistic robust bilevel problems with wait-and-see follower, where the follower minimizes the same objective
function as the leader. In this bilevel problem, the leader’s model takes the role of the first-stage and the
follower’s model takes the role of the second-stage of the corresponding two-stage robust problem.

ii. From the proof of the previous theorem, it also follows that for every robust and bilevel feasible point x of
Problem (19) the same x is feasible for the two-stage robust problem (7). Moreover, every robust feasible
point x of Problem (7) is also a robust bilevel feasible point x of Problem (10).

iii. If the first and second-stage of the two-stage robust problem have only linear constraints, the corresponding
bilevel problem has both a linear upper- and lower-level problem.

iv. The result of the latter theorem also holds if we replace U(x) by a decision-independent uncertainty set U .

Note that by using the optimal-value function of the follower’s problem (11), we can reformulate an optimistic
robust bilevel problem with wait-and-see follower as the following two-stage robust problem

min
x∈X

max
u∈U(x)

min
y

{F (x, y) : f(x, y) ≤ χ(x, u), g(x, y, u) ≤ 0} ,

where χ(x, u) is the optimal-value function of the (x, u)-parameterized follower’s problem, i.e.,

χ(x, u) := min
y

{f(x, y) : g(x, y, u) ≤ 0} .

However, we again stress that, in general, the optimal-value function χ is not known or cannot be represented in
a compact way. We refer to Remark 10 for an exemplary case in which we can reformulate inequalities of the
type f(x, y) ≤ χ(x, u).

5.2 The Worst-Case Perspective of Two-stage Robust Optimization and Robust Bilevel
Optimization with Wait-and-See Follower

The following example shows an important difference between two-stage robust optimization and robust bilevel
optimization with a wait-and-see follower on the one hand and general trilevel problems on the other hand. It
especially highlights the “worst-case” perspective of two-stage robust optimization and robust bilevel optimization
with wait-and-see follower, which compute a solution that is feasible for all realizations of the uncertainty.

Consider the two-stage robust problem

min
x∈{0,1}

max
u∈{0,1},u≤1−x

min
y

{x : y ∈ {0, 1}, 2u ≤ y} (20)

and the optimistic robust bilevel problem with a wait-and-see follower

min
x∈{0,1}

max
u∈{0,1}, u≤1−x

min
y

{x : y ∈ S(x, u)} , (21)

where S(x, u) is the set of optimal solutions of the (x, u)-parameterized problem

min
y∈{0,1}

x s.t. 2u ≤ y. (22)

From Theorem 17 and Remark 18, it follows that Problems (20) and (21) have the same feasible “here-and-now”
decisions x and only differ regarding the used robust and bilevel notations.

We now compare the two previous optimization problems with the optimistic trilevel problem

min
x∈{0,1},u,y

x s.t. (u, y) ∈ U(x), (23)

with

U(x) = arg max
ũ,ỹ

{ũ : ũ ≤ 1 − x, ũ ∈ {0, 1}, ỹ ∈ S(x, ũ)}

and S(x, ũ) is again the set of optimal solutions of Problem (22) with u = ũ.
We now make a case distinction for the two possible assignments of x ∈ {0, 1}.
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If x = 1 holds, then u = 0 is the only possible option for the maximization player due to u ≤ 1 − x = 0
and u ∈ {0, 1}. Furthermore, both possible assignments y ∈ {0, 1} satisfy 2u = 0 ≤ y. Note that x = 1 is a
two-stage robust feasible point of Problem (20) and of the robust bilevel problem (21) since for each uncertainty
u ∈ {0, 1} there exists a feasible second-stage decision y. Moreover, there exist feasible points of the trilevel
problem with x = 1, u = 0, and y ∈ {0, 1}. Note that the objective value is not depending on y. Thus, we obtain
1 as the overall objective value if we choose x = 1 for all of the three problems.

If x = 0 holds, then u = 0 and u = 1 both satisfy u ≤ 1 − x = 1. For u = 1, there is no feasible
decision y ∈ {0, 1} that satisfies 2u = 2 ≤ y. Consequently, x = 0 is neither a two-stage robust feasible point of
Problem (20) nor a robust bilevel feasible point of Problem (21). However, since for u = 0 both assignments for
y ∈ {0, 1} satisfy 2u = 0 ≤ y, we obtain the trilevel feasible point with x = 0, u = 0, and y ∈ {0, 1}, having an
objective value of 0.

Overall, the two-stage robust solution and the robust bilevel feasible solution satisfy x = 1 and, thus, have
objective value 1. However, for x = 0, the trilevel problem (23) has solutions with objective value of 0. We note
that these solutions also hold for the pessimistic versions of the multilevel problems since there are no coupling
constraints and the objective function equals x in each level.

Concluding, the optimal value of the two-stage robust problem (20), respectively of the robust bilevel
problem (21), differs from the corresponding optimal value of the trilevel problem (23). Note that this difference
regarding the solutions and objective values stems from a different interpretation of the “maximization” player.
In two-stage robust optimization and robust bilevel optimization with a wait-and-see follower, the maximization
player seeks to find an uncertainty u ∈ U(x) so that there is no feasible wait-and-see decision y. Thus, the
maximization player interprets the infeasibility of the last minimization problem as having an objective function
value of +∞, i.e., as the best possible case to achieve. Contrarily, in the corresponding trilevel optimization
problem, the maximization player interprets this infeasibility of the third-level player due to the choice of u as
not being feasible since maximizing over the empty set leads to −∞. Thus, if possible, the maximization player
avoids to choose a point u ∈ U(x) that leads to an infeasible third-level problem.

To describe it in other words, in two-stage robust and robust bilevel optimization the maximization player
actually acts in a worst-case sense for the minimization player since this player even would choose a worst-case
uncertainty that leads to the overall infeasibility of the problem. For example, nature can be such a counterplayer
that does not care about the needs of the leader at all. In the trilevel setup, the counterplayer is still a competitor
of the minimization player since this player again optimizes in the contrary direction compared to the leader.
However, the counterplayer always tries to avoid the overall infeasibility of the problem. For example, in a market
environment, the counterplayer can be a competitor that works against the leader, but still tries to avoid the
collapse of the market, e.g., modeled by the last minimization problem, since the competitor still participates in
the same market as well.

We finally note that this example does not exclude that two-stage robust and robust bilevel problems can be
modeled as trilevel problems and vice versa. But it shows that although these problem classes seem to model
similar things (at least notation-wise), the modeling intentions are significantly different.

5.3 Here-and-Now Follower

In this section, we briefly discuss optimistic but robust bilevel problems with a here-and-now follower. We first
note that we can reformulate any static robust problem with decision-dependent uncertainty set as an optimistic
robust bilevel problem with a here-and-now-follower. This directly follows from Theorem 1 since optimistic
bilevel problems are a special case of robust bilevel problem with a here-and-now follower.

Second, we note that using the optimal-value function of the follower’s problem (9), i.e.,

χ(x) := min
y

{f(x, y) : g(x, y, u) ≤ 0 ∀ u ∈ U(x)} ,

we can reformulate an optimistic robust bilevel problem with a here-and-now follower as the following static
robust problem

min
x,y

{F (x, y) : x ∈ X, f(x, y) ≤ χ(x), g(x, y, u) ≤ 0 ∀ u ∈ U(x)} .
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6 Conclusion

In this paper we shed some light on the connections between robust and bilevel optimization. We summarize our
findings in Figure 1. In a nutshell, our results state that bilevel optimization is more general since for most of the
robust problems we found proper reformulations as a bilevel problem but not necessarily the other way around.
However, we did not formally prove that the other way around is not possible. We indeed also give reformulations
for some given bilevel problem as a robust problem but use optimal-value functions in the constraints of these
reformulations. Our intuition is that it is not possible to state reformulations in these cases that do not use
general optimality conditions such as optimal-value functions. These functions are usually not known or cannot
be stated in closed and compact form, i.e., by only using a polynomial (in the number of variables and constraints
of the respective problem) number of additional variables and constraints. Despite the fact that in some situations
compact closed-form representations are available, using optimal-value functions for general optimizations as
“usual” constraints will most likely lead to merging two levels of the polynomial hierarchy—and by this to an
overall collapse of the latter. We consequently think that a proof of the impossibility of such reformulations need
to use complexity-theoretic arguments, which are out of the scope of the present paper but a reasonable topic
of future research. Let us also mention the brief discussion by [14] in this context, where a small collection of
polynomial-time solvable special cases of bilevel optimization is given, which maybe contain the cases that might
have a proper reformulation as a respective robust problem without using optimal-value functions. Furthermore,
we note that other special types of robust and bilevel problems may lead to additional connections between the
two fields that are not covered in this work; as examples, let us mention the approach of two-stage worst-case
regret (see [19, 27]) or pessimistic robust bilevel problems.

We also want to point to the algorithmic consequences of our results. For all the cases in which we identify a
proper reformulation, this paves the way for using the theory and algorithms from one field in the other, which
may open the door to many new and hybrid techniques for solving the respective problems.

Robust and bilevel optimization problems exhibit many similarities. In this paper, we have made some steps
towards a better integration of these two disciplines and hope to inspire the respective research communities
to work together more closely as it might be the case that such a collaboration can be bring some benefits to
both fields. As an example, we note the seminal paper [26] on decision-dependent uncertainty, where a big-M
formulation is introduced. Similar formulations have also been studied in the bilevel setting, where it is shown
that validating a given big-M value is as hard as solving the bilevel problem in general; see [22]. More joint
workshops such as the event held in Dagstuhl might thus be a great boon to both communities.
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