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Abstract
In this paper, we focus on a class of problems characterized by solving a non-linear least squares minimization, for
approximating a norm of a linear transformation. These problems are characterized by their non-convex and non-smooth
nature, presenting challenges in finding (locally) optimal solutions. While existing optimization algorithms mostly
concentrate on finding critical points of the associated least squares objective function, these functions often possess
multiple non-global local minima and saddle points. These problems find wide applications in various domains, and we
focus our attention on two challenging problems: Wireless Sensor Network Localization and Multi-Dimensional Scaling.
We establish that non-differentiable points correspond to maximum or saddle points, and we provide a constructive
approach to determine descent directions at these points. Leveraging this, we propose a straightforward procedure
to escape non-differentiable saddle points that is applicable in either centralized or distributed computational setting.
Furthermore, we develop a necessary condition for differentiable points to be local minimizers, by exploiting the structure
of the objective function of these problems.
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1 Introduction

In this paper, we address the task of minimizing a non-linear, non-convex and non-smooth least squares function
F : Rq → [0,∞), defined as

minimize
x∈Rq

F(x) ≡
N∑

l=1
(∥xil

− xjl
∥ − δl)2

, (1)

where ∥·∥ represents the Euclidean norm, x ∈ Rq (q = n ·N) is the vector variable, xil
,xjl

∈ Rn (l = 1, 2, . . . , N)
are some sub-vectors of vector x ∈ Rq, and δl ∈ R are given scalars. Optimization problems of this form arise in
various applied contexts, such as signal processing and unsupervised learning. Notable examples include the
widely studied applications of Sensor Network Localization (SNL) and Multi-Dimensional Scaling (MDS), which
are further discussed below.

The optimization model in (1) is non-convex and non-smooth (i.e., non-differentiable), which presents
challenges in finding (locally) optimal solutions. Recent advancements in non-convex optimization have mainly
concentrated on finding critical points [4, 5, 10], which could technically be (locally) optimal solutions but also
saddle points (or even maximum points). Therefore, a grand challenge of optimization theory and practice
is to avoid saddle points. This work aims at advancing the research on this challenging question by studying
non-convex optimization problems as described in (1) and exploiting the more specific structure.

We note that while this paper focuses on the objective function F formulated in (1), it is a particular instance
of a more general least squares minimization problem, where the norm term is replaced with ∥Alx + bl∥ for
Al ∈ Rql×q and bl ∈ Rql given data matrices and vectors.
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2 Network Localization and Multi-Dimensional Scaling

Optimization problems of this form arise in signal processing tasks that involve solving non-linear inverse
problems [28]. While focusing on Problem (1) instead of the more general case may initially appear limiting,
our theoretical framework can be readily extended to other problems. By thoroughly examining the structure
in (1), we provide a clear and convenient framework for analysis and facilitate insightful discussions, enabling the
extension and generalization of our findings to a broader range of related problems encompassed by the general
class.

The main goal of this paper it to deepen our understanding of optimization problems with structure as given
in (1). We fully characterize its set of critical points and leverage this knowledge to also advance the algorithmic
and practical fronts. Our main contributions are now summarized and categorized into two areas: the theoretical
analysis of the function’s landscape, and computational aspects in both centralized and distributed settings.
i. In Section 3, we prove that all non-differentiable points of F have an explicit and easy-to-find descent direction

that can be utilized to decrease the objective value.
ii. In Section 4, we develop a procedure that escapes non-differentiable saddle points, thereby preventing

minimization algorithms from getting trapped in a subset of the non-optimal critical points. This escape
procedure can be implemented in both centralized and distributed computational settings.

iii. In Section 5, we utilize the classical second-order necessary optimality condition to formulate a condition
for a differentiable critical point to be a local minimum point. This condition can be easily verified in both
centralized and distributed computational settings.

2 Motivating Applications and Literature Review

In this section, we will first discuss two prominent applications that provide the motivation for studying the
problem of solving the non-linear composite norm equations with the structure as given in Problem (1). Then,
we will survey some relevant existing literature.

2.1 The Problems of MDS and SNL
The first application is Multi-Dimensional Scaling (MDS), which is a popular tool for dimensionality reduction
and data visualization [38]. Formally, given a symmetric matrix D ∈ RK×K , where Dij = Dji denotes the
dissimilarity between two data points oi,oj ∈ Rp defined mathematically as Dij = ∥oi − oj∥. MDS aims to find
lower-dimensional representations xi ∈ Rn, n < p, for each data point oi ∈ Rp. These representations should
satisfy the condition that the distances ∥xi − xj∥ approximate the original dissimilarity Dij within a certain
tolerance ϵij ∈ R. In essence, MDS seeks to find K vectors xi ∈ Rn such that [13, 14]

δij ≡ Dij = ∥xi − xj∥ + ϵij , i, j ∈ {1, 2, . . . ,K}.

We easily see that MDS fits into the framework of (1) by representing x ∈ RnK as the concatenation of all
unknowns xi ∈ Rn, i = 1, 2, . . . ,K, into a single vector. We mention that in the context of the MDS problem,
the objective function (1) is called the stress function [13].

In the second application, Sensor Network Localization (SNL), the goal is to find the location of each sensor
in a deployed sensor network, utilizing distance measurements between neighboring sensors [3]. Formally, we
consider a set of K sensors, each located at an unknown location xi ∈ Rn, i = 1, 2, . . . ,K. Given a set E
comprising pairs of neighboring sensors i and j, with positive noisy distance measurements δij > 0 between
them, the SNL problem is typically formulated as finding K vectors xi ∈ Rn such that [31, 33]

δij = ∥xi − xj∥ + ϵij , (i, j) ∈ E ,

where ϵij denotes a distance measurement noise. Notice that we result with a similar set of equations as in MDS,
and therefore it fits into the setting of equations given in (1).

A few other well-studied applications that fall under non-linear least-squares formulation (1) are the Source
Localization problem [9, 18, 26] and the Phase Retrieval problem [15, 37]. Before presenting our study on this
optimization model, we review existing works that are relevant for the task of understanding the critical points
of the function F .

2.2 First-Order Criticality
Here, we survey some existing literature about the notion of critical points, focusing on non-smooth functions. To
this end, we recall that a first-order critical point for a non-convex and non-smooth function F is a point x ∈ Rq
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for which the zero vector belongs to its limiting sub-differential set [27], denoted by ∂F(x), i.e., 0q ∈ ∂F(x). In
the context of non-smooth analysis, a critical point can be either a differentiable or a non-differentiable point.
When a point x ∈ Rq is differentiable, then the condition 0q ∈ ∂F(x) reduces to the equation 0q = ∇F(x),
where ∇F(x) is the gradient of F at x ∈ Rq.

We mention that, even though the problem is non-convex and non-smooth, criticality serves as a necessary
condition for local optimality, implying that any global or local minimum point must also be a first-order critical
point of the objective function. Therefore, in this paper, we first aim at characterizing the set of critical points of
F and explore their relationship with (locally) optimal minimum points.

In order to better understand the critical points of the given function at hand, beyond the definition of the
sub-differential set, it will be beneficial to exploit different structural properties of the function F . One line of
research that can be relevant for our case is from the domain of Difference-of-Convex (DC) programming. A
general DC programming problem can be expressed in the following form

min
x∈Rq

{Ψ(x) ≡ φ(x) − ψ(x)}, (DC)

where φ,ψ : Rq → (−∞,∞] are convex and (possibly) non-smooth. Indeed, we easily see that Problem (1) can
be formulated in the form by defining [39]

φ(x) =
N∑

l=1

(
∥xil

− xjl
∥2 + δ2

l

)
and ψ(x) = 2

N∑
l=1

δl∥xil
− xjl

∥.

By framing Problem (1) as a DC programming problem, we can leverage existing insights from this domain
to shed some light on the critical points of the function F . For instance, in DC programming problems, a
necessary condition for optimality is known as a DC-critical point [29], which is a point x ∈ Rq satisfying
∂φ(x) ∩ ∂ψ(x) ≠ ∅, where here ∂ denotes the sub-differential set of a convex function1. The concept of criticality
in DC programming has been studied in several papers, see for instance [34, 35]. See also [24, 30] for a concise
introduction to this notion.

However, when it comes to characterizing the minimum points of Problem (1), it is important to note that
the notion of DC-criticality does not provide a better understanding than the classical notion of criticality,
as DC-criticality can not differentiate between minimum and maximum points. For example, we consider the
one-dimensional DC function Ψ(x) = x2 − |x|. In this case, x = 0 is a DC-critical point that is also a maximum
point.

A more restrictive concept than DC-criticality is a directional-stationary point [29], often referred to as a
d-stationary point, which is a point x ∈ Rq where no feasible descent directions exist. We point out that being a
d-stationary point is a necessary condition for optimality but not a sufficient one. For instance, consider the
function

(
y − x2)2 + x5 at the point (0, 0). Although there are no descent directions at this point, it is not a

local minimizer, as the function decreases along the curve
(
t, t2

)
for t < 0.2

We mention here that a descent direction of a function f at a point x is any direction d ∈ Rq along which
the function value decreases. In the smooth setting (which is not the case here), where the gradient ∇f(x) exits,
this concept corresponds to directions satisfying ∇f(x)T d < 0. For precise definitions, see Section 3.

In the context of Problem (DC), the work [8] shows that if the function φ of Problem (DC) is smooth, then
any d-stationary point is a differentiable point of the function Ψ. This result implies that any optimal solution
of Problem (1) must be a point x ∈ Rq where the gradient ∇F(x) exists and ∇F(x) = 0q. It is important to
note that the function F of Problem (1) is non-smooth, so its gradient is not defined for its non-differentiable
points. Utilizing the notion of d-stationarity, any critical point of Problem (1) that is not a d-stationary point
has at least one descent direction and is therefore not a minimum point of the problem. However, determining
such descent directions is a challenging task as currently there is no clear way to identify such directions for
Problem (1).

To conclude, even though framing the function F as a DC function exploits a certain structure, the
understanding of its critical points remains very limited. In the following sections, we show that the structure of
F is generous enough to enable us to characterize its critical points, develop a simple procedure that escapes
non-differentiable saddle points, and even devise a necessary condition for a differentiable critical point to qualify
as a local minimum point.

1 In the convex setting, the limiting sub-differential coincides with the “regular” sub-differential.
2 We thank the anonymous reviewer for this valuable observation.
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2.3 Escaping Saddle Points

As mentioned in Section 1, in this paper we develop a procedure that escapes non-differentiable saddle point
of the function F in Problem (1). To this end, saddle points are defined as points that satisfy the first-order
criticality condition, but are not local minimum or maximum points.

The literature makes a distinction between strict saddle points and non-strict saddle points [41]. In the
non-smooth setting, strict saddles are saddles that have a descent direction (see Section 3 for the exact definition
of descent directions). In the smooth setting, strict saddles are defined as those whose Hessain matrix has at
least one negative eigenvalue. Any other saddle point is called non-strict. In Section 3, we compliment the fact
that all non-differentiable points of F are either maximum or saddle points as observed in [8], by proving that
these points have an explicit descent direction, implying that all non-differentiable saddles are strict.

We mention that strict saddles can be distinguished from minimizers using first-order or second-order
information, while non-strict saddles cannot. Hence, strict saddles can be escaped, or evaded.

It is well-known that for twice-differentiable functions, if the Hessian matrix at a critical point has a negative
eigenvalue (strict saddle), then the corresponding eigenvector provides a direction to decrease the objective
function. This property enables algorithms to escape strict saddles by following this direction or a noisy variant
(e.g., [11, 16, 41]). Several works have showed that certain objectives posses the strict saddle property – where all
critical points are either local minima or strict saddles, with no non-strict saddle points. For such functions,
local search algorithms can exploit the negative curvature to escape saddle points effectively.

For example, in [41] the authors prove that shallow linear and twice-differentiable neural networks satisfy the
strict saddle property, and [11] introduces an algorithm that escapes strict saddles by computing the Hessian
matrix at each iteration, computing its minimal eigenvalue, and identifying an explicit descent direction satisfying
some second-order conditions. Other works that prove similar results are, for instance, [16, 22, 25] and more
recently [23]. We also note that while the literature suggests that strict saddles can be escaped under some
conditions, local minima and non-strict saddles remain inescapable using current first-order methods (see, for
example, [2, 1]).

All these works mentioned above rely on assumptions that do not apply in our setting. Specifically, they
assume that the objective function is twice-differentiable and satisfies the strict saddle property – assumptions
that do not hold for our non-differentiable objective function. Furthermore, many of these methods depend on
second-order information, such as computing the Hessian matrix and its minimal eigenvalue, tasks that require
centralized implementations. While feasible for some applications, such centralized approaches are unsuitable for
sensor network problems, which typically require distributed computations.

The non-differentiable case is far more challenging. Prior works have mainly studied differentiable regions
of the function or imposed restrictive assumptions, leaving the characterization of non-differentiable critical
points largely unexplored. While such points have zero Lebesgue measure, they cannot be ignored, as some
gradient-based algorithms may still encounter them during optimization [40].

To the best of our knowledge, the literature on non-differentiable critical points and their characterization,
particularly in distributed settings, is underdeveloped for the type of problem addressed in our paper. A notable
exception is [40], which examines a one-hidden-layer neural network with non-differentiable ReLU-like activations
and MSE loss. By leveraging the specific structure of the problem, the authors identify critical points satisfying
certain first-order non-differentiable conditions and use these conditions to escape strict saddle points (whether
differentiable or not).

Similarly, our approach in this paper explores the specific non-differentiable structure of the problem under
investigation. We provide a characterization of critical points (both differentiable and non-differentiable) and
propose a method for escaping non-differentiable saddles. Furthermore, to the best of our knowledge, our method
is the first to be applicable in a distributed setting.

3 Characterization of Extremum Points

In this section, we explore the extremum points of the Problem (3), which will provide an important and useful
ground for the understanding of critical points in the following sections.

To achieve this goal, since the function F is non-differentiable, we first recall the notion of directional
derivatives. Let ϕ : Rq → (−∞,∞] be a proper function and let x ∈ int(dom(ϕ)). The directional derivative in
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the direction of the vector d ∈ Rq is defined by

ϕ′(x; d) ≡ lim
ϵ→0+

ϕ(x + ϵd) − ϕ(x)
ϵ

. (2)

The function ϕ is said to be differentiable at x ∈ Rq if the gradient vector ∇ϕ(x) ∈ Rq exists. If ϕ is
continuously differentiable over an open set U ⊆ Rq that contains the point x ∈ Rq, then ϕ′(x; d) = ∇ϕ(x)T d
for any d ∈ Rq [6].

For the sake of simplicity in the subsequent analysis and for ease of index notation, we express Problem (1)
using the terminology of the SNL problem. In other words, we rewrite Problem (1) equivalently as

min
x1,x2,...,xK∈Rn

F(x) ≡
∑

(i,j)∈E

(∥xi − xj∥ − δij)2
, (3)

and we use this formulation interchangeably with Problem (1).
Due to the non-differentiability of the norm function at 0n, the non-differentiable points of F are precisely

the points x ∈ RnK where xi = xj ∈ Rn for some pair (i, j) ∈ E . For simplicity of developments, for any pair
(i, j) ∈ E , we define the function Fij : RnK → R as

Fij(x) ≡ (∥xi − xj∥ − δij)2
, (4)

and we notice that x ∈ RnK is a non-differentiable point of Fij if and only if xi = xj . Following (4), it holds
that

F(x) =
∑

(i,j)∈E

Fij(x), (5)

and notice that a point x ∈ RnK is a non-differentiable point of F if and only if it is a non-differentiable point of
Fij , for some pair (i, j) ∈ E .

We begin with a few simple properties of the directional derivative of F . To this end, for any vector d ∈ RnK

we denote by di, i = 1, 2, . . . ,K, the sub-vector obtained from d by taking its n(i− 1) + 1 to n · i coordinates.
▶ Lemma 1. Let (i, j) ∈ E.
i. Let x ∈ RnK be a non-differentiable point of Fij. Then, for any d ∈ RnK , it holds that

F ′
ij(x; d) = −2δij∥di − dj∥.

In particular, F ′
ij(x; d) < 0 if di ̸= dj and F ′

ij(x; d) = 0 otherwise.
ii. Let x ∈ RnK be a point satisfying Fij(x) = 0. Then, Fij(ϵx) > 0 for any ϵ ̸= 1.
Proof.

i. We recall that xi = xj for any non-differentiable point of Fij . From (2) we have

F ′
ij(x; d) = lim

ϵ→0+

Fij(x + ϵd) − Fij(x)
ϵ

= lim
ϵ→0+

(
ϵ∥di − dj∥2 − 2δij∥di − dj∥

)
= −2δij∥di − dj∥,

and the result immediately follows.

ii. Notice that Fij(x) = 0 if and only if ∥xi − xj∥ = δij . Now, the point ϵx for any ϵ ̸= 1 satisfies Fij(ϵx) =
(ϵ∥xi − xj∥ − δij)2 = δ2

ij(ϵ− 1)2
> 0, as required. ◀

Recall that x ∈ Rq is a local minimum point of a function ϕ : Rq → (−∞,∞], if ϕ(x) ≤ ϕ(y) for all
y ∈ dom(ϕ) such that ∥x − y∥ ≤ ϵ for some ϵ > 0. In addition, a local minimum point x ∈ Rq of ϕ is global, if it
attains the minimal value of ϕ over its domain. Similarly, we define local and global maximum points. Moreover,
an extremum point of ϕ is either a local minimum or a local maximum point. Of course, any global extremum
point (if exists) is also a local extremum point.

Before we characterize the extremum points of F , we recall the notion of descent and ascent directions.
We say that d ∈ Rq is a descent direction of ϕ : Rq → (−∞,∞] if ϕ′(x; d) exists and is negative. Similarly, if
it is positive then d is an ascent direction. This notion is important since it is well-known (see, for instance,
[7, Lemma 8.2]) that if d ∈ Rq is a descent direction of ϕ at x ∈ Rq, then there exists some ϵ > 0 such that
ϕ(x + ϵd) < ϕ(x) for all ϵ ∈ (0, ϵ]. Hence, x is not a minimum point3. Similar results hold for ascent directions.

3 Conversely, if there exists some ϵ > 0 such that ϕ(x + ϵd) ≤ ϕ(x) for all ϵ ∈ (0, ϵ], then if the directional derivative exists, it
follows that ϕ′(x; d) ≤ 0 and hence d is a non-ascent direction (that is, d is either a descent direction or that the directional
derivative is 0). Similarly, if ϕ(x + ϵd) ≥ ϕ(x) we obtain that d is a non-descent direction.
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We recall that a point x ∈ Rq is a stationary point of a function ϕ : Rq → (−∞,∞] if the gradient ∇ϕ(x) exits
and is the vector of all zeros. We should mention that in the literature the terms critical point and stationary
point are sometimes used interchangeably. However, in the non-smooth setting the terms are distinguished, and
throughout this paper the term stationary point is specifically used to refer to a differentiable critical point, as
defined in Section 2.2.

Now, we are ready to provide a characterization of the extremum points of the functions Fij . To this end, for
any point x ∈ RnK , we denote by Bij [x] ⊂ RnK the closed ball centered at x with radius δij > 0.

▶ Lemma 2.
i. Let (i, j) ∈ E. A point x ∈ RnK is a stationary point of Fij if and only if it is a global minimum point of Fij .
ii. Let (i, j) ∈ E. Then, x ∈ RnK is a non-differentiable point of Fij if and only if it is a local maximum point

of Fij.
iii. Any non-differentiable point of F is a local maximum point of Fij for some (i, j) ∈ E.

Proof.

i. Recall that the differentiable points of Fij are exactly the points x ∈ RnK for which xi ≠ xj . In particular,
the gradient ∇Fij(x) exists and simple calculation show that

∇xiFij(x) = 2(∥xi − xj∥ − δij)
∥xi − xj∥

(xi − xj) = −∇xj Fij(x),

where ∇xiFij is the gradient of the partial function xi 7→ Fij(x) (which can also be viewed as the sub-vector of
∇Fij corresponding to the coordinates of xi ∈ Rn). Also, ∇xl

Fij(x) = 0n for any l ∈ {1, 2, . . . ,K} such that
l ̸∈ {i, j}. Therefore, ∇Fij(x) is the vector of all zeros (i.e., x is a stationary point) if and only if ∥xi − xj∥ = δij

if and only if Fij(x) = 0 if and only if x is a global minimum point of the non-negative function Fij .

ii. Let x ∈ RnK be a non-differentiable point of Fij and we will prove that it is a local maximum point of Fij .
To this end, we prove that Fij(y) ≤ Fij(x) for any y ∈ Bij [x]. Recall that for any non-differentiable point it
holds that xi = xj , hence we get from the triangle inequality

∥yi − yj∥ ≤ ∥yi − xi∥ + ∥yj − xj∥ ≤ 2δij ,

where the last inequality is due to the fact that y ∈ Bij [x]. Hence, ∥yi − yj∥ − 2δij ≤ 0 and we get

Fij(y) = (∥yi − yj∥ − δij)2 = ∥yi − yj∥(∥yi − yj∥ − 2δij) + δ2
ij ≤ δ2

ij = Fij(x), (6)

where the last equality follows from the fact that xi = xj , and the required result follows.
For the converse direction, we will prove that if x ∈ RnK is a local maximum point of Fij , then it is also a

non-differentiable point of Fij . More precisely, we will prove that xi = xj . Assume on the contrary that x is
differentiable point. Meaning, the gradient ∇Fij(x) exists and xi ̸= xj . From the continuity of Fij , there exists
an open set U ⊆ RnK such that yi ̸= yj for all y ∈ U , and Fij is continuously differentiable over U .

Now, either ∇Fij(x) is a non-zero vector, or it is the vector of all zeros. If ∇Fij(x) ≠ 0nK , then ∇Fij(x) is
an ascent direction of Fij at x (since ∇Fij(x)T ∇Fij(x) = ∥∇Fij(x)∥2

> 0), in contrary to the assumption that
x is a local maximum point. If ∇Fij(x) ≡ 0nK , then from item (i) it follows that Fij(x) = 0. From Lemma 1(ii)
it follows that any neighborhood containing x attains a function value that is strictly greater than 0, which
again contradicts the assumption that x is a local maximum point.

iii. Recall that if F is non-differentiable at x ∈ RnK , then there exists at least one pair (i, j) ∈ E such that
xi = xj , which means that x is also a non-differentiable point of Fij . The result now follows from item (ii). ◀

Based on this result, we would like to provide a few more direct consequences regarding the extremum points
of F .

▶ Remark 3.
i. All local minimum points of Fij , for any (i, j) ∈ E , are necessarily global. Indeed, let x ∈ RnK be a local

minimum point. From Lemma 2(ii) it follows that x must be a differentiable point of Fij . In particular,
the gradient ∇Fij(x) exists at any local minimum of Fij . If ∇Fij(x) ̸= 0nK , then surely −∇Fij(x) is a
descent direction, which contradicts the fact that it is a local minimum. If ∇Fij(x) ≡ 0nK , then it is a global
minimum point (see Lemma 2(i)).
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ii. The function Fij has no global maximum points since it is unbounded from above. Indeed, for any point
x̃ ∈ RnK such that x̃i = 1n (where 1n ∈ Rn denotes the vector of all ones) and x̃l = 0n for all l ̸= i it
holds that Fij(αx̃) = (α

√
n− δij)2 → ∞ as α → ∞. Therefore, all local maximum points are necessarily

non-global.
iii. The function F of Problem (1) (equivalently, Problem (3)) has no global maximum points since it is unbounded

from above. Indeed, F is the sum of the non-negative functions Fij , for all (i, j) ∈ E . Then, following the
same arguments of item (ii) yields that all local maximum points of F are necessarily non-global.

Now, we are ready to state and prove the main result of this section. To this end, for any x ∈ RnK we
denote by Emin(x) ⊆ E the subset of all pairs (i, j) ∈ E for which x is a local minimum point of Fij . Meaning, if
(i, j) ∈ Emin(x) then x is a local minimum point of the function Fij . Similarly, we define the subset Emax(x). In
addition, for any x ∈ RnK , we define the subset Enm(x) ⊆ E as the subset of all pairs (i, j) ∈ E for which x is
not a local minimum nor a local maximum point of Fij . Meaning, if (i, j) ∈ Enm(x) then x is not an extremum
point of the function Fij . Clearly, it holds that E = Emin(x) ∪ Emax(x) ∪ Enm(x).

This union is also disjoint. To see this, if (i, j) ∈ Emin(x), then x is a local minimum point of Fij . From
Remark 3(i) we know that x must be a global minimum point, and from Lemma 2(i) we get that x must
be a differentiable point of Fij (since all stationary points are differentiable by their definition). In addition,
if (i, j) ∈ Emax(x) then x is a non-differentiable point of Fij (see Lemma 2(ii)). Therefore, the three subsets
Emin(x), Emax(x) and Enm(x) are disjoint.

▶ Theorem 4. Let x ∈ RnK be a non-differentiable point of F . Let d ∈ RnK be such that di ̸= dj for all
(i, j) ∈ Emax(x). Then, either d or −d is a descent direction of F at x.

Proof. Since x is a non-differentiable point of F , it follows from Lemma 2(iii) that Emax(x) ̸= ∅. From Lemma 1(i)
we know that for any d ∈ RnK such that di ̸= dj for all (i, j) ∈ Emax(x) it holds that F ′

ij(x; d) < 0 (and
such d surely exists since the set Emax(x) is finite). Meaning, such d is a descent direction of Fij at x for all
(i, j) ∈ Emax(x).

If d is also a descent direction of F at x then we are done. Therefore, let us assume that d is a non-descent
direction of F at x (that is, F ′(x; d) ≥ 0), and we will prove that −d is indeed a descent direction of F at x.

Since F ′(x; d) =
∑

(i,j)∈E F ′
ij(x; d), it holds that

0 ≤ F ′(x; d) =
∑

(i,j)∈Emax(x)

F ′
ij(x; d) +

∑
(i,j)∈Emin(x)

F ′
ij(x; d) +

∑
(i,j)∈Enm(x)

F ′
ij(x; d), (7)

where we used the fact that the three sub-sets above are disjoint. From Lemma 2(i) we know that ∇Fij(x) = 0nK

for any (i, j) ∈ Emin(x), and therefore

0 = ±∇Fij(x)T d = F ′
ij(x; ±d), ∀ (i, j) ∈ Emin(x). (8)

Plugging (8) into (7) yields

0 ≤ F ′(x; d) =
∑

(i,j)∈Emax(x)

F ′
ij(x; d) +

∑
(i,j)∈Enm(x)

F ′
ij(x; d). (9)

Now, since F ′
ij(x; d) < 0 for any (i, j) ∈ Emax(x) (see Lemma 1(i)), it follows from (9) that

0 <
∑

(i,j)∈Enm(x)

F ′
ij(x; d). (10)

Recall that x is not an extremum point of Fij , for all (i, j) ∈ Enm(x). In particular, x is not a local maximum
point of Fij , and from Lemma 2(ii) we get that x must be a differentiable point of Fij . This means that, xi ̸= xj

for all (i, j) ∈ Enm(x). From the continuity of each function Fij , there exists an open set U ⊆ RnK that contains
x, such that yi ̸= yj for all y ∈ U . This means that Fij is continuously differentiable over U , and therefore
F ′

ij(x; d) = ∇Fij(x)T d for all (i, j) ∈ Enm(x). Thus,∑
(i,j)∈Enm(x)

F ′
ij(x; −d) = −

∑
(i,j)∈Enm(x)

∇Fij(x)T d = −
∑

(i,j)∈Enm(x)

F ′
ij(x; d) < 0, (11)

where the last inequality follows from (10).
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Last, recall that we picked d such that −di ̸= −dj for any (i, j) ∈ Emax(x). Then, from Lemma 1(i) we get

0 >
∑

(i,j)∈Emax(x)

F ′
ij(x; −d). (12)

Summing (11) and (12), we derive from (8) that

0 >
∑

(i,j)∈Emax(x)

F ′
ij(x; −d) +

∑
(i,j)∈Emin(x)

F ′
ij(x; −d) +

∑
(i,j)∈Enm(x)

F ′
ij(x; −d) = F ′(x; −d),

which implies that −d is a descent direction of F at x, as required. ◀

An immediate consequence of Theorem 4, is that any optimal solution of Problem (1) is necessarily a
stationary point, i.e., a differentiable point with a gradient of all zeros. As mentioned in Section 1, this result is
already known for DC programming problems [8], which as discussed above also applies to our case. However,
the major motivation to develop our results is that Theorem 4 also gives an easy-to-find and explicit descent
direction, that can be used to escape non-differentiable points, as we discuss next.

4 Escaping Non-Differentiable Saddle Points

As mentioned in Section 1, in this paper we aim at finding locally optimal solutions for Problem (1). Theorem 4
asserts that every non-differentiable point possesses an easy-to-find descent direction, hence such points cannot
be optimal solutions for Problem (1). With this information in mind, one can evade any non-differentiable point
encountered by an algorithm and reach a differentiable point with a lower function value by applying a simple
backtracking procedure. This escape procedure, abbreviated as EP, is recorded in Procedure 1.

Procedure 1 Escape Procedure (EP)
1: Initialization: x ∈ RnK a non-differentiable point of F and t > 0.
2: Pick d ∈ RnK such that di ̸= dj for all (i, j) ∈ Emax(x).
3: Double backtracking procedure: do in parallel

→ while F(x) ≤ F(x + td) or xi + tdi = xj + tdj for some (i, j) ∈ E then set t := t/2.
→ while F(x) ≤ F(x − td) or xi − tdi = xj − tdj for some (i, j) ∈ E then set t := t/2.

4: Set the output as z = x ± td according to the first while loop that breaks.

The importance of the procedure EP comes from the fact that incorporating this procedure can prevent any
optimization algorithm from being trapped in non-differentiable points, which are all non-optimal solutions, and
by that may lead to the desired convergence to differentiable points. This phenomena is very important in the
case of Problem (1), since the Hessian matrix of the function F is continuous around differentiable points, and
therefore one can utilize its eigenvalues to deduce whether the differentiable point at hand is a (local) minimum
point or not. This topic will be further discussed in Section 5.

Now, we are ready to prove that the procedure EP indeed leads to a differentiable point with a lower function
value.

▶ Proposition 5. Let x ∈ RnK be the non-differentiable input point of EP. Then, the output point z ∈ RnK is a
differentiable point of F for which F(z) < F(x).

Proof. In order to prove the result, we show that the while loop in Step 3 of the procedure EP terminates after
a finite number of iterations.

Let d ∈ RnK be a direction picked according to Step 2 in EP. That is, di ̸= dj for all (i, j) ∈ Emax(x). Note
that such d surely exists as the set Emax(x) is finite by its definition. Now, since x is a non-differentiable point,
it follows from Theorem 4 that either d or −d is a descent direction of F at x. We assume without the loss
of generality that d is a descent direction. Therefore, there exists ϵ > 0 such that F(x) > F(x + td) for all
t ∈ (0, ϵ]. Notice that if xi = xj then (i, j) ∈ Emax(x), hence di ̸= dj and therefore xi + tdi ̸= xj + tdj for all
t ∈ (0, ϵ]. If xi ̸= xj then we can set di = dj and therefore xi + tdi ̸= xj + tdj for all t ∈ (0, ϵ]. This means that
xi + tdi ̸= xj + tdj for all (i, j) ∈ E . Therefore, z ≡ x + td is a differentiable point with a lower function value
than x, as required. ◀
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▶ Remark 6 (Escaping Approximate Non-Differentiable Points). In practice, when we run algorithms we might
never converge to a point, since we use a finite number of iterations. Hence, we might stop at an approximate non-
differentiable point. Mathematically, a point y ∈ RnK is considered an ε-non-differentiable point if ∥yi − yj∥ ≤ ε

for some ε > 0 and some (i, j) ∈ E .
Notice that for such point y ∈ RnK there are infinitely many non-differentiable points that lies in an

ε-neighborhood of y. Therefore, we may wish to escape from this “almost” non-differentiable point y by obtaining
a differentiable point z ∈ RnK with a lower function value than some of these non-differentiable points. To
this end, notice that we can easily construct a non-differentiable point x ∈ RnK in an ε-neighborhood of y by
projecting y on the set of non-differentibale points that satisfy xi = xj . Specifically, the point x is the solution
of the projection problem:

argmin
x∈RnK

{
∥y − x∥2 : xi = xj

}
.

It is straightforward to show that a closed-form solution is:

xi = xj = yi + yj

2 and xk = yk, ∀ k ̸= i, j.

Notice that ∥y − x∥ ≤ ε, so x indeed lies within an ε-neighborhood of y. We can then apply the escape procedure
(EP) to the point x, to obtain a differentiable point z ∈ RnK with a function value smaller than that of x.

Computational Considerations.

Now, we would like to discuss a computational aspect of the procedure EP. The main computational effort in the
procedure is the evaluation of the function F . This effort depends on the computational setting of the function
F . To simplify the discussion, we consider Problem (1) using the terminology the SNL problem (see Problem (3)
and Section 2). In this case, evaluating the F requires gathering information from all sensors in the network. As
a result, this procedure can only be implemented in centralized network architectures, that is, networks with a
central computing unit responsible for data collection from all sensors. However, in certain practical situations
the architecture of the network has no centralized computing unit, like in distributed architectures. Instead, each
sensor (or cluster of some sensors) performs its own calculations using information available locally, and this
information is collected from neighboring sensors (or clusters) through communication (for further information
about centralized and distributed network architectures in the context of the SNL problem, we refer the reader
to [19]). This limitation has inspired us to also design a distributed version of the procedure EP, named EP-D.
Due to the similarity of the arguments, we develop and state it in Appendix A.

4.1 Convergence to Stationary Points
Equipped with the procedure EP, or its distributed version EP-D, that escapes non-differentiable points of
the function F , one can incorporate it into any minimization algorithm that converges to critical points of F ,
to possibly obtain a stationary point of F . Recall that any optimal solution of Problem (1) is necessarily a
stationary point (see Theorem 4). Therefore, by using the procedure EP we easily transform algorithms which
are guaranteed to converge to critical points, into algorithms that converge to stationary points. This can be
done by executing the following process:
i. Run an algorithm A with some starting point to obtain a critical point x ∈ RnK of F .
ii. Run EP (or EP-D) to obtain a differentible point z ∈ RnK with a lower function value.
iii. Repeat the process with z ∈ RnK as the starting point of A.

Illustration of escaping a non-differentibale saddle point.

Here we give a simple one-dimensional numerical example that illustrates the convergence to a stationary point
by utilizing the process described above. We show how a convergent algorithm escapes a non-differentiable saddle
point and converges to a stationary point by using the procedure EP. We note that the description provided here
is applicable to any dimension, but we choose to focus on the one-dimensional setting for clarity. This decision
enables us to plot the function, facilitating a clear visualization of the saddle point, which is more challenging to
illustrate in higher dimensions.

Using again the terminology of SNL, we consider a one-dimensional network with three sensors, where sensor
#3 is an anchor, that is, has a known location. In this example, x3 = 2 ∈ R. The unknown locations of sensors
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#1 and #2 are denoted by x1 ∈ R and x2 ∈ R, respectively. In addition, we take d12 = d13 = 1. Under this
setting, the objective function of Problem (3) takes the form

F(x1, x2) = (|x1 − x2| − 1)2 + (|x1 − 2| − 1)2
.

Easy calculations show that the set of critical points of F is classified as follows:

(2, 2) is a non-differentiable local maximum point with value 2.
(1, 1), (3, 3), (2, 1) and (2, 3) are non-differentiable saddle points with value 1.
(1, 0), (1, 2), (3, 2) and (3, 4) are differentiable global minimum points with value 0. By definition, these
points are stationary points.

We apply iterations of the classical Sub-Gradient (SG) method to minimize F , and we will show that this
method (given a specific starting point) converges to a non-differentiable saddle point. Then, we will invoke
procedure EP to establish convergence of SG to a stationary point. This process is illustrated below in Figure 1,
and is discussed now.

Notice that the directional derivative of F at any point satisfying x1 = x2 and x1 ̸= 2, at the direction
d ∈

{
d ∈ R2 : d1 = d2

}
is given by

g(x1) ≡ F ′((x1, x1); d) = lim
ϵ→0+

F(x1 + ϵd1, x1 + ϵd1) − F(x1, x1)
ϵ

= 2d1 · sign(x1 − 2) · (|x1 − 2| − 1).

Hence, for a starting point
(
x0

1, x
0
2
)

satisfying x0
1 = x0

2 and x1 ̸= 2, SG update steps take the form

(
xk+1

1 , xk+1
2
)

=
(
xk

1 , x
k
2
)

− tk ·
(
g
(
xk

1
)
, g
(
xk

1
))
,

for any iteration k ≥ 0 and for some step-sizes tk > 0, assuming that xk
1 ̸= 2 for all k ≥ 0.

Initializing the above update steps with
(
x0

1, x
0
2
)

= (−1,−1), tk ≡ 1/2 and d = (1, 1) for any k ≥ 0, it can
be proved that SG converges to the critical point (1, 1), which is a non-differentiable saddle. We now invoke
procedure EP, and obtain a random differentiable point (x1, x2) satisfying F(1, 1) > F(x1, x2). Restarting SG
with (x1, x2) for additional iterations, yields convergence to one of the stationary global minimum points.

Figure 1 The trajectory of SG is depicted on the contour plots of the function F , where the black
points represent iterations. The method starts from the point (−1, −1) and after 100 iterations, it
converges to the non-differentiable saddle point (1, 1). By invoking EP and performing an additional
100 iterations of SG, the method eventually converges to the stationary point (1, 0).

Figure 2 illustrates the values of F plotted against the iterations k ≥ 0 of SG. It is evident that the method
converged to the value 1 after 100 iterations, which corresponds to the non-differentiable saddle point (1, 1).
Subsequently, after invoking EP and resuming SG for an additional 100 iterations, the function value decreased,
ultimately converging to the optimal value of 0.
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Figure 2 Values of F (y-axis) plotted against the iterations (x-axis) generated by SG with EP.

5 Classifying Stationary Points

In this section, our main goal is to identify the local minimum points of Problem (1). To achieve this goal, we
utilized is previous sections the first-order optimality condition, which asserts that any local minimum point
must be a critical point. As proved in Section 3, we established that any non-differentiable critical point is not
a local minimum point. Consequently, our focus shifts to the differentiable critical points, namely stationary
points. In Section 4, we introduced the procedure EP designed to navigate away from non-differentiable critical
points. This procedure effectively enables us to concentrate solely on stationary points.

Now that we have narrowed our focus to stationary points, we can proceed to distinguish the local minimum
points from the stationary points. It is worth noting that for the Hessian matrix of a function to be well-defined
at a point, it must be twice-differentiable. Considering that the function F is smooth at its stationary points, we
can leverage second-order information, particularly the eigenvalues of the Hessian matrix at these points, to
further classify the stationary points.

We denote the Hessian matrix of F at a differentiable point x ∈ RnK as ∇2F(x) ∈ RnK×nK . We recall
that the necessary second-order optimality condition applied to a stationary point x ∈ RnK , states that if
λmin

(
∇2F(x)

)
< 0 (where λmin denotes the minimal eigenvalue), then x is not a local minimum point [6] (in

particular, it is not an optimal solution). Otherwise, if λmin
(
∇2F(x)

)
≥ 0, one cannot conclusively determine

whether this point is a local minimum point using second-order information alone, and higher-order derivatives
must be considered.

This implies that upon obtaining a stationary point, such as by employing our procedure EP, one can compute
the minimal eigenvalue of its Hessian matrix (which is guaranteed to exist as this point as discussed above) to
further classify this point. As noted earlier, it is critical to differentiate between centralized and distributed
computational settings when addressing this task.

In a centralized setup, the minimal eigenvalue can be computed directly or approximated using methods
such as inverse power iteration or Rayleigh Quotient techniques [17, 32]. However, these methods rely on global
access to the Hessian matrix or its inverse, making them unsuitable for distributed architectures. In distributed
settings, where each sensor contributes a portion of the Hessian matrix, direct computation of the minimal
eigenvalue becomes infeasible due to the lack of global information and coordination. Moreover, distributed
matrix computations are complex and require powerful systems to handle tasks such as message packaging and
reception effectively [17].

While the literature offers various approaches for estimating the minimal eigenvalue in distributed systems [12,
20], these often rely on iterative algorithms. For example, Rayleigh Quotient methods can be applied in distributed
systems by treating each summand of the Hessian matrix separately. However, these methods require an initial
value close to the true minimal eigenvalue [36] – a significant challenge in practice, as the spectrum of the Hessian
matrix of F is very dense. Furthermore, there is no guarantee that the minimal eigenvalue can be decomposed
into a sum of local eigenvalues contributed by individual sensors. Another widely used approach, which we also
incorporate here, involves leveraging the Eigenvalue Interlacing theorem and Weyl’s theorem to approximate the
minimal eigenvalue in a distributed manner.

In this paper, we address the challenge of computing the minimal eigenvalue in distributed settings. Instead
of relying on iterative algorithms to approximate the minimal eigenvalue, we analyze the sum of local Hessian
matrices and their principal submatrices using the well-known second-order optimality condition. This analysis
allows us to derive a simple closed-form, fully distributed condition, providing lower and upper bounds on the
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minimal eigenvalue based solely on local information. Our approach involves no computational complexity or
communication costs, as it is based on direct analysis rather than approximation algorithms. While our method
does not depend on iterative eigenvalue approximation, such methods can still be employed if desired for further
analysis.

The goal of the rest of this section is to derive bounds on the minimal eigenvalue that can be calculated in
centralized and distributed computational settings. These bounds will enable us to establish a stricter necessary
condition (see Section 5.2) for a stationary point to qualify as a (local) minimum point in the distributed setting.
Before developing this necessary condition, we calculate the eigenvalues of the Hessian matrix of the functions
Fij , (i, j) ∈ E , as defined in (4).

5.1 Eigenvalues of the Hessian of Fij

We denote by ei ∈ RK the i-th unit vector, where K is the number of nodes. That is, ei is the vector of all zeros,
except for the i-th coordinate which is 1. For any (i, j) ∈ E , i < j, we denote by Aij ∈ Rn×nK the matrix

Aij ≡ (ei − ej)T ⊗ In =
[
0n×n(i−1) In 0n×n(j−i) −In 0n×n(K−j)

]
, (13)

where ⊗ denotes the Kronecker matrix product, In is the n × n identity matrix, and 0p×q is the p × q zero
matrix. Under this notation we can rewrite (recall (4))

Fij(x) ≡ (∥xi − xj∥ − δij)2 = (∥Aijx∥ − δij)2
, ∀ (i, j) ∈ E .

Now, recall that for any differentiable point x ∈ RnK of Fij (i.e., a point satisfying xi ̸= xj and hence
∥Aijx∥ > 0), the Hessian matrix of Fij at x exists and is continuous. To compute the Hessian matrix ∇2Fij(x),
we use the following technical lemma that its proof simply follows by applying the chain rule for multi-variate
functions, and is therefore skipped.

▶ Lemma 7. For any matrix A ∈ Rp×q and vector x ∈ Rq satisfying ∥Ax∥ > 0, it holds that
i. ∇(∥Ax∥) = AT Ax

∥Ax∥ .

ii. ∇2(∥Ax∥) = AT A−∇(∥Ax∥)∇(∥Ax∥)T

∥Ax∥ .

Following Lemma 7, we immediately obtain explicit formulas for the gradient and Hessian matrix of the
functions Fij . To this end, for any (i, j) ∈ E , we define the scalars ϵij(x) ≡ ∥Aijx∥ − δij and matrices

Xij = (xi − xj)(xi − xj)T ∈ Rn×n. (14)

▶ Corollary 8. Let (i, j) ∈ E and let x ∈ RnK such that xi ̸= xj. Then,
i. ∇Fij(x) = 2

∥Aijx∥ϵij(x)AT
ijAijx.

ii. ∇2Fij(x) = 2AT
ij

(
ϵij(x)

∥Aijx∥ In + δij

∥Aijx∥3 Xij

)
Aij.

To write ∇2Fij(x) compactly, we define for any (i, j) ∈ E and x ∈ RnK satisfying xi ≠ xj , the symmetric
matrices Bij(x),Cij(x),Gij(x) ∈ Rn×n as (recall the definition of Xij in (14))

Bij(x) ≡ ϵij(x)
∥Aijx∥

In, Cij(x) ≡ δij

∥Aijx∥3 Xij and Gij(x) ≡ Bij(x) + Cij(x), (15)

and we get that

∇2Fij(x) = 2AT
ijGij(x)Aij . (16)

Using (5) it immediately follows that

∇2F(x) = 2
∑

(i,j)∈E

AT
ijGij(x)Aij . (17)

Simple calculations show that (17) is given explicitly as

∇2F(x) = 2


∑

j∈E1
G1j(x) −G12(x) · · · −G1K(x)

−G12(x)
∑

j∈E2
G2j(x) · · · −G2K(x)

...
...

. . .
...

−G1K(x) −G2K(x) · · ·
∑

j∈EK
GKj(x)

 ∈ RnK×nK , (18)
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where we set

Gij(x) ≡

{
Gij(x), (i, j) ∈ E ,
0n×n, (i, j) ̸∈ E .

Now, recall that we are interested in calculating a lower bound on the minimal eigenvalue of the ∇2F(x) in a
distributed fashion. Such lower bound can be obtained by calculating the eigenvalues of principal sub-matrices of
∇2F(x) (see exact definition and statement below in Theorem 13). Hence, following (18), we first calculate the
eigenvalues of the matrices Gij(x), (i, j) ∈ E . To this end, we begin with finding the eigenvalues of the matrix
Cij(x) as defined in (15).

▶ Lemma 9. Let (i, j) ∈ E and x ∈ RnK satisfying xi ̸= xj. Then,
i. rank(Xij) = 1 and λmax(Xij) = ∥xi − xj∥2 = ∥Aijx∥2.
ii. The eigenvalues of the matrix Cij(x) are δij/∥Aijx∥ with multiplicity 1, and 0 with multiplicity n− 1.

Proof.

i. Notice that for any two vectors u,v ∈ Rn we have uuT v =
(
uT v

)
u, which means that the matrix uuT maps

any vector v to a vector in the space span(u). If u ̸= 0n, then rank
(
uuT

)
= dim

(
image

(
uuT

))
= 1. This means

that all eigenvalues of uuT are 0 except one of them. Moreover, taking v = u we see that u is an eigenvector
of uuT corresponding to λmax

(
uuT

)
= uT u = ∥u∥2. Hence, item (i) now follows by taking u = xi − xj and

recalling that Xij = (xi − xj)(xi − xj)T .

ii. First, from item (i) it follows that rank(Cij(x)) = 1, which implies that 0 is an eigenvalue of Cij(x) with
multiplicity n− 1. Last, since the only non-zero eigenvalue of Xij is ∥Aijx∥2, it follows that δij/∥Aijx∥ is an
eigenvalue of Cij(x) with multiplicity 1. ◀

Now, we are ready to explicitly find the eigenvalues of the matrix Gij(x), a result that is formalized in the
next lemma.

▶ Lemma 10. Let (i, j) ∈ E and x ∈ RnK satisfying xi ̸= xj . Then, the eigenvalues of Gij(x) are λmax(Gij(x)) =
1 with multiplicity 1, and λmin(Gij(x)) = ϵij(x)/∥Aijx∥ with multiplicity n− 1.

Proof. First, we denote by DCij
(x) the diagonal matrix containing the eigenvalues of Cij(x). Then, there exists

an orthogonal matrix U such that

Bij(x) + Cij(x) = Bij(x) + UT DCij
(x)U = UT

(
Bij(x) + DCij

(x)
)
U,

where we used the fact that Bij(x) is a scalar multiplication of the identity matrix. Since the matrix Bij(x) +
DCij (x) is diagonal, it follows that the eigenvalues of Gij(x) = Bij(x) + Cij(x) are exactly the sum of
eigenvalues of Bij(x) and Cij(x). Since the eigenvalues of Bij(x) are ϵij(x)/∥Aijx∥ with multiplicity n, and
since (ϵij(x) + δij)/∥Aijx∥ = 1, the required result now follows from Lemma 9(ii).

Finally, we have

ϵij(x)
∥Aijx∥

= 1 − δij

∥Aijx∥
< 1,

and therefore 1 is indeed the maximal eigenvalue of Gij(x). ◀

We conclude this part with a full characterization of eigenvalues of the Hessian ∇2Fij(x).

▶ Lemma 11. Let (i, j) ∈ E and x ∈ RnK such that xi ̸= xj. Then, λ ̸= 0 is an eigenvalue of ∇2Fij(x) if and
only if λ/4 is an eigenvalue of Gij(x).

Proof. Let 0nK ̸= y ∈ RnK be an eigenvector of ∇2Fij(x) corresponding to the eigenvalue λ ̸= 0. Hence,
∇2Fij(x)y = λy, and by writing in an explicit form using (16) we get{

2Gij(x)yi − 2Gij(x)yj = λyi,

−2Gij(x)yi + 2Gij(x)yj = λyj .
(19)

Summing (19) we get λ
2 (yi + yj) = 0. Since λ ̸= 0 then yi = −yj . If yi = 0n then it follows that y = 0nK which

is a contradiction. Plugging yi = −yj in the first equation of (19) we get Gij(x)yi = λ
4 yi, which implies that

λ/4 is an eigenvalue of Gij(x).
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Conversely, assume that λ/4 is an eigenvalue of Gij(x) with eigenvector 0n ̸= z̃ ∈ Rn. Let 0nK ̸= z ∈ RnK

such that zi = −zj = z̃. Now, it immediately follows from the LHS of (19) that ∇2Fij(x)z = λz, and therefore
λ is an eigenvalue of ∇2Fij(x), as required. ◀

The following result is an immediate consequence.

▶ Corollary 12. Let (i, j) ∈ E and x ∈ RnK such that xi ̸= xj. Then,
i. The eigenvalues of ∇2Fij(x) are λmax

(
∇2Fij(x)

)
= 4 with multiplicity 1, 0 with multiplicity n(K − 1), and

4(∥xi − xj∥ − δij)/∥xi − xj∥ with multiplicity n− 1.
ii. If ∥xi − xj∥ ≥ δij then ∇2Fij(x) is positive semi-definite, and otherwise it is indefinite.

5.2 Necessary Condition for a Locally Optimal Solution
We recall that given a stationary point x ∈ RnK of F , if the Hessian ∇2F(x) has a negative eigenvalue, then x is
not a minimum point. Therefore, in this sub-section, we find lower and upper bounds on the minimal eigenvalue
of ∇2F(x) that can be calculated in a distributed fashion. This is accomplished using the Eigenvalue Interlacing
theorem and Weyl’s theorem (see, for example, [21]), which are also stated below. First, we recall that for any
square matrix A ∈ Rq×q, then a square matrix B ∈ Rp×p for some p < q is called a principal sub-matrix of A, if
there exists an orthogonal matrix P ∈ Rq×p such that PT AP = B. In addition, in this paper, we index the
eigenvalues of a symmetric matrix A ∈ Rq×q in a non-decreasing order, i.e.,

λmax(A) ≡ λq(A) ≥ . . . ≥ λ2(A) ≥ λ1(A) ≡ λmin(A).

▶ Theorem 13 (Eigenvalue Interlacing theorem). Let A ∈ Rq×q be a symmetric matrix. Let B ∈ Rp×p for some
p < q be a principal sub-matrix of A. Then, it holds that

λs(A) ≤ λs(B) ≤ λs+q−p(A), ∀ s = 1, 2, . . . , p.

▶ Theorem 14 (Weyl’s theorem). Let A,B ∈ Rq×q be two symmetric matrices. Then, for any p = 1, 2, . . . , q it
holds that

λp(A + B) ≤ λp+s(A) + λq−s(B), ∀ s = 0, 1, . . . , q − p.

Now, we are ready to provide the main result of this section, which is an explicit necessary fully-distributed
condition for a stationary point of F to be a minimum point.

▶ Theorem 15. Let x ∈ RnK be a stationary point of F . If x is a local minimum point of F , then |Ei| ≥
δij/∥xi − xj∥ for any (i, j) ∈ E.

Proof. We will prove that if there exists some (i, j) ∈ E such that |Ei| − δij/∥xi − xj∥ < 0, then x is not a
minimum point of F . More precisely, we will show that λmin

(
∇2F(x)

)
< 0.

Since x is a stationary point of F , then in particular F is smooth at x and ∇2F(x) exists. Plugging
A = ∇2F(x), B = 2

∑
j∈Ei

Gij(x), q = nK, p = n and s = 1 in Theorem 13, we obtain

λmin
(
∇2F(x)

)
≤ 2λmin

∑
j∈Ei

Gij(x)

. (20)

Now, plugging A = Gij(x), B =
∑

l∈Ei,l ̸=j Gil(x), q = n, p = 1 and s = 0 in Theorem 14, we get

λmin

(∑
l∈Ei

Gil(x)
)

≤ λmin(Gij(x)) + λmax

 ∑
l∈Ei,l ̸=j

Gil(x)

 ≤ λmin(Gij(x)) +
∑

l∈Ei,l ̸=j

λmax(Gil(x)), (21)

where the second inequality follows by applying Theorem 14 with p = q = n and s = 0.
Now, from Lemma 10 we know that λmin(Gij(x)) = (∥xi − xj∥ − δij)/∥xi − xj∥ and that λmax(Gil(x)) = 1

for any (i, l) ∈ E . Therefore, by combining (20) and (21), we obtain that

λmin
(
∇2F(x)

)
≤ 2(∥xi − xj∥ − δij)

∥xi − xj∥
+ 2(|Ei| − 1) = 2

(
|Ei| − δij

∥xi − xj∥

)
< 0,

and hence x is not a minimum point of F (specifically, it is a strict saddle point). ◀
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▶ Remark 16. By inspecting the proof of Theorem 15, we see that it can be stated in the following equivalent
way: given a stationary point x ∈ RnK of F , if min(i,j)∈E {|Ei| − δij/∥xi − xj∥} < 0, then x is not a local
minimum point of F . Hence, this point is a strict (differentiable) saddle point, that can be escaped by applying
a backtracking procedure in the direction of the eigenvector corresponding to the minimal eigenvalue.

Moreover, it is worth noting that the condition |Ei| < δij/∥xi − xj∥ for some (i, j) ∈ E (indicating that x is
not a local minimum) is anticipated to be more prevalent in networks with high measurement noise. In such
networks, the measurements δij tend to be larger, increasing the likelihood of encountering this condition.

▶ Remark 17. Theorem 15 can be generalized to any network that is divided into clusters. In such a configuration,
the network is divided into clusters, each containing a central processor called a clusterhead (see [19] for more
details). For a given cluster represented by the index set C ⊆ [K], we can construct a principal sub-matrix[
∇2F(x)

]
C ∈ Rn|C|×n|C| of ∇2F(x) by selecting the rows and columns corresponding to the indices in C. Similar

to the previous analysis, it follows that

λmin
(
∇2F(x)

)
≤ λmin

([
∇2F(x)

]
C

)
.

In the case of cluster architectures, each cluster’s central processor collects data from the sensors within the
cluster, enabling explicit distributed computation of λmin

([
∇2F(x)

]
C

)
.

6 Conclusion

In this paper, we delved into the mathematical geometry of a popular class of non-linear, non-convex and
non-smooth least squares problems motivated by two challenging applications: the Wireless Sensor Network
Localization and Multi-Dimensional Scaling. Our study led to several key findings. Firstly, we analyzed the
extremum points of this class of problems and proved that any non-differentiable critical point corresponds to a
saddle point. Building upon this result, we devised a procedure to identify an easy-to-find and explicit descent
direction, enabling efficient escape from non-differentiable saddles. Importantly, this procedure is applicable to
both centralized and distributed computational settings. Furthermore, we leveraged our understanding of the
stationary points by examining the eigenvalues of the corresponding Hessian matrix. Building on this second-order
information, we established a distributed necessary condition for local optimality. This condition allows us to
assess the quality of stationary points in a distributed fashion, even when direct eigenvalue computations are
infeasible due to limited information exchange or large matrix sizes.

A Appendix

Before we present the distributed escape procedure, we need the following notations, that will enable us to treat
each sensor separately in a distributed manner. For any i ∈ {1, 2, . . . ,K}, we define Ei as the set containing
the indices of all neighbors of sensor i. That is, j ∈ Ei if and only if (i, j) ∈ E or (j, i) ∈ E . Now, for any
i ∈ {1, 2, . . . ,K}, we define the function Fi : RnK → R as

Fi(x) ≡
∑
j∈Ei

Fij(x) =
∑
j∈Ei

(∥xi − xj∥ − δij)2
, (22)

where we set Fij ≡ Fji if (j, i) ∈ E .
In addition, in the context of (22), by Fi(xi; z) : Rn → R for some z ∈ RnK we denote the partial function

xi 7→ Fi(z). That is, Fi(xi; z) treats xi ∈ Rn as the variable, while all zj ∈ Rn, j ̸= i, are fixed. Notice that
for any i ∈ {1, 2, . . . ,K}, evaluating the function Fi(xi; z) at sensor i, only requires the collection of vectors
zj ∈ Rn, j ∈ Ei, from the neighbors of i. Hence, for each sensor i, evaluating Fi(x) only requires information
that is locally available at sensor i.

In Procedure 2 below, we present the distributed version of EP, designed to escape non-differentiable points in
distributed computational settings. It is important to note that EP-D operates using locally available information
at each node, making it a distributed procedure.

The input point x ∈ RnK of EP-D can be any point, not necessarily a non-differentiable point. It is important
to note that since determining the non-differentiability of a point requires full network information, which is not
available in distributed architectures. However, EP-D guarantees that the output point is a differentiable point
of the function F and has a lower function value than the input point (see Proposition 19).
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Procedure 2 Escape Procedure – Distributed (EP-D)
1: Initialization: x ∈ RnK and set z = x.
2: for i = 1, 2, . . . , K do
3: if xi = zj for some j ∈ Ei then set t = 1 and pick 0n ̸= d ∈ Rn.
4: Double backtracking procedure: do in parallel

→ while Fi(xi; z) ≤ Fi(xi + td; z) or xi + td = zj for some j ∈ Ei then set t := t/2.
→ while Fi(xi; z) ≤ Fi(xi − td; z) or xi − td = zj for some j ∈ Ei then set t := t/2.

5: Update zi := xi ± td according to the first while loop that breaks.
6: end if
7: end for
8: Return z as the output.

To prove the above assertions about EP-D, it is required to derive a distributed variant of Theorem 4. To
establish this, we prove a variant of Theorem 4 that considers only the sub-network consisting of sensor i and its
neighbors.

▶ Lemma 18. Let i ∈ {1, 2, . . . ,K} and let some z ∈ RnK . Assume that xi ∈ Rn is a non-differentiable point of
the function Fi(xi; z). Then, for any 0n ̸= d ∈ Rn such that d ̸= zj for all j ∈ Ei, either d or −d is a descent
direction of Fi(xi; z) at xi.

Proof. Denote by x̃ ∈ RnK the point x̃ ≡ (z1, . . . , zi−1,xi, zi+1, . . . , zK). Since xi ∈ Rn is a non-differentiable
point of Fi(xi; z), then there exist some j ∈ Ei such that x̃i = x̃j , and hence the function Fi (see (22)), is also
non-differentiable at x̃. Now, we denote by d̃ ∈ RnK the vector satisfying d̃i = d ̸= 0n and d̃j = 0n for any
j ̸= i, and in particular d̃i ̸= d̃j for any (i, j) ∈ E .

Notice that Theorem 4, which holds true for any network, considers the function F of Problem (3), which in
turn is the sum of all functions Fij , for all (i, j) ∈ E . Therefore, by taking the (sub)network that is composed
of the sensor i and all it neighboring sensors, it immediately follows from Theorem 4 that either d̃ or −d̃ is a
descent direction of the function Fi (as defined in (22)), at the point x̃. We assume without the loss of generality
that d̃ is a descent direction. Hence, there exists t > 0 such that

Fi(xi; z) = Fi(x̃) > Fi

(
x̃ + td̃

)
= Fi(xi + td; z),

and we obtain that d is a descent direction of Fi(xi; z) at xi, as required. ◀

Next, we prove that EP-D indeed yields a differentiable point of the function F with a lower function value.

▶ Proposition 19. Let x ∈ RnK and z ∈ RnK be the input and output points, respectively, of EP-D. Then, z is
a differentiable point of F for which F(z) < F(x).

Proof. Initially we set z = x (see Step 1 in EP-D). We focus on the case in which x is a non-differentiable point
of F . In particular, there exist i and some j ∈ Ei such that xi = zj . For any d ̸= 0n, it follows from Lemma 18
that there exists ϵi > 0 such that either Fi(xi; z) > Fi(xi + td; z) or Fi(xi; z) > Fi(xi − td; z) for all t ∈ (0, ϵi].
For the sake of simplicity, we assume without the loss of generality that d is a descent direction.

We now derive that (recall that initially z = x)

F(x) = Fi(xi; z) +
∑

(k,j)∈E
k,j ̸=i

Fkj(z) > Fi(xi + td; z) +
∑

(k,j)∈E
k,j ̸=i

Fkj(z) = F(z),

where the last eqaulity follows from the fact that we set zi := xi + td (see Step 5 in EP-D). Since the above
process holds true for any x, then indeed the output point of EP-D has a lower function value, as required.

Last, since the set E is finite, one can pick t ∈ (0, ϵi] such that xi + td ̸= zj for all j ∈ Ei (see Step 4 in
EP-D). Therefore, the output of EP-D is a differentiable point of F . ◀
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