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Abstract
We propose an adaptive refinement algorithm to solve total variation regularized measure optimization problems. The
method iteratively constructs dyadic partitions of the unit cube based on (i) the resolution of discretized dual problems
and (ii) the detection of cells containing points that violate the dual constraints. The detection is based on upper-bounds
on the dual certificate, in the spirit of branch-and-bound methods. The interest of this approach is that it avoids the use
of heuristic approaches to find the maximizers of dual certificates. We prove the convergence of this approach under mild
hypotheses and a linear convergence rate under additional non-degeneracy assumptions. These results are confirmed by
simple numerical experiments.1
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1 Introduction

This article is concerned with the following class of problems:

inf
µ∈M(Ω)

J(µ) def.= ∥µ∥M(Ω) + f(Aµ). (P(Ω))

Here, M(Ω) is the set of Radon measures on a compact domain Ω ⊆ RD, equipped with the weak-∗ topology,
and A : M(Ω) → RM a linear continuous operator (equivalently, A is an operator of the form (Aµ)m =

∫
Ω amdµ

for some continuous functions am : Ω → R). ∥ · ∥M(Ω) is the total variation and f : RM → R∪ {+∞} is a convex,
proper function.

1.1 Applications
This problem and its variants appear in various fields. In inverse problems, it is used heavily for sparse source
localization and super-resolution [5, 6, 10, 15, 32]. It is also used in optimal control with sparse controls [9, 23].
In approximation theory, a “generalized” version of this problem was revisited recently in [35]. Given a surjective
Fredholm operator L : B(Ω) → M(Ω), where B(Ω) is a suitably defined Banach space, consider the following
problem:

inf
u∈B(Ω)

∥Lu∥M(Ω) + f(Au). (1)
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The solutions of this problem are (generalized) splines with free knots [35]. Following [18] and letting L+ denote
a pseudo-inverse of L, this problem can be rephrased as

inf
µ∈M(Ω)

uK ∈ker(L)

∥µ∥M + f(A(L+µ + uK)), (2)

which is an instance of (P(Ω)).

1.2 Literature review
The variable over which we optimize in (P(Ω)) is of infinite-dimensional nature. Therefore, it is non-trivial to
numerically resolve it. However, there is a finite dimensional problem “hiding” within it. More concretely, the
problems admit sparse solutions (see e.g. [4]) of the form

µ⋆ =
S∑

s=1
α⋆

sδx⋆
s
, (3)

where α⋆
s ∈ R are weights, x⋆

s ∈ Ω are locations in which the Dirac deltas δxs
∈ M(Ω) are concentrated and

where the number of sources S satisfies S ≤ M . Hence, although the problem inherently is infinite-dimensional,
its solution can be parametrized by O(S) parameters. This makes it plausible that efficient algorithms for
solving (P(Ω)) should be possible to design. Let us give a brief overview of a few approaches here.

Lasserre hierarchies

If the functions am are of certain forms, e.g. (trigonometric) polynomials, it is possible is to use so-called Lasserre
hierarchies, which are designed to solve near generic measure optimization problems [11, 24], to solve (P(Ω)).
This approach, which was advocated for in e.g. [6], consists of recasting the problem as a finite-dimensional
SDP, which then can be solved using various methods. This reformulation is elegant, but scales poorly for large
M – the variable for the reformulated problem is generically of size ≥ C · M2 for some constant C, which is
much higher than the O(S)-dimensional structure (3). Recently, methods for mitigating this effect have been
proposed [37], but their convergence is typically sublinear. We will not consider these methods further in this
work.

Non-convex reparametrization

The structure (3) immediately suggests a way to numerically solve (P(Ω)): Given a number N ≥ M of particles,
a set of locations X = (x1, . . . , xN ) in ΩN and a weight vector α ∈ RN , we can define the mapping

µ(X, α) def.=
N∑

n=1
αnδxn

,

and instead solve the following finite-dimensional problem

inf
X∈ΩN

α∈RN

∥α∥1 + f(Aµ(X, α)). (4)

Because of the known structure (3), the global minimum of (4) corresponds to a global minimum of (P(Ω)).
However, (4) is – in contrast to (P(Ω)) non-convex – and its global optimization is hence challenging. Still,
proximal gradient descent can be used successfully under additional assumptions.

One approach is to use overparametrization. That is, one uses N ≫ M particles initialized on a fine grid in
Ω. If N is large enough, the method will converge globally, and locally with a linear speed [7, 8]. However, the
condition N ≫ M again means that the number of variables used is unnecessarily large.

A different route is opened when an approximate solution to P(Ω) is known – we can then use (4) to fine-tune
it. By now, it possesses a rich convergence theory [17, 33]. In essence, if we have a good-enough approximation of
each (αs, x⋆

s) in (3), we obtain a linear convergence using only S = O(M) variables. A variant of this approach
that deserves to be mentioned is the sliding Frank–Wolfe algorithm in [13], where a gradient descent on (4) is
launched after each step of a so-called Frank–Wolfe algorithm, which we will introduce next. Needless to say,
since this method only works given a good initialization is known, there are no global convergence guarantees.

To conclude, the reparametrized methods cannot be proven to converge globally at a (locally) linear speed
while keeping the number of variables under control. We will not consider them further in this work.
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Exchange algorithms

A final popular approach to solve (P(Ω)), which is the main focus of this article, are exchange algorithms. Let us
explain them a bit more generally.

Consider the dual problem (D(Ω)) to (P(Ω)):

sup
q∈RM

∥A∗q∥L∞(Ω)≤1

−f∗(q), (D(Ω))

where ∥A∗q∥L∞(Ω)
def.= supx∈Ω |A∗q|(x) and f∗ is the Fenchel dual of f : f∗(q) def.= supx∈RM ⟨q, x⟩ − f(x). Its

variable q ∈ RM is finite-dimensional, subject to an infinite number of linear constraints {|A∗q(x)| ≤ 1, ∀ x ∈ Ω}.
It is therefore called a semi-infinite program [20, 21, 29]. The first algorithm proposed to tackle it is usually
attributed to Remez and his exchange algorithm [30]. It dates back to the 1930’s and was adapted to a specific
problem of the form P(Ω). The general idea is to define a sequence of discretization sets (Vk)k∈N, where Vk is a
finite set of points (vertices) in Ω. We can then define the discretized primal and dual problems as follows

inf
µ∈M(Vk)

∥µ∥M(Vk) + f(Aµ) (P(Vk))

sup
q∈RM

∥A∗q∥L∞(Vk)≤1

−f∗(q). (D(Vk))

Note that although the notation may suggest otherwise, these problems are standard, finite-dimensional convex
problems: The space of measures M(Vk) on Vk is of dimension |Vk| < ∞, and the constraint ∥A∗q∥L∞(Vk) ≤ 1
only amounts to |Vk| linear constraints {|A∗q(x)| ≤ 1, ∀ x ∈ Vk}. Hence, both problems can be solved with
off-the-shelf solvers.

The Vk are still to be chosen. The simplest approach is to define Vk as a Euclidean grid with edge-length
2−k [12, 31]. It can be proven that with this choice of Vk, the solutions of P(Vk) converge towards a solution of
P(Ω) as k → ∞; in fact, Theorem 14 in this paper encompasses this. However, this choice of course entails an
exponential explosion of the number of variables as k → ∞.

A lighter adaptive method consists of using the dual variable qk to construct Vk+1. The dual variable satisfies
|A∗qk|(x) ≤ 1 for x ∈ Vk by construction. However, there may exist locations x ∈ Ω\Vk with |A∗qk|(x) > 1. Such
points are candidates to be added to Vk+1. Perhaps the most popular approach in this class is the Frank–Wolfe [19]
approach2. It consists of adding only the global maximizer of |A∗qk| at each step. It is described precisely in
Algorithm 1.

Algorithm 1 The Frank–Wolfe Algorithm
1: Input:

• Initial discretization set V0, set k = 0
2: WHILE a stopping criterion is not satisfied
3: 1) Determine a solution qk of D(Vk)
4: 2) Determine x⋆

k
def.= argmaxx∈Ω |A∗qk|(x).

5: 3) Set Vk+1 = Vk ∪ {x⋆
k}.

6: Output:
• The dual solution qk of (D(Vk)).

It was revived in signal processing thanks to Bredies et al. in [5]. Its connection with the exchange algorithms
was recalled in [16]. A linear convergence theory was developed independently by Walter and Pieper in [27] and
by the authors in [17]. In brief, it states that the approach generically converges globally, and under certain
regularity conditions converges locally linearly, in the sense that no more than O(log(ϵ−1)) iterations are needed
to obtain a solution within an error of ϵ. Furthermore, the grids grow at a speed of O(S) – in particular, an
error of ϵ can be achieved while all grids fulfill |Vk| ≤ S log(ϵ−1).

2 The version of the Frank–Wolfe algorithm we present here is not the “standard” one. In its original form, the updates of the
optimization variables are not made by fully resolving a discretized dual, but rather by making a line search between then
current primal iterate µk and the new candidate δx⋆

k
. It is therefore more correct to say that we consider the fully corrected

Frank–Wolfe algorithm.
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Despite its nice theoretical properties, this approach suffers from one major issue, which is the main motivation
for the present paper:

How can we find the maximizer x⋆
k

def.= argmax
x∈Ω

|A∗qk|(x)?

Although this question is most often glossed over in treatises of Frank–Wolfe-type algorithms, this problem has
no reason to be simple. It is nonconvex and depends highly on the properties of the functions am. Hence, from a
fundamental point of view, the Frank–Wolfe algorithm in general is totally infeasible.

The problem can be, and is usually, of course tackled with heuristics; For instance, multiple gradient or
Newton ascents are launched in parallel starting from a set of points covering Ω sufficiently finely. At the end of
the process, the point with the largest value is then kept as an approximation of x⋆

k. Our experience is however
that tuning the hyper-parameters in this quest for the global minimizer is time consuming and can represent a
real headache for the optimizer. Hence, circumventing the calculation of x⋆

k is not only a theoretical, but also a
practical, issue.

1.3 Contribution
In this article, we will show that the correct answer to our question of how to find x⋆

k in fact is “We do not need
to”. Indeed, we will develop a modified exchange algorithm where the grid-update is made without determining
x⋆

k, while keeping the convergence properties intact. We subdivide Ω into collection Ωk of hypercubes ω, and
let Vk denote the vertices of the ω. To construct the next Vk+1, or equivalently Ωk+1, we determine a set Ω⋆

k

of candidate cells ω where supx∈ω |A∗qk(x)| is likely to exceed 1. We then subdivide the largest cells in Ω⋆
k to

construct Ωk+1. See Figure 1.
The description of the process of selecting the Ω⋆

k is intentionally kept vague in the above description, in order
to showcase the potential flexibility of our approach. It allows for the design of selection rules tailor-made to
special problems and known properties of the solution µ⋆. We will in the paper describe conditions on the process
that will imply convergence towards a solution µ⋆ of (P(Ω)) (Theorem 14), and conditions that will secure a
linear convergence rate similar to the results cited above (Theorem 16). These conditions will be surprisingly
simple to satisfy: Indeed, choosing Ω∗

k as the cells in which a simple (trivial to evaluate) linear upper bound of
|A∗qk| is larger than one, will be enough to secure the linear rate. Hence, the determination of the x⋆

k can be
completely circumvented while still obtaining the same convergence rates as the best results known previously
for algorithms of the Frank–Wolfe type. This is the main contribution of this article.

An additional minor contribution is that we have slightly weakened some of the technical assumptions about
f and A compared to [17]. In particular, our arguments can be used to sharpen the pendant of Theorem 14
there.3

Many of our arguments will follow similar lines as [17] – in particular, we will utilize many technical results
derived there. Still, the proof of the convergence of the modified algorithm comes with significant new technical
hurdles and subtleties.

Figure 1 The refinement. From left to right: (i) a cell partition, (ii) the partition with the candidate
cells grayed out, (iii) only the candidate cells with largest diameter are selected for refinement and (iv)
the new resulting cell partition.

3 For convenience for the reader, we collect all the assumptions to prove our main results, and in particular minor differences in
detail between the assumptions of [17] and this paper, in Appendix B.
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Outline

In Section 2, we will introduce the notation and some basic results used in the rest of the paper. In Section 3, we
introduce the algorithm formally, discuss a few methods for determining the candidate cells Ω⋆

k, and prove our
main results (which gives conditions on f and A as well as the procedure for determining Ω⋆

k under which the
algorithm converges linearly). In Section 4, we present some numerical experiments to illustrate our theory. Most
proofs will be postponed to Appendix A.

2 Preliminaries

We will work on the domain Ω = [0, 1]D for simplicity. This is indeed is not a real restriction, since there always
exists a non-degenerate affine transform φ : RD → RD with φ(Ω) ⊆ [0, 1]D. Using this transform, we may push
measurement functions and measures forward, in a bijective fashion. We let M(Ω) denote the space of Radon
measures of bounded total variation on Ω and C(Ω) the space of continuous functions on Ω. Note that if we
equip M(Ω) with the total variation norm ∥ · ∥M(Ω) and C(Ω) with the supremum norm, M(Ω) can be identified
with the dual of C(Ω). For a subset ω of RD, we let vol(ω) denote its volume (Lebesgue measure). The notation
J1, NK indicates the set of integers from 1 to N . The relation f ≲ g indicates that f is dominated by g up to
positive multiplicative constant. The relation f ≍ g indicates that f and g are equivalent, i.e. that there exists
two constants 0 < c1 ≤ c2 such that c1g ≤ f ≤ c2g.

2.1 Cells and cell partitions
The proposed algorithms rely on the use of 2D-trees. We iteratively partition hypercubes in 2D equal parts. For
instance, we will use binary trees in 1D, quadtrees in 2D, and octrees in 3D. Let us define some objects.

▶ Definition 1 (Cells, vertices, edge-length). We call a subset ω ⊆ [0, 1] a dyadic cell (or simply a cell) if it is of
the form

ω = x + 2−J · [0, 1]d,

where J is a non-negative integer and x ∈ (2−J ·
{

0, 1, . . . , 2J − 1
}

)d.
For a cell ω, we let vert(ω) denote its vertices and |ω| denote its edge-length.

▶ Definition 2 (Cell partition). A cell partition Ωk is a collection of cells such that Ω = ∪ω∈Ωk
ω and vol(ω′∩ω) = 0

for all ω, ω′ ∈ Ωk with ω ̸= ω′. That is to say, two cells in Ωk can only have faces in common.

2.2 Measurement operator
Throughout the paper, we will work under the following assumption.

▶ Assumption 1 (Continuous operator). The linear operator A : M(Ω) → RM is continuous. Equivalently, the
measurement functionals a∗

m defined by ⟨a∗
m, µ⟩ = (A(µ))m are given for all µ ∈ M(Ω) by

⟨a∗
m, µ⟩ =

∫
Ω

amdµ,

for functions am ∈ C(Ω).

Given q ∈ RM , A∗q =
∑M

m=1 qmam is a continuous function. Assuming that am ∈ Cr(Ω), we let (A∗q)′,
(A∗q)′′, (A∗q)(r) denote its derivative, its Hessian and it r-th tensor derivative. We define the following constants

κr
def.= sup

∥q∥2≤1
sup
x∈Ω

∥(A∗q)(r)(x)∥, (5)

where r indicates the derivative’s order and where ∥ · ∥ is the canonical norm for r-forms, i.e.

∥T∥ = sup
∥u1∥,...,∥ur∥≤1

|T (u1, . . . , ur)|
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2.3 Set distances
The “distance” between two sets X1 and X2 in RD is defined by

dist(X1, X2) def.= inf
x1∈X1,x2∈X2

∥x1 − x2∥2.

Notice that dist is not a proper distance. In particular, it does not satisfy the triangle inequality. For a point
x ∈ RD and a set X ⊂ RD, we will use the shorthand notation

dist(x, X) def.= dist({x}, X).

The Hausdorff distance between X1 and X2 is defined by

distH(X1|X2) def.= sup
x2∈X2

inf
x1∈X1

∥x1 − x2∥2.

Notice that this distance is asymmetric: in general distH(X1|X2) ̸= distH(X2|X1). The following inequality will
play an important role in the analysis. Its proof can be found in Appendix A.3

▶ Proposition 3 (Triangle inequality for set distances). For any triple of sets X1, X2, X3 in RD we have

dist(X1, X2) ≤ distH(X1|X3) + dist(X3, X2). (6)

2.4 Primal, dual and existence of solutions
Our results will be established under the following assumptions on f and A.

▶ Assumption 2 (A convexity assumption). The function f : RM → R∪ {+∞} is a convex lower semi-continuous
function with int(dom(f)) ̸= ∅.

▶ Assumption 3 (Coercivity). The functional J is coercive, meaning that J(µ) → ∞ when ∥µ∥M(Ω) → ∞.

Notice that Assumption 3 is granted if f is lower-bounded. The following result relates the primal and the
dual.

▶ Proposition 4 (Existence and strong duality). Let V ⊆ Ω denote a subset of Ω. Assume that there exists
µ ∈ M(Ω) supported on V with Aµ ∈ int(dom(f)). Then, under Assumptions 1, 2 and 3, the following statements
hold true:

The primal problem (P(V)) has a nonempty set of solutions, bounded in total variation norm.
The dual (D(V)) has a nonempty set of solutions, which is also bounded.
The following strong duality result holds

min
µ∈M(V)

∥µ∥M(V) + f(Aµ) = max
q∈RM ,∥A∗q∥L∞(V)≤1

−f∗(q).

Let (µ⋆, q⋆) denote a primal-dual pair. They are related by the following primal-dual relationships:

A∗q⋆ ∈ ∂∥·∥M(Ω)(µ
⋆) and − q⋆ ∈ ∂f(Aµ⋆). (7)

The left inclusion in (7) implies that the support of a solution µ⋆ satisfies: supp(µ⋆) ⊆ {x ∈ Ω, |A∗q⋆(x)| = 1}.

▶ Remark 5. Strong duality may hold under assumptions different than Assumptions 2 and 3. For instance, if f

is polyhedral (allowing the hard constraint Aµ = b), then strong duality holds [3], but the dual solution set may
be unbounded. Similarly, the coercivity of J is not absolutely needed. If J has a finite dimensional constancy
space, the primal solution set still exists, but may be unbounded as well. In both cases, the unboundedness
of either the primal or dual solution set requires extra technicalities and assumptions in the proofs, which we
decided to discard.
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3 Main results

This section contains our main findings. All the proofs are postponed to the appendix.

3.1 The algorithm
The algorithm we propose consists of designing a sequence of cell partitions (Ωk)k∈N of Ω. At each step of the
algorithm, Ωk+1 is constructed by dividing a few cells in Ωk. Let Vk denote the set of vertices of the partition Ωk:

Vk
def.= {vert(ω) | ω ∈ Ωk}.

At step k, we solve (D(Vk)), to obtain a solution qk of the discretized dual problem. It satisfies ∥A∗qk∥L∞(Vk) ≤ 1
by construction. However, it is most probably infeasible for the problem (D(Ω)), i.e. ∥A∗qk∥L∞(Ω) > 1. This
suggests that we should detect the cells ω ∈ Ωk for which ∥A∗qk∥L∞(ω) > 1 and subdivide them. To this end, we
suppose that we have access to a set of candidate cells Ω⋆

k ⊂ Ωk that are likely to satisfy ∥A∗qk∥L∞(Ω) > 1. To
make it easier to control the growth of |Vk| with the iteration number k, we propose to not refine all candidates
in Ω⋆

k, but only the largest of them. Note that we formulate the algorithm for an abstract candidate cell selection
process – we will later give conditions on it to guarantee (linear) convergence, and give examples of simple
processes that fulfil them. The complete solver is described in Algorithm 2. One iteration of the algorithm is
displayed in Figure 1 in the previous section.

3.1.1 Solution of (D(Vk))
Our algorithm is oblivious of the solvers of the discretized primals and duals, and our analysis is completely
independent of the choice of them. Consequently, our statements are about the number of “meta-iterations” k

needed to obtain an approximate solution up to a certain tolerance.
Our rationale behind this approach is that any other (fully corrective) Frank–Wolfe approach, which is the

most natural method to compare with, would also solve (D(Vk)) at each iterations. Hence, counting the number
of meta-iterations is the fairest comparison to the results known in the literature. Indeed, the interesting aspect
of our result is that our fully discretized version of the Frank–Wolfe algorithm both has the same asymptotical
cost as the standard one in terms of number of (D(Vk))-problems needed to be solved.

With that said, it should be remarked that the complexity of solving (D(Vk)) grows with |Vk|. For example,
if f is a quadratic form, the problem (D(Vk)) can be solved exactly with O(L2 |Vk|4) arithmetic operations,
where L is the number of bits needed to describe the input[36]. Note however that this involves resolving the
problem from scratch each time, which is wasteful given that qk should be a good approximation of a solution to
the next dual problem D(Vk+1). Exploring ways to efficiently solve (D(Vk)) is an interesting line of research,
which we however postpone to future work.

Algorithm 2 Adaptive Refinement Algorithm
1: Input:

• Operator A

• Initial partition Ω0 (e.g. Ω0 = {Ω})
• Target precision Kend
• Solver for the discretized primal (P(Vk)) and dual (D(Vk))
• Set k = 1

2: WHILE max
ω∈Ω∗

k−1

|ω| ≥ 2−Kend

3: (1) Determine a solution qk of (D(Vk))
4: (2) Determine the candidate cells Ω⋆

k.
5: (3) Subdivide the cells in Ω⋆

k with largest diameter
6: (4) k = k + 1
7: Output:

• The dual solution qk of (D(Vk)).
• The primal solution µk of (P(Vk)).
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3.2 Assumptions on the selection process
In this paragraph, we discuss how to construct the set of candidate cells Ω⋆

k. Following [17], we let Xk denote
the set of local maximizers of |A∗qk| exceeding 1, i.e.

Xk
def.= {x ∈ Ω | x is a local maximizer of |A∗qk| , |A∗qk(x)| ≥ 1} .

We will in the next section show that the following property of the selection process is sufficient to obtain
convergence of the algorithm.

▶ Assumption 4 (Generic convergence assumption). For each x ∈ Xk, at least one of the cells in Ωk containing x

is a candidate for refinement. In other terms, Ω⋆
k satisfies

Xk ⊂
⋃

ω∈Ω⋆
k

ω.

The above condition is too weak to allow a control of the numerical complexity. For instance the choice Ω⋆
k = Ωk

– which corresponds to refine uniformly at each iteration – obeys Assumption 4, but leads to an exponential
growth of |Ωk|. We will show that the following extra condition suffices to guarantee that the Vk grow at a linear
rate, proportional to S.

▶ Assumption 5 (Second order approximation). There exists a constant κ > 0 independent of the iteration k and
the cell ω such that for every ω ∈ Ω⋆

k, we have

∥A⋆qk∥L∞(ω) ≥ 1 − κ|ω|2,

where |ω| is the edge-length of the cell ω.

3.3 Construction of selection processes
In this section, we discuss how to construct rules satisfying assumptions 4 and 5.

3.3.1 Ideal selection
An obvious refinement rule that obeys both assumptions (4) and (5) is to let

Ω∗
k,ideal = {ω ∈ Ωk | ω ∩ Xk ̸= ∅} .

Indeed, Assumption 4 can be reformulated as {ω ∈ Ωk | ω ∩ Xk ̸= ∅} ⊆ Ω∗
k, which certainly is true for the above

choice. As for Assumption 5, note that for all ω with Xk ∩ ω ̸= ∅, we have ∥A∗qk∥L∞(ω) ≥ 1 ≥ 1 − κ |ω|2, since
ω contains a cell point where |A∗qk| exceeds one.

In order to apply this rule, we however need to know which cells contain the elements of Xk. As discussed in
the introduction, this is in general infeasible.

3.3.2 Upper-bounds selections
To obtain resolvable but still powerful enough selection processes, we will instead rely on the design of simple to
evaluate upper-bounds |A∗qk|(ω) ∈ R satisfying |A∗qk|(ω) ≥ ∥A∗qk∥L∞(ω). Equipped with such an upper-bound,
we can define the candidate cells as:

Ω⋆
k =

{
ω ∈ Ωk

∣∣∣ |A∗qk|(ω) ≥ 1
}

.

By construction, this selection process guarantees Assumption 4. Indeed, a cell ω with ω ∩ Xk obviously obeys
∥A∗qk∥L∞(ω) ≥ 1, and therefore also |A∗qk|(ω) ≥ ∥A∗qk∥L∞(ω) ≥ 1.

Notice that this principle is similar to a branch-and-bound approach [25]. We base our decisions on upper-
bounds, which secures that some regions of space can be safely neglected. An important difference lies in the
fact that the objective function |A∗qk| varies at each iteration, meaning that one region which might have been
discarded at one iteration can be refined some iterations later. Let us describe two such upper bounds.
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▶ Definition 6 (A first order selection process). Assume that am ∈ C1(Ω) for all m. Let us define

|A∗qk|1(ω) = inf
v∈vert(ω)

|A∗qk(v)| + κ1(qk, ω) diam(ω), (8)

with

κ1(qk, ω) =
M∑

m=1
|qk[m]|∥a′

m∥L∞(ω). (9)

The first order selection process is defined as

Ω⋆
k,1 =

{
ω ∈ Ωk

∣∣∣ |A∗qk|1(ω) ≥ 1
}

▶ Proposition 7. The first order selection process Ω⋆
k,1 satisfies Assumption 4. However it may not respect

Assumption 5.

In order to satisfy both Assumption 4 and Assumption 5, we will use second order selection rules.

▶ Definition 8 (A second order selection process). Assume that am ∈ C2(Ω) for all m. For any cell ω, and all
qk ∈ RM , define

|A∗qk|2(ω) def.= inf
v∈vert(ω)

sup
x∈ω

|A∗qk(v) + ⟨(A∗qk)′(v), x − v⟩| + κ2(qk, ω)
2 ∥x − v∥2, (10)

with

κ2(qk, ω) =
M∑

m=1
|qk[m]| sup

x∈ω
∥a′′

m(x)∥2→2. (11)

The second order selection process is defined as

Ω⋆
k,2 =

{
ω ∈ Ωk

∣∣∣ |A∗qk|2(ω) ≥ 1
}

. (12)

▶ Proposition 9. If the sequence (qk)k∈N is uniformly bounded, then the second order selection process Ω⋆
k,2

satisfies both Assumption 4 and 5.

Importantly, notice that the problem

sup
x∈ω

|A∗qk(v) + ⟨(A∗qk)′(v), x − v⟩| + κ2(qk, ω)
2 ∥x − v∥2,

consists of maximizing a convex function over a polyhedron. A solution is therefore attained on vert(ω), and can
be evaluated in constant time per cell.

Also note that the assumption that (qk)k∈N is bounded is weak – and particular always is true in the case of
the sequence qk converging.

▶ Remark 10. The values κ1(qk, ω) and κ2(qk, ω) can be replaced by any upper-bound on the Lipschitz constant
of A∗qk and the Lipshitz constant of (A∗qk)′ respectively. In particular, it is possible to use the global bounds
κ1(qk, ω) = κ1∥qk∥2 and κ2(qk, ω) = κ2∥qk∥2, where κ1 and κ2 are defined in equation (5).

3.3.3 Combining upper-bounds and lower-bounds on the gradient norm
The larger Ω⋆

k, the higher the chances of selecting unwanted cells for refinement. To reduce the cardinality of the
candidate cells, it makes sense to only refine the cells where the function |A∗qk| might surpass 1 and where the
gradient’s norm ∥(A∗qk)′(x)∥2 might cancel. Indeed, Assumption 4 only requires the local maximizers of |A⋆qk|
that surpass 1 to be selected. In cells containing maximizers, the gradient of |A⋆qk| vanishes. Consequently we
can design a selection process based on lower bounds of the gradient.

▶ Definition 11 (Second order selection process with first order gradient). Assume that am ∈ C2(Ω) for all m.
Define |A∗qk|2(ω) and κ2(qk, ω) as in (10) and (11) respectively. For any cell ω, and all qk ∈ RM , define

∥∇A∗qk∥2(ω) = sup
v∈vert(ω)

∥(A∗qk)′(v)∥2 − κ2(qk, ω) diam(ω). (13)

The second order selection process with first order gradient is defined as

Ω⋆
k,2,1 =

{
ω ∈ Ωk

∣∣∣ |A∗qk|2(ω) ≥ 1 and ∥∇A∗qk∥2(ω) ≤ 0
}

.
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▶ Proposition 12. If the sequence (qk)k∈N is uniformly bounded, then the selection process Ω⋆
k,2,1 satisfies both

Assumption 4 and 5. Incorporating gradient lower bounds reduces the cardinality of Ω⋆
k in the sense that the

cardinality of Ω⋆
k in Definition 11 is not greater than the one of Ω⋆

k in Definition 8.

▶ Remark 13. Following Remark 10, the definition of κ2(qk, ω) given in (11) can be replaced by any upper
bound of the Lipschitz constant of the gradient of |A∗qk|. Moreover, we use a first order Taylor expansion for
∥∇A∗qk∥2. It is possible to replace or even combine this lower bound with bounds stemming from higher order
Taylor expansions.

3.4 Generic convergence guarantees
To obtain a generic convergence result, we first need to prove that the algorithm is well defined – i.e. that the
discretized problems (P(Vk)) and (D(Vk)) all have solutions. To this end, we introduce the following assumption.

▶ Assumption 6 (Well-posedness of the algorithm). The initial set of vertices V0 is admissible in the sense that
there exists µ ∈ M(V0) with Aµ ∈ int(dom(f)).

▶ Theorem 14. Under Assumptions 1, 2, 3, 4 and 6, the sequences (µk)k∈N and (qk)k∈N in Algorithm (2) are
well-defined. They contain subsequences that converge weakly to solutions µ⋆ and q⋆ of (P(Ω)) and (D(Ω)),
as well as in optimal function value. If either the primal or dual solution is unique, the whole corresponding
sequence converges.

Proof. The proof of this theorem is postponed to Section A.1. ◀

▶ Remark 15. The proof of this result relies on the fact that the sequence (Vk)k∈N is nested. In exchange
algorithms, it is possible to not only add, but also discard points from Vk to construct Vk+1. The obvious interest
is to reduce the numerical complexity. We do not know if it possible to adapt the algorithm and the proof to
allow for points suppression as well.

3.5 Linear convergence rates
Having established the generic convergence result, we move on to providing an eventual linear convergence rate
under additional regularity conditions. We first need a couple of additional regularity conditions on f , A and the
primal-dual solution pair, which are similar to those in [17] and [27].

▶ Assumption 7 (Linear convergence conditions).
The functionals am are twice differentiable: am ∈ C2

0 (Ω) for all 1 ≤ m ≤ M .
The function f is convex, differentiable with an L-Lipschitz gradient.

Following [15], we also require the following condition.

▶ Assumption 8 (Non-degenerate source condition). We say that the non-degenerate source condition [15] holds
if we have the following:

The solution µ⋆ of (P(Ω)) is unique and supported on S ∈ N points

µ⋆ =
S∑

s=1
α⋆

sδx⋆
s

for some α⋆
s ∈ R and x⋆

s ∈ Ω. In what follows, we let X⋆ def.= {x⋆
1, . . . , x⋆

S}.
The dual certificate |A∗q⋆| is only equal to 1 in the points x⋆

1, . . . , x⋆
S and is strictly concave around those

points. This ensures the existence of a parameter γ > 0 and a radius R > 0 with

B(x⋆
s1

, R) ∩ B(x⋆
s2

, R) = ∅, ∀ s1 ̸= s2 (14)
sign(A∗q⋆(x))(A∗q⋆)′′ ≼ −γ Id for x with dist(x, X⋆) ≤ R,

|A∗q⋆(x)| ≤ 1 − γR2

2 for x with dist(x, X⋆) ≥ R. (15)

This last assumption is generic, given that the solution is unique. It is a condition that has appeared in the
literature as a mean to prove recovery of sparse measures using problems of the form (P(Ω)) – see e.g. [6, 28].
We can now formulate our main result.
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▶ Theorem 16. Under Assumptions 3, 4, 5, 7 and 8, Algorithm 2 eventually converges linearly. That is, there
exists constants k0 ∈ N, c > 0 (depending on A, f and µ⋆) such that the algorithm terminates in no more than
k = k0 + cKend iterations. We further have

|Vk| ≲ Kend, controlled complexity

distH(X⋆| vert(Ω⋆
k)) ≲ 2−Kend , controlled localization

∥qk − q⋆∥2 ≲ 2−Kend , certificate on the dual

J(µk) − J(µ⋆) ≲ 2−2Kend , certificate on the primal.

Proof. The proof of this theorem is quite technical, and is therefore postponed to Section A.2. It relies on a
few technical inequalities from [17], and utilizes similar ideas, but still differs significantly to account for the
discretization procedure.

Informally, it is built using the following arguments. First, appealing to the generic convergence result and
the fact that only finitely many cells have an edge length larger than any fixed value δ > 0, we argue that after
warming period of at most k0 iterations, qk is close to q⋆, and no cells with an edge-length larger than a critical
value can be active. Once that happens, the algorithm will only be able to refine cells close to the maximizers
X⋆. This results in a multiscale refinement of local regions around the sought-for locations, see e.g. Figure 3. ◀

▶ Remark 17. We did not keep track of the constants in the above inequalities. Some of them could theoretically
be extracted from the proof, but others, like the time k0 to reach a linear convergence rate, cannot.

▶ Remark 18. We can replace the final output µk, the solution of (P(Vk)), by the solution µ̃k of P(vert(Ω⋆
k))

defined as

µ̃k
def.= inf

µ∈M(vert(Ω⋆
k

))
∥µ∥M + f(Aµ), (16)

and still have J(µ̃k)−J(µ⋆) ≲ 2−2Kend . The interest of this alternative problem is that the cardinality of vert(Ω⋆
k)

is significantly smaller than that of Vk, helping to reduce the numerical complexity of the resolution of the
final (P(Vk)). Note however that the same trick cannot be used for solution of the discretized duals (D(Vk)) –
here, the entire Vk needs to be used each time.

▶ Remark 19. Our algorithm relies on dyadic subdivision of cells. We therefore cannot expect the algorithm to
converge faster than linearly. In that regard, Theorem 16 is optimal.

4 Numerical experiments

In this section, we aim at illustrating our main findings through some simple numerical experiments. We consider
problems of sparse source recovery problem with filtered measurements. That is, given a ground truth µ̄, we set
y = Aµ̄ and let f(q) = 1

2 ∥q − y∥2
2. This yields

f∗(q′) def.= sup
q∈RM

⟨q, q′⟩ − 1
2∥q − y∥2

2 = 1
2∥q′∥2

2 + ⟨q′, y⟩.

We consider Gaussian measurements functions of the form

am(x) = 1
2πσ

exp
(

−∥x − zm∥2
2

2σ2

)
for some value σ > 0. To properly define our selection procedures in (11), we need an upper-bound on the second
order derivatives.

▶ Proposition 20. Define

κ2,m(ω) = am(dist(zm, ω))
σ4 max

(
σ2, (dist(zm, ω) +

√
D|ω|)2

)
.

Then, κ2,m(ω) ≥ supx∈ω ∥a′′
m(x)∥2→2. We can choose κ2(qk, ω) =

∑M
m=1 |qk|[m]κ2,m(ω), in Proposition 11 to

define the second order candidates Ω⋆
k.
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4.1 Implementation details
We implement our algorithm in Python using the numpy package. To solve the discretized dual (D(Vk)), we
rely on the SCS solver of the CVXPY package [1, 14]. The selection procedures are defined and implemented
as described in the main text. To assess the convergence rates, we compute the exact solutions of the primal
problem by running a fixed step gradient descent in the parameter space, see equation (4), initialized in the
“ground truth measures” we specify. This is sound, since the true solution lies close to them (see e.g. [28]).

The code used in the experiments is released at https://github.com/usinedepain/griddedTV.

4.2 1D-experiments
4.2.1 The problem
We set y = Aµ̄ with µ̄

def.= 8δ1/3 − 9δ2/3. We choose the Dirac mass locations to lie at 1/3 and 2/3, since these
points are the hardest to reach with dyadic partitions. The sampling locations and σ-parameter are set to
zm

def.= m/M and σ = 2/M , with M = 20.

4.2.2 Second-order upper bound
The behavior of the second order selection process algorithm of Definition 8 is displayed in Table 1a and Figure 2.
As can be seen in the figure, the algorithm starts by a burn-in period of 4 iterations. This transient behavior
explains why the linear convergence rate only occurs after a finite number of iterations. Then, only cells in a
neighborhood of {1/3, 2/3} are refined. The Table 1 clearly indicates that the distance distH(Vk, X⋆) decays
exponentially fast, illustrating Theorem 16 and the linear convergence rate. Observe that less than 300 vertices
are enough to obtain a precision 10−6, while a uniform refinement would require 106 vertices. This illustrates the
huge computational/memory advantage of this adaptive method.

4.2.3 Second-order upper bound with first order gradient
We turn our attention to the second order selection process with first order gradient, see Definition 11. The
results are displayed in Table 1b and Figure 3. In comparison to the previous test, a lower bound on the gradient
is used to reduce the cardinality of Ω⋆

k. Two measures of complexity can be used to compare the approaches:
i) the cardinality |Vk| needed to reach a given accuracy distH(Vk, X⋆), or ii) the number of iterations to reach
the same accuracy. Reducing the cardinality of Ω⋆

k can be detrimental to the second notion of complexity. For
example, compare Figure 3f and Figure 2f. The cells that are not flagged for refinement in Figure 3f are flagged
in Figure 3g and refined at Iteration 7. Iteration 7 can be seen as a failed zwischenzug iteration that loses a
tempo. However, for the first notion of complexity, the conclusion is different. We see that for this particular
example, adding a gradient lower bounds allows reaching the target precision in Table 1b with less than half the
number of vertices for the vanilla second order bound. A full complexity analysis would require a fine analysis of
the quadratic programming solver, which is out of the scope of this paper.

4.3 2D experiments
4.3.1 The problem
In this section, we assume that the sampling points zm lie on a Euclidean grid. More precisely, we suppose
that

√
M ∈ N and that each index m ∈ J1, MK can be decomposed as m = (m1, m2) ∈ J0,

√
M − 1K2 and

zm = 1√
M

(m1, m2) with M = 16. µ̄ is chosen as

µ̄ = −9δ(1/3,1/3) + 8δ(1/3,2/3) + 5δ(2/3,2/3).

4.3.2 Results
We begin by showcasing the behaviour of the algorithm when the second-order upper bound is used. Table 2a and
Figure 4 summarize the algorithm’s behavior. The conclusions are similar to the previous section and consistent
with Theorem 16: after a burn-in period, the grid is refined in a multi-scale fashion, only around the support X⋆

of the solution µ⋆. To control the complexity of our algorithm we refine only the cells with largest diameter. The
effect of this strategy is striking in 2D, where the algorithm spends some iterations to refine larger cells only. See

https://github.com/usinedepain/griddedTV
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Figure 2 The behavior of the adaptive refinement algorithm with a second order selection process,
on a 1D sparse recovery problem. The set Ω⋆

k is displayed in green, the function |A∗qk| is displayed in
dashed red, the upper-bound |A∗qk| is the piecewise-constant function. Observe that it always dominates
|A∗qk|. The algorithm starts with a burn-in period of 4 iterations. There, it refines all cells uniformly
since the upper-bound is highly inaccurate. After a while, only the cells around the locations X⋆ get
refined in a multiscale fashion.

Figure 4, iterations 6, 8, 9, 10. At these iterations, it is not the cells containing the maximizers Xk which are
refined, but only the largest ones which were not refined in the previous iterations. Yet, the table indicates a
clear advantage of this adaptive method: about 3000 vertices are sufficient to reach a precision 10−4, while the
same guarantee would be obtained only with 108 vertices for a uniform refinement. The results when a lower
bound of the gradient is added are displayed in Table 2b and Figure 5. For this example, there is no increase in
the number of iterations, and only a slight decrease of the number of vertices is observed. Again, a more detailed
analysis of the effects of gradient-including rules is beyond the scope of this paper.

5 Perspectives

In this work, we proposed a modified Frank–Wolfe algorithm for infinite dimensional total variation regularization.
This adaptive refinement approach has a significant advantage: it does not require to search for the maximizers
of a non-convex function at each iteration. Instead, it progressively discards regions of the space, in a certified
manner, resembling a branch-and-bound approach. The only prerequisite is to implement the computation of
upper bounds on the largest eigenvalues of the measurement functions’ Hessians. We proved that the method
has great adaptivity properties. It converges generically under weak assumptions, and its rate of convergence is
linear under stronger regularity assumptions. To the best of our knowledge, this is as good as the best existing
results for the Frank–Wolfe algorithm, and we cannot expect more from this dichotomic approach.

Despite these assets, some parts of the algorithm still require some analysis. In particular, the solution of a
finite dimensional convex problem needs to be computed at each iteration. In this work, we assumed that this
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Figure 3 The adaptive refinement algorithm with a second order selection process and first order
gradient. The setting is the same as the one of Figure 2. The cardinality of the set of candidates Ω⋆

k is
smaller, as can be seen when comparing Figure 3f with Figure 2f.

could be achieved with an arbitrary accuracy. A complete theory should account for approximation errors and
for the complexity of the sub-problems. We leave this for future work.

On a more positive side, the scope of this approach is possibly significantly wider than total variation
regularization. Up to some adjustements, we believe that the method could be extended to more general sparse
measure optimization problems. In particular, we think of other regularizers that promote sparse solutions, such
as problems defined over the cone of nonnegative measures, or over the set probability measures.

A Proofs

Here, we include the proofs omitted in the main text. We begin by proving the main results, i.e. the generic
(Theorem 14) and linear (Theorem 16) convergence results, and save the proofs of smaller, technical propositions
to the end.

A.1 Proof of Theorem (14)
The proof of Theorem 14 will closely follow the argumentation of [17, Theorem 3.1]. Just as there, we will
proceed in six steps: (i) Well-posedness, (ii) Existence of the limit of the primal solutions, (iii) Existence of the
limit of the dual solutions, (iv) Equicontinuity of (A∗qk)k∈N, (v) Feasibility of q∞, (vi) Convergence to a solution.
For completeness, we will present every step in its entirety, but let us still note that steps (i), (ii), (iv) and (vi)
will be exactly the same as the proof in [17]. Step (iii) will differ slightly, due to the relaxed assumptions on the
operator A and function f . (v) also differs, due to the modification of the algorithm, although the main idea is
still the same.
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Table 1 Algorithm’s behavior for the 1D super-resolution problem. Here, we set σ = 2/M , M = 20.

(a) Refinement rule with second-order bounds.

Iteration |Vk| primal distH(Vk, X⋆)

0 2 3.80563e+03 3.3e-01
1 3 3.79912e+03 1.7e-01
2 5 9.39226e+02 8.3e-02
3 9 3.01878e+01 4.2e-02
4 17 1.84675e+01 2.1e-02
5 33 1.72061e+01 1.0e-02
6 43 1.70209e+01 5.1e-03
7 49 1.69895e+01 2.7e-03
8 55 1.69826e+01 1.2e-03
9 61 1.69810e+01 7.2e-04
10 67 1.69873e+01 2.6e-04
11 73 1.69828e+01 2.3e-04
12 79 1.69806e+01 1.9e-05
13 89 1.69811e+01 1.9e-05
14 105 1.69806e+01 1.9e-05
15 132 1.69805e+01 1.2e-05
16 162 1.69805e+01 4.3e-06
17 208 1.69805e+01 3.5e-06
18 272 1.69805e+01 4.6e-07

(b) Refinement rule with second-order upper bounds and
gradient lower bound.

Iteration |Vk| primal distH(Vk, X⋆)

0 2 3.80563e+03 3.3e-01
1 3 3.79912e+03 1.7e-01
2 5 9.39226e+02 8.3e-02
3 9 3.01878e+01 4.2e-02
4 17 1.84675e+01 2.1e-02
5 33 1.72061e+01 1.0e-02
6 43 1.70209e+01 5.1e-03
7 45 1.69895e+01 2.7e-03
8 47 1.69895e+01 2.7e-03
9 53 1.69826e+01 1.2e-03
10 55 1.69826e+01 1.2e-03
11 61 1.69810e+01 7.2e-04
12 67 1.69873e+01 2.6e-04
13 73 1.69828e+01 2.3e-04
14 79 1.69806e+01 1.9e-05
15 83 1.69831e+01 1.9e-05
16 87 1.69816e+01 1.9e-05
17 92 1.69806e+01 1.2e-05
18 96 1.69805e+01 4.3e-06
19 98 1.69805e+01 4.3e-06
20 100 1.69805e+01 4.3e-06
21 104 1.69805e+01 3.5e-06
. . . . . . . . . . . .
31 125 1.69805e+01 3.5e-06
32 128 1.69805e+01 4.6e-07

Proof of Theorem 14. We will closely follow the proof idea of the corresponding Theorem 3.1 in

i. Well-posedness. Under Assumptions 1, 2, 3 and 6, we can apply Proposition 4 to ensure the existence of the
primal-dual pair (µ0, q0). For the next iterates k ≥ 1, the measure µ in Assumption 6 still satisfies µ ∈ M(Vk)
by nestedness of the sequence (Vk)k∈N. Hence we can apply Proposition 4 again.

ii. Existence of the limit of the primal solutions. First remark that the sequence (J(µk))k∈N is non-increasing
since the sets Vk are nested. Since J is coercive, the sequence (∥µk∥M(Ω))k∈N is bounded. Hence there exists
a subsequence (µk)k∈N, which we do not relabel, that weak-∗ converges towards a measure µ∞.

iii. Existence of the limit of the dual solutions. Let Ck
def.=

{
q ∈ RM , ∥A∗q∥L∞(Vk) ≤ 1

}
. The fact that Vk+1 ⊇ Vk

implies that Ck+1 ⊆ Ck. Therefore any solution qk of (D(Vk)) belongs to C0. By Assumption 6, f∗ is coercive
on C0 (see the proof 4). Moreover, the sequence (f∗(qk))k∈N is nondecreasing, bounded above by f∗(q⋆).
Therefore all the vectors qk belong to the level set {q ∈ RM , f∗(q) ≤ f∗(q⋆)}, which is bounded by coercivity
of f∗. Up to a subsequence, (qk)k∈N converges to a limit point q∞.

iv. Equicontinuity of (A∗qk)k∈N. As another technical lemma, we prove that the set (A∗qk)k∈N is equicontinuous.
Let ϵ > 0 be arbitrary. Since the functions am ∈ C(Ω) all are uniformly continuous, there exists a δ > 0 with
the property

∥x − y∥2 < δ ⇒ |am(x) − am(y)| <
ϵ

supk ∥qk∥1
for all m.
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(a) |V1| = 9 (b) |V2| = 25 (c) |V3| = 81 (d) |V4| = 289

(e) |V5| = 951 (f) |V6| = 1210 (g) |V7| = 1246 (h) |V8| = 1512

(i) |V9| = 1529 (j) |V10| = 1545 (k) |V11| = 1770 (l) |V12| = 1773

(m) |V13| = 1776 (n) |V14| = 1787 (o) |V15| = 2042 (p) |V16| = 2045

Figure 4 Our algorithm’s behavior on a 2D example for second-order selection rules. The set Ω⋆
k is

displayed in green, the superlevel set 1 of |A∗qk| is filled with brown, the level set 0.9 is represented
with a dashed red line and the level set 0.75 with a dotted red line. The algorithm starts with a burn-in
period of 3 iterations. There, it refines all cells uniformly since the upper-bound is highly inaccurate.
Then, only the cells around the locations of X⋆ get refined in a multiscale fashion. Remember that only
the cells in Ω∗

k with largest diameter are refined. This explains the behavior of the algorithm between,
e.g. Figures 4f and 4g.

Consequently,

∥x − y∥2 < δ ⇒ |(A∗qk)(x) − (A∗qk)(y)| =

∣∣∣∣∣
M∑

m=1
(am(x) − am(y))qk(m)

∣∣∣∣∣ ≤
M∑

m=1
|am(x) − am(y)| |qk(m)|

<
ϵ

supk ∥qk∥1

M∑
m=1

|qk(m)| ≤ ϵ. (17)

v. Feasibility of q∞. Due to the convergence of (qk)k∈N, the sequence (A∗qk)k∈N is converging strongly to A∗q∞.
We will now prove that ∥A∗q∞∥L∞(Ω) ≤ 1. Towards a contradiction, assume that ∥A∗q∞∥L∞(Ω) = 1 + 2ϵ
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(a) |V1| = 9 (b) |V2| = 25 (c) |V3| = 81 (d) |V4| = 289

(e) |V5| = 951 (f) |V6| = 1210 (g) |V7| = 1246 (h) |V8| = 1512

(i) |V9| = 1529 (j) |V10| = 1545 (k) |V11| = 1766 (l) |V12| = 1769

(m) |V13| = 1780 (n) |V14| = 2035 (o) |V15| = 2038 (p) |V16| = 2041

Figure 5 The adaptive refinement algorithm’s behavior on a 2D example for second-order selection
rules with first order gradient. The behavior quadtrees are very similar to those in Figure 4.

for an ϵ > 0. By convergence of (A∗qk), we can conclude that there exists k0 ∈ N such that for k ≥ k0,
∥A∗qk∥L∞(Ω) ≥ 1 + ϵ. Set δ as in (17). The set Xk is not empty and there exists a cell ω that contains a
point of Xk and satisfies ∥A∗qk∥L∞(ω) ≥ 1 + ϵ. By Assumption 4 this cell belongs to Ω⋆

k. It must further
satisfy diam(ω) ≥ 2δ. If not, all points in ω have a distance to Vk smaller than δ. Since we have |A∗qk|(x) ≤ 1
for x ∈ vert(ω), the equicontinuity of the A∗qk implies that |A∗qk(x)| ≤ 1 + ϵ for all x ∈ ω, which is a
contradiction. Hence, for all k ≥ k0, there exists ω ∈ Ω⋆

k such that diam(ω) ≥ 2δ. Let (ωk)k∈N denote a
sequence of refined cells in Ωk. Since we pick the active cells of largest diameter, we must have diam(ωk) ≥ 2δ

for all k ≥ k0. Since all the ωk’s belong to a compact set Ω, there is a finite number of cells with diameter
larger than 2δ. Hence, we can extract a subsequence of (ωk) that is constant. This is a contradiction, because
the cells (ωk) are refined and cannot appear twice.

vi. Convergence to a solution. Overall, we proved that the primal-dual pair (µ∞, q∞) is feasible. It remains to
prove that it is actually a solution. Here, we reproduce the argument of [17] for completeness. Let us first
remark that ∥µ∞∥M(Ω) + f(Aµ∞) ≥ −f∗(q∞) by weak duality. To prove the second inequality, first notice
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Table 2 The adaptive refinement Algorithm’s behavior for the 2D super-resolution problem.

(a) Refinement rule with second-order bounds.

Iteration |Vk| primal distH(Vk, X⋆)

0 4 1.35942e+03 4.7e-01
1 9 9.42990e+02 2.4e-01
2 25 1.53313e+02 1.2e-01
3 81 3.01429e+01 6.0e-02
4 289 2.31285e+01 3.0e-02
5 951 2.21082e+01 1.6e-02
6 1210 2.19244e+01 7.7e-03
7 1246 2.19244e+01 7.7e-03
8 1512 2.18916e+01 4.6e-03
9 1529 2.18955e+01 4.6e-03
10 1545 2.18956e+01 4.6e-03
11 1770 2.18836e+01 2.2e-03
12 1773 2.18870e+01 2.2e-03
13 1776 2.18870e+01 2.2e-03
14 1787 2.18870e+01 2.2e-03
15 2042 2.18795e+01 6.7e-04
16 2045 2.18795e+01 6.7e-04
17 2315 2.18778e+01 4.4e-04
18 2647 2.18770e+01 2.7e-04
19 3126 2.18766e+01 1.2e-04

(b) Refinement rule with second-order upper bounds and
gradient lower bound.

Iteration |Vk| primal distH(Vk, X⋆)

0 4 1.35942e+03 4.7e-01
1 9 9.42990e+02 2.4e-01
2 25 1.53313e+02 1.2e-01
3 81 3.01429e+01 6.0e-02
4 289 2.31285e+01 3.0e-02
5 951 2.21082e+01 1.6e-02
6 1210 2.19244e+01 7.7e-03
7 1246 2.19244e+01 7.7e-03
8 1512 2.18916e+01 4.6e-03
9 1529 2.18955e+01 4.6e-03
10 1545 2.18956e+01 4.6e-03
11 1766 2.18870e+01 2.2e-03
12 1769 2.18870e+01 2.2e-03
13 1780 2.18870e+01 2.2e-03
14 2035 2.18795e+01 6.7e-04
15 2038 2.18795e+01 6.7e-04
16 2041 2.18795e+01 6.7e-04
17 2318 2.18778e+01 4.4e-04
18 2623 2.18770e+01 2.7e-04
19 3007 2.18766e+01 1.2e-04

that the weak-∗-continuity of A implies that Aµk → Aµ∞. Assumption 2 furthermore implies that f is lower
semi-continuous. As a supremum of linear functions, so is f∗. Since also qk → q∞, we conclude

f∗(q∞) + f(Aµ∞) ≤ lim inf
k→∞

f∗(qk) + f(Aµk).

Assumptions 2, 1 together with Proposition 4 imply exact duality of the discretized problems. This means
f∗(qk) + f(Aµk) = −∥µk∥M(Ω). Since the norm is weak-∗-l.s.c., we thus obtain

lim inf
k→∞

f∗(qk) + f(Aµk) = lim inf
k→∞

−∥µk∥M(Ω) ≤ − lim inf
k→∞

∥µk∥M(Ω) ≤ −∥µ∞∥M(Ω).

Reshuffling these inequalities yields ∥µ∞∥M(Ω) + f(Aµ∞) ≤ −f∗(q∞), i.e., the reverse inequality. Thus, µ∞
and q∞ fulfill the duality conditions, and are solutions. The final claim follows from a standard subsequence
argument. ◀

A.2 Proof of Theorem (16)
In this section, we prove the main theoretical result of the paper, which is Theorem 16. This is a counterpart
of [17, Theorem 3.11].

A.2.1 A few important estimates
The modification of the algorithm will cause the argument to be quite different compared to the one given in [17].
However, it will still rest on a number of technical inequalities from said paper. We can carry these over without
thought, since the assumptions on f and A under which we prove 16 are exactly the same as the ones under
which [17, Theorem 3.11] was proven.

▶ Proposition 21. The following inequalities hold under Assumption 7:

∥qk − q⋆∥2 ≲ distH(Vk|Xk) (18)
∥qk − q⋆∥2

2 ≲ max (distH(Xk|X⋆), distH(Vk|X⋆)) · distH(Vk|X⋆). (19)
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Proof. These are direct reformulations of inequalities from [17]: The first inequality (18) comes from Lemma 3.5,
the second (19) from Lemma 3.6. ◀

▶ Proposition 22 (A list of useful inequalities). Under Assumptions 7 and 8, there exists a k0 ∈ N with the
property that for k ≥ k0, the following inequalities are true:

distH(X⋆|Xk) ≲ ∥qk − q⋆∥2 (20)
distH(Xk|X⋆) = distH(X⋆|Xk) (21)
distH(Xk|X⋆) ≲ distH(Vk|Xk) (22)
distH(Vk|Xk) ≍ distH(Vk|X⋆) (23)

∥qk − q⋆∥2 ≲ distH(Vk|X⋆) (24)
f(µk) − f(µ⋆) ≲ distH(Vk|X⋆)2. (25)

Proof. The first inequalities (21) and (20) are simple consequences of Proposition 3.7 in [17], together with the
fact that, by the generic convergence result, qk converges to q⋆.

Inequality (22) is a combination of (18), (21) and (20).
To prove inequality (23), let us start by proving that distH(Vk|Xk) ≳ distH(Vk|X⋆). We have by the triangular

inequality

distH(Vk|X⋆) ≤ distH(Vk|Xk) + distH(Xk|X⋆)
(22)
≲ distH(Vk|Xk).

Let us prove the converse inequality distH(Vk|Xk) ≲ distH(Vk|X⋆). To this end, first combine (19), (21) and (20)
to get

distH(X⋆|Xk)2 ≲ max (distH(X⋆|Xk), distH(Vk|X⋆)) · distH(Vk|X⋆). (26)

Regardless which of the expressions distH(X⋆|Xk) and distH(Vk|X⋆) is larger, this inequality yields
distH(X⋆|Xk) ≲ distH(Vk|X⋆). Combining this and the triangular inequality, we get

distH(Vk|Xk) ≤ distH(Vk|X⋆) + distH(X⋆|Xk) ≲ distH(Vk|X⋆).

The inequality (23) together with (23) now implies (24). Since the inequality (25) is a direct consequence of
Proposition 3.12 in [17], we can conclude the proof. ◀

The next proposition says that under our regularity conditions, the dual certificates A∗qk will be well-behaved
for late k. The argumentation is similar to [17, Proposition 3.7], but phrased in a language more suitable for the
continued argumentation here. To phrase it conveniently, let us introduce the following shorthand notation to
design a neighborhood of X⋆ of width r > 0:

Br
def.=

⋃
x∈X⋆

B(x, r),

where B(x, r) = {y | ∥y − x∥ < r} is the ball of radius r around x.

▶ Proposition 23 (Approximate nondegeneracy of |A∗qk|). Under Assumptions 7 and 8, there exists k1 ∈ N,
which we can assume to be larger than k0, such that for all k ≥ k1, A∗qk satisfies the approximate nondegenerate
source condition:
i. The balls B(x⋆

s, R) contain exactly one local maximizer xk,s of |A∗qk| for each 1 ≤ s ≤ S.
ii. Within these balls, |A∗qk| is strongly concave:

|A∗qk|′′(x) ≼ −γ

2 Id, ∀ x ∈ BR. (27)

iii. Outside of these balls, we have:

|A∗qk|(x) ≤ 1 − γR2

4 , ∀ x ∈ Ω \ BR. (28)

iv. Finally

sup
x∈Ω

|A∗qk|(x) ≤ 1 + c2 distH(Vk|Xk)2. (29)
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Proof. The convergence of (qk)k∈N to q⋆ and the fact that the functions am ∈ C2(Ω) imply

A∗qk → A∗q⋆, (A∗qk)′ → (A∗q⋆)′ and (A∗qk)′′ → (A∗q⋆)′′ uniformly.

The conclusion of the three first points follows from the nondegeneracy of A∗q⋆ in Assumption 8. To obtain the
last, let ωs denote the cell containing the point xk,s in Xk closest to x⋆

s . We have by definition (A∗qk)′(xk,s) = 0.
Let vs denote a vertex of ωs closest to xk,s. To conclude, we can use a second-order Taylor expansion with the
mean-value form of the remainder. It reads:

|A∗qk|(vs) = |A∗qk|(xk,s) + ⟨|A∗qk|′(xk,s), vs − xk,s⟩ + 1
2 ⟨|A∗qk|′′(ξ)(vs − xk,s), (vs − xk,s)⟩

for some point ξ in the segment [v, xk,s]. By construction |A∗qk|(vs) ≤ 1, |A∗qk|′(xk,s) = 0. Moreover
(|A∗qk|′′(ξ))k∈N is uniformly bounded. This yields for all s:

1 ≥ |A∗qk|(xk,s) − c2∥vs − xk,s∥2
2 ≥ |A∗qk|(xk,s) − c2 distH(Vk|Xk)2.

Taking the maximum over the different 1 ≤ s ≤ S gives the result (29). ◀

A.2.2 Analyzing the modified algorithm
Having collected all the useful inequalities that we need from [17], we can start analyzing the behaviour of the
algorithm we are interested in here. Let us begin by translating Proposition 23 into a bound of |A∗qk| on each
cell ω for late iterations.

▶ Proposition 24 (Finite time behavior of the upper-bound). Under Assumptions 7 and 8, there exists k2 ≥ k1
and some positive constants c1, c2, c3 such that for all k ≥ k2 and for all cell ω:

sup
x∈ω

|A∗qk|(x) ≤

{
1 − c1 dist(ω, Xk)2 + c2 distH(Vk|Xk)2 if dist(ω, X⋆) ≤ R,

1 − c3R2 if dist(ω, X⋆) ≥ R.
(30)

Proof. Take a cell ω with dist(ω, X⋆) ≥ R. For k ≥ k1, the upper-bound (28) is valid. Hence, we obtain the
second bound in inequality (30) for all k ≥ k1 and c3 = γ

4 .
To obtain the first inequality, consider a cell ω with dist(ω, X⋆) ≤ R. Let s ∈ J1, SK denote any index such

that B(x⋆
s, R) ∩ ω ̸= ∅. Point (i) in Proposition 23 implies the existence of a unique point xk,s in Xk ∩ B(x⋆

s, R).
Proposition 23, point (iv) implies that |A∗qk(xk,s)| ≤ 1+ c2 distH(Vk|Xk)2. Moreover, point (ii) in Proposition 23
states that |A∗qk| is strongly concave in the balls B(x⋆

s, R). Therefore:

|A∗qk|(x) ≤ 1 + c2 distH(Vk|Xk)2 − c1 dist(x, Xk)2 with c1 = γ

4 , ∀ x ∈ B(x⋆
s, R) ∩ ω.

Using the above inequality and point (iii) in Proposition 23 gives:

sup
x∈ω∩BR

|A∗qk|(x) ≤ 1 + c2 distH(Vk|Xk)2 − c1 dist(ω, Xk)2,

sup
x∈ω∩Bc

R

|A∗qk|(x) ≤ 1 − γR2

4 . (31)

We now need to show that (31) actually implies

|A∗qk|(x) ≤ 1 + c2 distH(Vk|Xk)2 − c′
1 dist(ω, Xk)2.

for x ∈ ω ∩ Bc
R. To this end, first notice that point i) in Proposition 23 shows that distH(Xk|X⋆) ≤ R. Therefore,

if dist(ω, X⋆) ≤ R, we get

dist(ω, Xk)
(6)
≤ dist(ω, X⋆) + distH(Xk|X⋆) ≤ 2R.

Hence, we get dist(ω, Xk)2 ≲ R2, and by (31) we get

sup
x∈ω∩Bc

R

|A∗qk|(x) ≤ 1 − γR2

4 ≤ 1 − c′
1 dist(ω, Xk)2

for some other constant c′
1. In particular, we get

sup
x∈ω

|A∗qk|(x) ≤ 1 + c2 distH(Vk|Xk)2 − c′
1 dist(ω, Xk)2. ◀
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Now we can prove a crucial proposition about the structure of the partitions Ωk.

▶ Proposition 25 (Structural properties of the partitions Ωk). For k ≥ k2, let Ωk denote a partition generated by
Algorithm 2. There exists a radius r > 0 such that any cell ω ∈ Ωk satisfies:
i. dist(ω, X⋆) ≥ R ⇒ |ω| ≥ r.
ii. dist(ω, X⋆) ≤ R ⇒ |ω| ≳ dist(ω, X⋆).
iii. For ℓ < 2−k2 · minω∈Ω0 |ω|, we have minω∈Ωk

|ω| < ℓ ⇒ distH(Vk|X⋆) ≲ ℓ.

Proof of Proposition 25. Let k2 be the number of iterations referenced in Proposition 24. It is clear that after
k2 iterations, all the cells have a diameter larger than 2−k2 · minω∈Ω0 |ω|.

Let us establish point (i) first. Let ω denote a cell in Ωk with dist(ω, X⋆) ≥ R. To be refined by the algorithm,
this cell needs to verify the second order approximation Assumption 5:

∥A∗qk∥L∞(ω) ≥ 1 − κ|ω|2.

On the other hand, Proposition 24 states that

∥A∗qk∥L∞(ω) ≤ 1 − c3R2.

A necessary condition for refinement by Algorithm 2 is then |ω| ≥ cR for some c. Taking

r = min
(

c

2R, 2−k2 · min
ω∈Ω0

|ω|
)

proves (i).
Point (ii) is more technical. It follows from the following arguments.

1. Suppose that the partition Ωk contains a cell ω with an edge-length |ω| def.= ℓ with ℓ < 2−k2 · minω∈Ω0 |ω|.
2. The parent cell ωp of ω must have been refined in some iteration kℓ before k but after k2. For this kℓ, the

size of the parent cell is |ωp| = 2ℓ.
3. Since we refine the largest cells in Ω⋆

kℓ
, it means that every cell in Ω⋆

kℓ
has an edge-length smaller or equal

than 2ℓ. By construction, every cell that contains an element of Xk is in Ω⋆
kℓ

, hence

distH(Vk|Xk) ≲ ℓ.

4. By Proposition 22, equation (23), we have distH(Vk|Xk) ≍ distH(Vk|X⋆). We get distH(Vk|X⋆) ≲ ℓ for
k = kℓ. By monotonicity of the sequence (distH(Vk|X⋆))k∈N, we also get the inequality for all k ≥ kℓ.

5. Noticing that dist(ωp, X∗) ≤ dist(ω, X∗) ≤ R, we apply Proposition 24 to ωp to get

∥A∗qk∥L∞(ωp) ≤ 1 − c1 dist(ωp, Xk)2 + c2ℓ2.

Since ωp is refined at iteration kℓ, it belongs to Ω⋆
kℓ

and needs to verify the second order approximation
Assumption 5:

∥A∗qk∥L∞(ωp) ≥ 1 − κ|ωp|2 ≥ 1 − 4κℓ2.

From the two previous inequalities, we get dist(ωp, Xk) ≲ ℓ.
6. To conclude, remark that

ℓ ≳ dist(ωp, Xk)
(6)
≥ dist(ω, Xk) − distH(ω|ωp) ≥ dist(ω, Xk) −

√
Dℓ

(6)
≥ dist(ω, X⋆) − distH(Xk|X⋆) −

√
Dℓ ≥ dist(ω, X⋆) − c5ℓ,

for some c5 > 0. This proves (ii).
For point (iii), repeat the first four arguments of point (ii) to the cell that achieves minω∈Ωk

|ω|. ◀

Now that we established the geometrical structure of Ωk, the remaining task is to count the number of cells
in Ωk.
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▶ Proposition 26 (Counting cells). Let Ωk denote a cell partition generated by Algorithm 2. Assume that

min
ω∈Ωk

|ω| = 2−Kend

for some Kend ∈ N with Kend ≥ k2 in Proposition 25. Then the number of cells in Ωk satisfies:

|Ωk| ≤ c0 + c1SKend

for some constants c0, c1 > 0 independent of Kend and S.

Proof. We decompose Ωk as
⋃S

s=0 Ωk,s with

Ωk,0
def.= {ω ∈ Ωk, dist(ω, X⋆) > R},

Ωk,s
def.= {ω ∈ Ωk, dist(ω, x⋆

s) = dist(ω, X⋆), dist(ω, X⋆) ≤ R} s ∈ J1, SK.

In words, Ωk,s is the set of cells in Ωk closest to x⋆
s, and at a distance smaller than R from X⋆. We have

|Ωk| ≤
S∑

s=0
|Ωk,s|. (32)

We first use point (i) in Proposition 25 to control |Ωk,0|. It states that all cells in Ωk,0 have an edge-length
larger than r. The volume of a cell of edge-length r is rD. Since all the cells are disjoint and contained in Ω, we
get

|Ωk,0| ≤ vol(Ω)/rD = r−D.

Now let us derive a bound for |Ωk,s|. Let ω(x) denote the cell in Ωk containing x and ℓ
def.= 2−Kend . By

assumption |ω(x)| ≥ ℓ for all x ∈ Ω. Moreover for all x ∈ Ω such that ω(x) ∈ Ωk,s we have by Proposition 25,
point ii) |ω(x)| ≥ c dist(ω(x), x⋆

s). Therefore

|ω(x)| ≳ dist(ω(x), x⋆
s)

(6)
≥ dist(x, x⋆

s) − distH(x|ω(x)) ≥ ∥x − x⋆
s∥2 −

√
D|ω(x)|.

This gives |ω(x)| ≳ ∥x − x⋆
s∥2 for any x ∈

⋃
ω∈Ωk,s

ω. Combining the two inequalities yields

|ω(x)| ≥ max(ℓ, c∥x − x⋆
s∥2), ∀ x ∈

⋃
ω∈Ωk,s

ω.

for some c ≥ 0. For each cell ω, we have |ω|D =
∫

ω
dx. We continue as follows

|Ωk,s| =
∑

ω∈Ωk,s

1 =
∑

ω∈Ωk,s

∫
ω

|ω(x)|−d dx =
∫⋃

ω∈Ωk,s
ω

|ω(x)|−D dx

≤
∫⋃

ω∈Ωk,s
ω

max(ℓ, c∥x − x⋆
s∥2)−D dx

≤
∫

Ω
max(ℓ, c∥x − x⋆

s∥2)−D dx

≤
∫

B(x⋆
s ,

√
D)

max(ℓ, c∥x − x⋆
s∥2)−D dx

=
∫

B(x⋆
s ,ℓ/c)

ℓ−d dx +
∫

B(x⋆
s ,

√
D)\B(x⋆

s ,ℓ/c)
(c∥x − x⋆

s∥2)−D dx

≲ 1 +
∫ √

D

ρ=ℓ/c

ρ−DρD−1dρ ≲ 1 + | log2(ℓ)| ≲ 1 + J.

Summing up everything, we obtain |Ωk| ≲ c0 + c1SKend for some constants c0, c1 ≥ 0. ◀

We now gathered all the necessary ingredients to prove the complexity result.

Proof of Theorem 16. Take Kend ≥ k2. The Algorithm terminates whenever a cell of size 2−(Kend+1) has
to be refined. When it stops, all the cells therefore have a size larger than 2−(Kend+1) by construction and
minω∈Ωk

|ω| = 2−(Kend+1).
Proposition 26 therefore indicates that |Ωk| ≤ c0 + c1SKend. Since at least one cell is refined per iteration, we

reached the termination criterion for a number of iterations k ≤ c0 + c1SKend. Point (iii) in Proposition 25 allows
us to conclude that distH(Vk|X⋆) ≲ 2−Kend . The list of inequalities in Proposition 22 yield the conclusion. ◀
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A.3 Further proofs
Here, we collect proofs of the remaining, smaller and more technical propositions.

A.3.1 Proof of Proposition 3
Proof. For any x1 ∈ X1, x2 ∈ X2, x3 ∈ X3, we have ∥x1 − x2∥2 ≤ ∥x1 − x3∥2 + ∥x3 − x2∥2. Taking the infimum
over x1 ∈ X1 and the infimum over x2 ∈ X2 yields

dist(X1, X2) ≤ inf
x1∈X1

∥x1 − x3∥2 + inf
x2∈X2

∥x3 − x2∥2 ≤ sup
x3∈X3

inf
x1∈X1

∥x1 − x3∥2 + inf
x2∈X2

∥x3 − x2∥2

= distH(X1|X3) + inf
x2∈X2

∥x3 − x2∥2.

Taking the infimum over x3 ∈ X3, we obtain the claimed result. ◀

A.3.2 Proof of Proposition 4
Proof. Under Assumptions 1 and 2, the function J is lower semi-continuous for the weak-* topology. The
existence of a measure µ supported on V with J(µ) < +∞ and the coercivity of J therefore ensures the existence
of a primal solution. We then invoke Theorem [2, 9.8.1] to conclude on the existence of a dual solution, the
extremality relationships and on the fact that there is no duality gap.

For the boundedness of the primal solution set in total variation norm, it suffices to use the fact that J is
coercive, ensuring boundedness of its sub-level sets.

Now let us prove the boundedness of the dual solution set. To this end, notice that by convexity, f is
continuous at any point in int(dom(f)). In particular, f is continuous at Aµ. Using Proposition 1.3.9 in [22], we
conclude that

g∗(q) def.= f∗(q) − ⟨Aµ, q⟩ (33)

is coercive. We have f∗(q) ≥ g∗(q) − ∥µ∥M(V)∥A∗q∥L∞(V). Hence f∗ is coercive on the admissible set for which
f∗(q) ≥ g∗(q) − ∥µ∥M(V). This ensures the boundedness of the dual solution set. ◀

A.3.3 Proof of Proposition 7
Proof. Any choice of κ1(qk, ω) in (8) satisfying the Lipschitz inequality

sup
x1,x2∈ω

∣∣∣|A∗qk(x1)| − |A∗qk(x2)|
∣∣∣

∥x1 − x2∥2
≤ κ1(qk, ω)

also satisfies |A∗qk|(ω) ≥ ∥A∗qk∥L∞(ω), i.e. Assumption 4. We have

sup
x1,x2∈ω

∣∣∣|A∗qk(x1)| − |A∗qk(x2)|
∣∣∣

∥x1 − x2∥2
= sup

x∈ω
|A∗qk|′(x),

where we consider that |A∗qk|′(x) = 0 on the points of non differentiability of |A∗qk|. To obtain the expression (9),
we use a Hölder inequality:

sup
x∈ω

|A∗qk|′(x) = sup
x∈ω

∣∣∣∣∣
M∑

m=1
qk[m]a′

m(x)

∣∣∣∣∣ ≤
M∑

m=1
|qk[m]| sup

x∈ω
|a′

m|(x). (34)

Showing that Assumption 5 is not always valid stems from the fact that we use a 0-th order Taylor expansion,
with a remainder that is therefore of first order only. ◀

A.3.4 Proofs of Proposition 9 and Proposition 12
Our proofs rely on the following well-known (see e.g. [26, Lemmas 1.2.3, 1.2.4]) statements about Taylor-
expansions. If f : C → R is a function on a convex domain C ⊆ Rn with a κ2-Lipschitz continuous gradient, we
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have for x, y arbitrary

|f(x) − f(y) − ⟨f ′(y), x − y⟩| ≤ κ2
∥x − y∥2

2
2 (35)

∥f ′(x) − f ′(y)∥2 ≤ κ2∥x − y∥2. (36)

The value κ2(qk, ω) is an upper-bound on the Lipschitz constant of (A∗qk)′ restricted to ω. Indeed,

sup
x∈ω

∥(A∗qk)′′(x)∥2→2 = sup
x∈ω

∥∥∥∥∥
M∑

m=1
qk[m]a′′

m(x)

∥∥∥∥∥
2→2

≤
M∑

m=1
|qk[m]| sup

x∈ω
∥a′′

m∥2→2(x). (37)

A.3.4.1 Proof of Proposition 9

Proof. Now, let us prove that

|A∗qk|(ω) − κ2(qk, ω) diam(ω)2 ≤ ∥A∗qk∥L∞(ω) ≤ |A∗qk|(ω). (38)

By equation (35), we get

|A∗q(x) − A∗q(v) − ⟨(A∗q)′(v), x − v⟩| ≤ κ2(qk, ω)∥x − v∥2
2

2 .

It follows

|A∗q(x)| ≤ |A∗q(v) + ⟨(A∗q)′(v), x − v⟩| + κ2(qk, ω)∥x − v∥2
2

2 ,

Taking first the supremum in x and then the infimum over the vertices v yields the right-hand side of (38). We
also have

|A∗q(x)| ≥ |A∗q(v) + ⟨(A∗q)′(v), x − v⟩| − κ2(qk, ω)diam(ω)2

2

≥ |A∗q(v) + ⟨(A∗q)′(v), x − v⟩| + κ2(qk, ω)∥x − v∥2
2

2 − κ2(qk, ω) diam(ω)2.

Again, taking the supremum in x and then the infimum over the vertices v we obtain the left-hand side of (38).
The right hand-side of (38) proves that the second order selection process satisfies Assumption 4, whereas the
left hand-side proves that it obeys Assumption 5. ◀

A.3.4.2 Proof of Proposition 12

Proof. We have for all v ∈ vert ω and x ∈ ω

∥(A∗qk)′(x) − (A∗qk)′(v)∥2 ≤ κ2(qk, ω)∥x − v∥2,

which implies

∥(A∗qk)′(x)∥ ≥ ∥(A∗qk)′(v)∥2 − κ2(qk, ω)∥x − v∥2

=⇒ inf
x∈ω

∥(A∗qk)′(x)∥ ≥ ∥(A∗qk)′(v)∥2 − κ2(qk, ω) diam(ω).

Since this is true for every v ∈ vert(ω), we get

∥∇A∗qk∥2(ω) ≤ inf
x∈ω

∥∇A∗qk(x)∥2,

In other words, ∥∇A∗qk∥2 is a lower bound of ∥(A∗qk)′∥. Since κ2 is an upper bound of the Lipschitz constant
of ∥(A∗)′qk∥, ∥∇A∗qk∥2(ω) is a lower bound of ∥(A∗qk)′∥. It follows that any cell ω that contains a point of
Xk will verify both |A∗qk|(ω) ≥ 1 and ∥∇A∗qk∥2(ω) ≤ 0. Hence Ω⋆

k verifies Assumption 4. It is clear that the
Ω⋆

k of Definition 11 is included in the Ω⋆
k of Definition 8. Because the latter verifies Assumption 5, so does the

former. ◀
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Table 3 Assumptions related to the general convergence Theorem 14.

Type of assumption Here [17]
Regularity of f f convex lower semi-continuous f convex with

with int(dom(f)) ̸= ∅ either dom(f) = RM or f polyhedral
Regularity of J/V0 J coercive and f lower bounded and

there exists a µ ∈ M(V0) with either f differentiable with Lipschitz gradient
Aµ ∈ int(dom(f)). or A restricted to M(V0) is surjective.

Regularity of A am continuous am continuous
Refinement procedure All cells containing local maximizers Global maximizer x⋆

k of
exceeding 1 are candidates. |A∗qk| added to Vk.

Table 4 Assumptions related to the linear convergence Theorem 16.

Type of assumption Here [17]
Regularity of A The am are C2 The am are C2.
Source condition Assumption 8 Assumption 8
Regularity of f f differentiable with Lipschitz gradient f differentiable with Lipschitz gradient
Refinement procedure Candidate cells ω fulfill All local maximizers exceeding 1

supx∈ω |A∗qk(x)| > 1 − κ |ω|2 added to Vk.

A.3.5 Proof of Proposition 20
Proof. We have

a′
m(x) = −am(x)

[
x − zm

σ2

]
a′′

m(x) = am(x)
[
−σ2

σ4 Id +(x − zm)(x − zm)T

σ4

]
.

For any u ∈ RD and any x ∈ Ω, we have∣∣⟨a′′
m(x)u, u⟩

∣∣ = am(x)
σ4

∣∣−σ2∥u∥2
2 + ⟨u, x − zm⟩2∣∣

≤ am(x)
σ4 max(σ2, ∥x − zm∥2

2)∥u∥2
2.

To conclude, it suffices to notice that for x ∈ ω

am(x) ≤ am(dist(zm, ω))
∥x − zm∥2 ≤ [dist(zm, ω) + diam(ω)] . ◀

B Collection of the assumptions needed to prove Theorems 14 and 16

Out of convenience for the reader, we collect all the assumptions made throughout the paper to prove our
main results, and in particular compare them to the corresponding ones in [17]. The assumptions related to
Theorem 14 are collected in Table 3, and the ones related to Theorem 16 are collected in Table 4.
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