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Abstract
To solve convex optimization problems with a noisy gradient input, we analyze the global behavior of subgradient-like
flows under stochastic errors. The objective function is composite, being equal to the sum of two convex functions, one
being differentiable and the other potentially non-smooth. We then use stochastic differential inclusions where the drift
term is minus the subgradient of the objective function, and the diffusion term is either bounded or square-integrable.
In this context, under Lipschitz’s continuity of the differentiable term and a growth condition of the non-smooth term,
our first main result shows almost sure weak convergence of the trajectory process towards a minimizer of the objective
function. Then, using Tikhonov regularization with a properly tuned vanishing parameter, we can obtain almost sure
strong convergence of the trajectory towards the minimum norm solution. We find an explicit tuning of this parameter
when our objective function satisfies a local error-bound inequality. We also provide a comprehensive complexity analysis
by establishing several new pointwise and ergodic convergence rates in expectation for the convex, strongly convex, and
Łojasiewicz case.
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Keywords Stochastic optimization, inertial gradient system, Convex optimization, Non-smooth optimization, Stochastic
Differential Equation, Stochastic Differential Inclusion, Tikhonov regularization, Error bound inequality, Łojasiewicz
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1 Introduction

1.1 Problem statement
We aim to solve convex minimization problems by means of stochastic differential inclusions (SDI), showing the
existence, uniqueness, and properties of the solution. Then, we work with Tikhonov regularization, specifically
when the drift term is the sum of the (sub-)gradient of the objective function and of a Tikhonov regularization
term with a vanishing coefficient. This makes it possible to take into account a noisy (imprecise) gradient input
and obtain convergence a.s. to the minimal norm solution.

Let us consider the minimization problem

min
x∈H

F (x) def= f(x) + g(x), (P)

where H is a separable real Hilbert space, and the objective F satisfies the following standing assumptions:
f : H → R is continuously differentiable and convex with L-Lipschitz continuous gradient;
g : H → R is proper, lsc and convex;
SF

def= argmin(F ) ̸= ∅.
(H0)
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2 SDIs and Tikhonov Regularization for Stochastic Convex Optimization

To solve (P), a fundamental dynamic to consider is the subgradient flow, which is the following differential
inclusion (DI) starting in t0 ≥ 0 with initial condition x0 ∈ H:{

ẋ(t) ∈ −∂F (x(t)), t > t0;
x(t0) = x0.

(DI)

It is well known since the founding articles of Brézis, Baillon, Bruck in the 1970s that, when the initial
data x0 is in the domain of F , (more generally when it is in its closure), there exists a unique strong global
solution of (DI). Moreover, if the solution set argmin(F ) of (P) is nonempty then each solution trajectory of (DI)
converges weakly, and its limit belongs to argmin(F ).

In many cases, the gradient input is subject to noise, for example, if the gradient cannot be evaluated directly,
or due to some other exogenous factor. In such scenario, one can model the associated errors using a stochastic
integral with respect to the measure defined by a continuous Itô martingale. This entails the following stochastic
differential inclusion (SDI) as a stochastic counterpart of (DI){

dX(t) ∈ −∂F (X(t)) + σ(t,X(t)) dW (t), t ≥ t0;
X(t0) = X0,

(SDI)

where the diffusion (volatility) term σ : [t0,+∞[ × H → L2(K;H) (see notation in Section 2) is a measurable
function, K a separable real Hilbert space, and W is a K-valued cylindrical Brownian motion (see Section A.2.1
for a precise definition), and the initial data X0 is a properly measurable H-valued random variable. This
dynamic can be viewed as a stochastic dissipative system that aims to minimize F if the diffusion term vanishes
sufficiently fast. Also, it is the natural extension to the non-smooth setting of the work done in [30].

An important aspect of our work concerns the Tikhonov regularization of (DI) and (SDI). Given t0 > 0, and
a regularization parameter ε : [t0,+∞[ → R+, which is a measurable function that vanishes asymptotically in a
controlled way, the Tikhonov regularization of (DI) is written:{

ẋ(t) ∈ −∂F (x(t)) − ε(t)x(t), t > t0;
x(t0) = x0.

(DI-TA)

The stochastic counterpart of (DI-TA) (which is the Tikhonov regularization of (SDI)), is the following stochastic
differential inclusion with initial data X0 ∈ Lν(Ω;H) (for some ν ≥ 2):{

dX(t) ∈ −∂F (X(t)) − ε(t)X(t) + σ(t,X(t)) dW (t), t > t0;
X(t0) = X0.

(SDI-TA)

It is well-known that in the deterministic case of (DI-TA), the Tikhonov regularization ensures that the
trajectory generated by the system converges strongly to a particular minimizer of F : the one of minimum norm;
see [3, 18] and references therein. The fact that the Tikhonov regularization parameter ε(t) tends to zero not too
fast as t → +∞ induces a hierarchical minimization property: the limit of any trajectory no longer depends on
the initial data, it is precisely the minimum norm solution.

It is our aim in this paper to extend these results to the stochastic case (SDI-TA) based on the recent work of
Maulen-Soto, Fadili, and Attouch [30]. More precisely, our objective is to study the dynamics (SDI) and (SDI-TA)
and their long-time behavior in order to solve (P). If the diffusion term vanishes with time, one would expect to
solve (P) with our dynamics and obtain for (SDI-TA) the hierarchical minimization property described above.

Motivated by this, our paper will primarily focus on the case where σ( · , x) vanishes sufficiently fast as
t → +∞ uniformly in x. Additionally, we will provide some guarantees for uniformly bounded σ. Therefore,
throughout the paper, we assume that σ satisfies:{

supt≥t0,x∈H ∥σ(t, x)∥HS < +∞,

∥σ(t, x′) − σ(t, x)∥HS ≤ L0∥x′ − x∥,
(H)

for some L0 > 0 and for all t ≥ t0, x, x
′ ∈ H (where the HS-norm is defined in Section 2). The Lipschitz continuity

assumption is mild and required to ensure the well-posedness of (SDI) and (SDI-TA).
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1.2 Contributions
This work goes well beyond that of [30] in three directions: we consider the non-smooth case, in infinite
dimensional Hilbert spaces, and with Tikhonov regularization. The latter makes it possible to pass from weak
convergence to strong convergence, and to a particular solution, that of minimal norm.

We first study the properties of the process X(t) and F (X(t)) for the stochastic differential inclusion (SDI)
on separable real Hilbert spaces from an optimization perspective, under the assumptions (H0), (H) and (Hλ)
(introduced in Section 3). When the diffusion term is uniformly bounded, we show convergence of E[F (X(t)) −
minF ] to a noise-dominated region both for the convex and strongly convex case. When the diffusion term is
square-integrable, we show in Theorem 11 that X(t) weakly converges almost surely to a solution of (P), which
is a new result to the best of our knowledge. Moreover, in Theorem 12, we provide new ergodic and pointwise
convergence rates of the objective in expectation, again, for both the convex and strongly convex case.

Next, we consider (SDI-TA), obtained by adding a Tikhonov regularization term to (SDI). We show in
Theorem 14 that under certain conditions on the regularization term, X(t) strongly converges almost surely
to the minimum norm solution. Then, we show in Theorem 24 some practical situations where one can obtain
an explicit form of the Tikhonov regularizer. Moreover, in Theorem 28, we show new convergence rates of the
objective and the trajectory in expectation for the smooth case.

Table 1 summarizes the convergence rates obtained for E[F (X(t)) − minF ]. We use the following notation,
F = f + g, σ∗ > 0 and σ∞( · ) is defined as

σ∞(t) def= sup
x∈H

∥σ(t, x)∥HS, where ∥σ(t, x)∥2
HS ≤ σ2

∗, ∀ t ≥ t0,∀ x ∈ H. (1)

Table 1 Summary of convergence rates obtained for E[F (X(t)) − min F ].

Property of F DI SDI (supt≥t0 σ∞(t) ≤ σ∗) SDI (σ∞ ∈ L2([t0, +∞[))
Convex t−1 t−1 + σ2

∗ t−1

µ-Strongly Convex e−2µt e−µt + σ2
∗ max{e−µt, σ2

∞(t)}

We also denote EBp(S) the local Error Bound Inequality defined in (30). In Table 2, we summarize the
results obtained in the smooth case for the dynamics with Tikhonov regularization, i.e., when g ≡ 0.

Table 2 Summary of convergence rates obtained for E[f(X(t)) − min f ] for the dynamics with
Tikhonov regularization when ε(t) = t−r

Property of f DI-TA (ε(t) = t−r, r ∈ ]0, 1[) SDI-TA
(
ε(t) = t−r, r ∈ ] 2p

2p+1 , 1[
)

Convex ∩ EBp(S) t−r t−r whenever σ2
∞(t) = O(t−2r).

1.3 Relation to prior work
The subgradient flow dynamic (DI), which is valid on a general real Hilbert space, is a dissipative dynamical
system, whose study dates back to Cauchy [16]. It plays a fundamental role in optimization: it transforms the
problem of minimizing F into the study of the asymptotic behavior of the trajectories of (DI). Its Euler forward
discretization (with stepsize γk > 0) is the subgradient method

xk+1 ∈ xk − γk∂F (xk). (Sub-G)

Or equivalently,

xk+1 = xk − γkgk, (2)

where gk ∈ ∂F (xk) for every k ∈ N.
Let us focus on the finite-dimensional case (H = Rd). In [1, 41] they give conditions on the function and the

stepsize to converge to within some range of the optimal value and to the optimal value. Despite (Sub-G) being
a classical algorithm to solve the non-smooth convex minimization problem, it is not recommended for general
use, as discussed in [26, 28]. Moreover, with the need to handle large-scale problems (such as in various areas of
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data science and machine learning), it has become necessary to find ways to get around the high computational
cost per iteration that these problems entail. The Robbins–Monro stochastic approximation algorithm [37] is at
the heart of Stochastic Gradient Descent methods, which, roughly speaking, consists in cheaply and randomly
approximating the gradient at the price of obtaining a random noise in the solutions. In [23] they propose the
natural generalization to the non-smooth setting, the stochastic subgradient method (S-Sub-G) that updates the
iterates according to

xk+1 ∈ xk − γk(∂F (xk) + ξk), (S-Sub-G)

where ξk denotes the (random) noise term on the subgradient at the k-th iteration, and E[ξk] = 0.
The SDI continuous-time approach is motivated by its relations to (S-Sub-G), where the latter can be viewed

as an Euler forward time discretization, and the noise ξk ∼ N (0, σkId) (hence not necessarily bounded). The
advantage of the continuous-time perspective is that it offers a deep insight and unveils the key properties of the
dynamic, without being tied to a specific discretization.

We extend the work of [30] to the case where the objective is “smooth+non-smooth”, being able to show
the almost sure weak convergence of the trajectory to the set of minimizers and new convergence rates for the
objective in the convex and strongly convex case.

Besides, based on the work of [2], we add a Tikhonov term that let us obtain the almost sure strong
convergence of the trajectory to the minimal norm solution. Moreover, we extend the convergence rates shown
in [2, Theorem 5] to the stochastic case. In our way, we even prove new and useful results for the deterministic
setting (e.g., Proposition 23 and Corollary 26).

While the use of Lyapunov analysis and vanishing Tikhonov regularization are known techniques in the
deterministic case [2], their adaptation to the stochastic setting requires significant technical work and novel
arguments. One has not only to handle carefully stochasticity through proper Itô’s calculus, but also non-
smoothness of the objective function.

1.4 Organization of the paper
Section 2 introduces notations and reviews some necessary material from convex and stochastic analysis. Section 3
states our main convergence results of (SDI) in the case of a convex objective function under (H0) and with
an extra assumption on the non-smooth term. We first show the almost sure weak convergence of the process
towards the set of minimizers when the diffusion term is square-integrable, then we establish convergence rates
for the values. Section 4 introduces an extra vanishing term called Tikhonov regularizer that let us obtain
the almost sure strong convergence of (SDI-TA) to the minimal norm solution. Then we give some practical
situations where we can obtain an explicit tuning of the Tikhonov regularizer. Finally in this section, we present
convergence rates for the values and for the trajectory in the smooth case. Technical lemmas and theorems that
are needed throughout the paper will be collected in the appendix A.

2 Notation and Preliminaries

We will use the following shorthand notations: Given n ∈ N, [n] def= {1, . . . , n}. Consider H,K real separable
Hilbert spaces endowed with the inner product ⟨ · , · ⟩H and ⟨ · , · ⟩K, respectively, and norm ∥ · ∥H =

√
⟨ · , · ⟩H

and ∥ · ∥K =
√

⟨ · , · ⟩K, respectively (we omit the subscripts H and K for the sake of clarity). IH is the identity
operator from H to H. L(K;H) is the space of bounded linear operators from K to H, L1(K) is the space of
trace-class operators, and L2(K;H) is the space of bounded linear Hilbert–Schmidt operators from K to H. For
M ∈ L1(K), is trace is defined by

tr(M) def=
∑
i∈I

⟨Mei, ei⟩ < +∞,

where I ⊆ N and (ei)i∈I is an orthonormal basis of K. Besides, for M ∈ L(K;H), M⋆ ∈ L(H;K) is the adjoint
operator of M , and for M ∈ L2(K;H),

∥M∥HS
def=
√

tr(MM⋆) < +∞

is its Hilbert–Schmidt norm (in the finite-dimensional case is equivalent to the Frobenius norm). We denote by
w-lim (resp. s-lim) the limit for the weak (resp. strong) topology of H. The notation A : H ⇒ H means that
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A is a set-valued operator from H to H. Consider f : H → R, the sublevel of f at height r ∈ R is denoted
[f ≤ r] def= {x ∈ H : f(x) ≤ r}. For 1 ≤ p ≤ +∞, Lp([a, b]) is the space of measurable functions g : R → R such
that

∫ b

a
|g(t)|p dt < +∞, with the usual adaptation when p = +∞. On the probability space (Ω,F ,P), Lp(Ω;H)

denotes the (Bochner) space of H-valued random variables whose p-th moment (with respect to the measure P)
is finite. Other notations will be explained when they first appear.

Let us recall some important definitions and results from convex analysis; for a comprehensive coverage, we
refer the reader to [38].

We denote by Γ0(H) the class of proper lsc and convex functions on H taking values in R ∪ {+∞}. For
µ > 0, Γµ(H) ⊂ Γ0(H) is the class of µ-strongly convex functions, roughly speaking, this means that there
exists a quadratic lower bound on the growth of these functions. We denote by Cs(H) the class of s-times
continuously differentiable functions on H. For L ≥ 0, C1,1

L (H) ⊂ C1(H) is the set of functions on H whose
gradient is L-Lipschitz continuous, and C2

L(H) is the subset of C1,1
L (H) whose functions are twice differentiable.

The subdifferential of a function f ∈ Γ0(H) is the set-valued operator ∂f : H ⇒ H such that, for every x in H,

∂f(x) = {u ∈ H : f(y) ≥ f(x) + ⟨u, y − x⟩ ∀ y ∈ H}.

When f is continuous, ∂f(x) is a non-empty convex and compact set for every x ∈ H. If f is differentiable, then
∂f(x) = {∇f(x)}. For every x ∈ H such that ∂f(x) ̸= ∅, the minimum norm selection of ∂f(x) is the unique
element {∂0f(x)} def= argminu∈∂f(x)∥u∥.

The projection of a point x ∈ H onto a closed convex set C ⊆ H is denoted by PC(x).

2.1 Deterministic results on the subgradient flow with Tikhonov regularization
Let us first recall some basic facts about the deterministic case. To solve (P), a fundamental dynamic to consider
is the subgradient flow of F , i.e. the following differential inclusion:

ẋ(t) ∈ −∂F (x(t)). (DI)

It is well known since the founding papers of Brézis, Baillon, and Bruck in the 1970s that, if the solution
set argmin(F ) of (P) is non-empty and F is convex, lower semicontinuous (lsc) and proper, then each solution
trajectory of (DI) converges weakly, and its weak limit belongs to argmin(F ).

In general, the limit solution depends on the initial data and is a priori difficult to specify when one has a set
of solutions not reduced to only one element. To remedy this difficulty we consider the differential inclusion with
vanishing Tikhonov regularization, ε(t) → 0 (denoted (DI-TA)) which gives

ẋ(t) + ∂F (x(t)) + ε(t)x(t) ∋ 0. (DI-TA)

To analyze the convergence properties of this dynamic, let us recall basic facts concerning the Tikhonov
approximation (1963). It consists in approximating the convex minimization problem (possibly ill-posed)

min{F (x) : x ∈ H}, (P)

by the strongly convex minimization problem (ε > 0)

min
{
F (x) + ε

2∥x∥2 : x ∈ H
}

(P)ε

whose unique solution is denoted by xε. The following result was first obtained by Browder in 1966 [13, 14].

▶ Theorem 1. (Hierarchical minimization). Suppose that SF = argmin(F ) ̸= ∅. Let x⋆ = PSF
(0). Then,

i. ∥xε∥ ≤ ∥x⋆∥ for all ε > 0.
ii. limε→0 ∥xε − x⋆∥ = 0.

The system (DI-TA) is a special case of the general dynamic model

ẋ(t) + ∂F (x(t)) + ε(t)∇Ψ(x(t)) ∋ 0 (3)

which involves two functions F and Ψ intervening with different time scale. When ε( · ) tends to zero moderately
slowly, it was shown in [4] that the trajectories of (3) converge asymptotically to equilibria that are solutions of
the following hierarchical problem: they minimize the function Ψ on the set of minimizers of F . The continuous
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and discrete-time versions of these systems have a natural connection to the best response dynamics for potential
games, domain decomposition for PDEs, optimal transport, and coupled wave equations. In the case of the
Tikhonov approximation, a natural choice is to take Ψ(x) = ∥x− xd∥2 where xd is a desired state (which is also
the continuous model of the Halpern method [43]). By doing so, we obtain asymptotically the closest possible
solution to xd. By translation, we can immediately reduce ourselves to the case xd = 0, as considered in our
work.

The following theorem establishes the convergence of the trajectories of (DI-TA) towards the minimum norm
solution under minimal assumptions on the parameter ε(t). We assume that (DI-TA) admits a unique strong
global solution x : [0,+∞[ → H, namely, x is absolutely continuous on each compact interval such that (DI-TA)
holds for almost every t ≥ 0. Sufficient conditions for this well-posedness may be found in [12].

▶ Theorem 2. Suppose that ε : [t0,+∞[ → R+ is a measurable function that satisfies:
i. ε(t) → 0 as t → +∞;

ii.
∫ +∞

t0

ε(t) dt = +∞.

Let x( · ) be a solution trajectory of the continuous dynamic (DI-TA). Then, s-limt→+∞ x(t) = x⋆ def= PSF
(0).

This result was established in [18, Theorem 2]. For the reader’s convenience, we give a self-contained short
proof in Appendix A.3.

2.2 Stochastic differential equations
As said before, in many cases, the drift term is subject to noise. In such a scenario, one can model these errors
using a stochastic integral with respect to the measure defined by a continuous Itô martingale. In the smooth case
without Tikhonov regularization, this approach has been well documented in Maulen-Soto, Fadili, Attouch [30].
This concerns the following stochastic differential equation as the stochastic counterpart of the gradient flow, let
t0 ≥ 0 and initial data X0 ∈ Lν(Ω;H) (for some ν ≥ 2):{

dX(t) = −∇f(X(t)) dt+ σ(t,X(t)) dW (t), t > t0

X(t0) = X0.
(SDE)

Let us make precise the ingredients of this stochastic differential equation. It is defined over a filtered probability
space (Ω,F , {Ft}t≥0,P), where the diffusion (volatility) term σ : [t0,+∞[ × H → L2(K;H) is a measurable
function, and W is a K-valued cylindrical Brownian motion.

Throughout this article, the diffusion term σ is assumed to satisfy (H). In connection with this assumption,
let us define σ∗ > 0 and σ∞( · ) by

∥σ(t, x)∥2
HS ≤ σ2

∗, ∀ t ≥ 0,∀ x ∈ H, σ∞(t) def= sup
x∈H

∥σ(t, x)∥HS, (4)

and σ∞( · ) is a decreasing function.
Concerning the study of (SDI) and (SDI-TA), let us recall the following result of [30, Theorem 3.1] on which

we will build our study. It establishes almost sure weak convergence of X(t) to an S-valued random variable as
t → +∞.

▶ Theorem 3. Consider the dynamic (SDE) where f and σ satisfy the assumptions (H0) and (H). Let ν ≥ 2,
and its initial data X0 ∈ Lν(Ω;H). Then, there exists a unique solution X ∈ Sν

H[t0] of (SDE). Additionally, if
σ∞ ∈ L2([t0,+∞[), then:
i. supt≥0 E[∥X(t)∥2] < +∞.
ii. ∀ x⋆ ∈ S, limt→+∞∥X(t) − x⋆∥ exists a.s. and supt≥0∥X(t)∥ < +∞ a.s.
iii. limt→∞∥∇f(X(t))∥ = 0 a.s. As a result, limt→∞ f(X(t)) = min f a.s.
iv. There exists an S-valued random variable X⋆ such that w-limt→+∞ X(t) = X⋆ a.s.

▶ Remark 4. To be precise, [30, Theorem 3.1] treats the finite-dimensional case, however in [42, Chapter 3] the
general separable real Hilbertian case was considered.

3 Stochastic differential inclusions

In this section, we will work with stochastic differential inclusions. For the history of this concept, we refer the
reader to [25, Preface]. We will start by showing a general version of the (SDI) dynamic, formally describing
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what it means to be a solution of that dynamic, and then we will move on to show the conditions under which
we can have the existence and uniqueness of a solution. Existence is due to [34] and uniqueness is proven here.
Then we will focus on (SDI) and study the conditions on the diffusion term in order to ensure the almost sure
weak convergence of the trajectory towards the set of minimizers. Finally, we will show some convergence rates
of the objective under convexity or strong convexity.

3.1 Existence and uniqueness of solution
For a set-valued operator A : H ⇒ H, its domain is dom(A) = {x ∈ H : A(x) ̸= ∅}. For t0 ≥ 0, let
b : [t0,+∞[ ×H → H and σ : [t0,+∞[ ×H → L2(K;H), and consider the general stochastic differential inclusion:

{
dX(t) ∈ b(t,X(t)) dt−A(X(t)) dt+ σ(t,X(t)) dW (t), t > 0
X(t0) = X0,

(SDI0)

defined over a complete filtered probability space (Ω,F , {Ft}t≥t0 ,P), where the diffusion (volatility) term
σ : [t0,+∞[ ×H → L2(K;H) is a measurable function; W is a Ft-adapted K-valued cylindrical Brownian motion;
and the initial data X0 is an F0-measurable H-valued random variable.

▶ Definition 5. A solution of (SDI0) is a couple (X, η) of Ft-adapted processes such that almost surely:
i. X is continuous with sample paths in the domain of A;
ii. η is absolutely continuous, such that η(t0) = 0, and ∀ T > t0, η′ ∈ L2([t0, T ];H), η′(t) ∈ A(X(t)) for almost

all t ≥ t0. These properties are collectively denoted by η ∈ Aloc([t0,+∞[;H);
iii. For t > t0, X(t) = X0 +

∫ t

t0

b(s,X(s)) ds− η(t) +
∫ t

t0

σ(s,X(s)) dW (s),

X(t0) = X0.

(5)

For the sake of brevity, we sometimes omit the process η and say that X is a solution of (SDI0), meaning
that, there exists a process η such that (X, η) satisfies the previous definition. The definition of uniqueness for
the process X will be presented in Section A.2.1.

▶ Remark 6. There are different notions of solution to the SDI; see, for instance, [17, 33], where the process η is
only assumed to be continuous, adapted, and of bounded variation. However, to make use of the tools developed
in this work, we adopt the approach of [34], which considers an adapted and absolutely continuous process. In
any case, we will show that, in our setting, existence and uniqueness of a solution hold under the notion we
adopt.

Throughout the paper it will be assumed that:{
A is a maximal monotone operator with closed domain;
S def= A−1(0) ̸= ∅.

(H0(A)){
∃ L > 0, ∥b(t, x) − b(t, y)∥ ∨ ∥σ(t, x) − σ(t, y)∥HS ≤ L∥x− y∥,∀ t ≥ t0,∀ x, y ∈ H;
supt≥t0(∥b(t, 0)∥ ∨ ∥σ(t, 0)∥HS) < +∞.

(H0(b, σ))

The Lipschitz continuity assumption is mild and required to ensure the well-posedness of (SDI0).
We are interested in ensuring the existence and uniqueness of a solution for (SDI0). Although there are

several works that deal with the subject of stochastic differential inclusions (see [8, 10, 22, 25, 34, 35]), those
of [22, 34] are the closest to our setting and define a solution in the sense of Definition 5, thus generalizing the
work of Brézis [12] in the deterministic case to the stochastic setting. In this paper, we consider the sequence of
solutions {Xλ}λ>0 of the stochastic differential equations{

dXλ(t) = b(t,X(t)) dt−Aλ(Xλ(t)) dt+ σ(t,Xλ(t)) dW (t), t > t0

Xλ(t0) = X0,
(SDEλ)
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where Aλ = (I − (I + λA)−1)/λ is the Yosida approximation of A with parameter λ > 0. Under (H0(A))
and (H0(b, σ)), as well as the integrability condition

lim sup
λ↓0

∫ T

t0

E(∥Aλ(Xλ(t))∥2) dt < +∞, (Hλ)

it was shown in [34, Theorem 3.5] that there exists a couple (X, η) of stochastic processes such that for every
T > t0,

lim
λ↓0

E

(
sup

t∈[t0,T ]
∥Xλ(t) −X(t)∥2

)
= 0, lim

λ↓0
E

(
sup

t∈[t0,T ]
∥ηλ − η∥2

)
= 0,

where ηλ(t) =
∫ t

t0
Aλ(Xλ(s)) ds, and that (X, η) is a solution of (SDI0) in the sense of Definition 5. Moreover,

one can even have a.s. strong convergence of the process Xλ to X when the diffusion term is state-independent;
see [34, Proposition 6.3].

▶ Remark 7. In view of [34, Proposition 3.1] and Fatou’s lemma, for (Hλ) to hold, it is sufficient that the Yosida
approximation Aλ obeys a linear growth condition of the form lim supλ↓0∥Aλ(x)∥ ≤ C(1 + ∥x∥) for all x ∈ H.
For instance, in light of [9, Proposition 23.43(i)], the last linear growth condition holds if dom(A) = H and∥∥A0(x)

∥∥ ≤ C(1 + ∥x∥) for all x ∈ H, where A0(x) is the minimal norm element of A(x). Note that to control
the linear growth of Aλ(x) through that of A0(x), [9, Corollary 23.46(ii)] tells us that the domain condition
dom(A) = H cannot be removed since ∥Aλ(x)∥ ↑ +∞ as λ ↓ 0 for x ∈ H \ dom(A). A typical case of interest in
the setting of non-smooth optimization, which is at the heart of this paper, is when A is the subdifferential of a
globally Lipschitz continuous convex function. By classical properties of the Yosida approximation, we know that

(∂g(x))λ = ∇gλ(x) = 1
λ

(x− proxλg(x)),

where gλ is the Moreau envelope of g with parameter λ > 0. If g is convex, continuous, and its subgradient has
linear growth, then (Hλ) is satisfied by ∂g. These examples cover a wealth of functions encountered in practice
such as in machine learning and signal processing.

We insist, however, on the fact that these conditions are only sufficient but not necessary and (Hλ) can be
verified beyond this case; see for instance the product structure of A and σ studied in [27] and specialized to
normal cones in [34, Remark 3.3(ii)].

Although the existence of a solution to (SDI0) was established in [34], uniqueness was not addressed. In the
following theorem, we provide conditions under which uniqueness also holds for such SDI. The proof is given in
Subsection A.4.

▶ Theorem 8. Consider (SDI0), where A and (b, σ) satisfy the assumption (H0(A)) and (H0(b, σ)), respectively.
Additionally, suppose that A satisfy (Hλ) and let ν ≥ 2 such that X0 ∈ Lν(Ω;H) and is F0-measurable. Then,
there exists a unique solution (X, η) ∈ Sν

H[t0] × Aloc([t0,+∞[;H) of (SDI0).

▶ Corollary 9. Consider (SDEλ), where A and (b, σ) satisfy the assumption (H0(A)) and (H0(b, σ)), respectively.
Additionally, let us consider that A satisfy (Hλ) and let ν ≥ 2 such that X0 ∈ Lν(Ω;H) and is F0-measurable.
Then,

sup
λ>0

E

(
sup

t∈[t0,T ]
∥Xλ(t)∥ν

)
< +∞.

Proof. Since A−1(0) = A−1
λ (0) and Aλ is monotone, we replace η′ by Aλ(Xλ) in the proof of Theorem 8, then

we realize that the constant that bounds E
(
supt∈[t0,T ] ∥Xλ(t)∥ν

)
is independent from λ to conclude. ◀

Let us present our extension of Itô’s formula for a multi-valued drift, which plays a central role in the study
of SDIs.

▶ Proposition 10. Consider (SDI0) under the assumptions of Theorem (8). Let (X, η) ∈ Sν
H[t0]×Aloc([t0,+∞[;H)

be the unique solution of (SDI0), and let ϕ : [t0,+∞[ × H → R be such that ϕ( · , x) ∈ C1([t0,+∞[) for every
x ∈ H and ϕ(t, · ) ∈ C2(H) for every t ≥ t0. Then the process Y (t) = ϕ(t,X(t)), is an Itô Process such that for
all t ≥ 0:
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Y (t) = Y (t0) +
∫ t

t0

∂ϕ

∂t
(s,X(s)) ds+

∫ t

t0

⟨∇ϕ(s,X(s)), b(s,X(s)) − η′(s)⟩ ds

+
∫ t

t0

⟨σ⋆(s,X(s))∇ϕ(s,X(s)), dW (s)⟩ + 1
2

∫ t

t0

tr[σ(s,X(s))σ⋆(s,X(s))∇2ϕ(s,X(s))] ds, (6)

where η′(t) ∈ A(X(t)) a.s. for almost all t ≥ t0. Moreover, if E[Y (t0)] < +∞, and if for all T > t0

E

(∫ T

t0

∥σ⋆(s,X(s))∇ϕ(s,X(s))∥2 ds
)
< +∞,

then
∫ t

t0
⟨σ⋆(s,X(s))∇ϕ(s,X(s)), dW (s)⟩ is a square-integrable continuous martingale and

E[Y (t)] = E[Y (t0)] + E
(∫ t

t0

∂ϕ

∂t
(s,X(s)) ds

)
+ E

(∫ t

t0

⟨∇ϕ(s,X(s)), b(s,X(s)) − η′(s)⟩ ds
)

+ 1
2E
(∫ t

t0

tr[σ(s,X(s))σ⋆(s,X(s))∇2ϕ(s,X(s))] ds
)
. (7)

Proof. The unique solution (X, η) ∈ Sν
H[t0] × Aloc([t0,+∞[;H) of (SDI0) satisfies (by definition) the following

equation: X(t) = X0 +
∫ t

t0

[b(s,X(s)) − η′(s)] ds+
∫ t

t0

σ(s,X(s)) dW (s), t > t0,

X(t0) = X0.

(8)

and η′(s) ∈ A(X(s)) for almost all t ≥ 0 a.s.. Then, (8) is an Itô process with drift s 7→ b(s,X(s)) − η′(s) and
diffusion s 7→ σ(s,X(s)). Consequently, we can apply the classical Itô’s formula (see [20, Section 2.3]) to obtain
the desired. ◀

3.2 Almost sure weak convergence of the trajectory
We consider f + g (called the potential) and study the dynamic (SDI) under the hypotheses (H0) (i.e. f ∈
C1,1

L (H) ∩ Γ0(H), g ∈ Γ0(H)) and (H). Recall the definitions of σ∗ and σ∞(t) from (1). Throughout the rest of
the paper, we use the notation:

F (x) def= f(x) + g(x),

Σ(t, x) def= σ(t, x)σ(t, x)⋆,

SF
def= argmin(F ).

Our first main result establishes almost sure weak convergence of X(t) to a random variable taking values
in SF . The proof relies on Lyapunov-type arguments and the use of Barbalat’s Lemma and Opial’s Lemma.
While these tools are classical in the deterministic setting, applying them in a stochastic framework requires
particular care. In our case, this involves working almost surely and leveraging the properties of Itô’s formula
and Robbins–Siegmund lemma (see Theorem 39). The overall strategy aligns with the approach used in [30,
Theorem 3.1] (restated in Theorem 3), and extends that result to the non-smooth setting.

The main challenge in this extension lies in justifying Itô’s formula and handling the selection curve
η′(t) ∈ ∂g(X(t)) a.s. The former is addressed through our specific notion of solution (see Definition 5 and
Proposition 10), while the latter is of a more technical nature and is treated in detail in the proof. We now state
the result precisely.

▶ Theorem 11. Consider F = f + g and σ satisfying (H0) and (H) respectively. Suppose further that ∂g
verifies (Hλ). Let ν ≥ 2, t0 ≥ 0, and consider the dynamic (SDI) with initial data X0 ∈ Lν(Ω;H), i.e.:{

dX(t) ∈ −∂F (X(t)) dt+ σ(t,X(t)) dW (t),
X(t0) = X0,

(9)

where W is a K-valued cylindrical Brownian motion. Then, there exists a unique solution (in the sense of
Theorem 8) (X, η) ∈ Sν

H[t0] × Aloc([t0,+∞[;H).
Moreover, if σ∞ ∈ L2([t0,+∞[), then the following holds:
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i. E[supt≥t0∥X(t)∥ν ] < +∞.
ii. ∀ x⋆ ∈ SF , limt→+∞∥X(t) − x⋆∥ exists a.s. and supt≥t0∥X(t)∥ < +∞ a.s..
iii. If g is continuous, then ∀ x⋆ ∈ SF , ∇f(x⋆) is constant, limt→∞∥∇f(X(t)) − ∇f(x⋆)∥ = 0 a.s. for any

x⋆ ∈ SF ,and∫ +∞

t0

F (X(t)) − minF dt < +∞.

iv. If iii holds, then there exists an SF -valued random variable X⋆ such that w-limt→+∞ X(t) = X⋆.

Proof. i. Directly from Theorem 8.

ii. Since F is convex, we first notice that SF = (∂F )−1(0). Now let us consider (X, η) ∈ Sν
H[t0]×Aloc([t0,+∞[;H)

be the unique solution of (SDI0) given by Theorem 8, and ϕ(x) = ∥x−x⋆∥2

2 , where x⋆ ∈ SF . Then by Itô’s formula

ϕ(X(t)) = ∥X0 − x⋆∥2

2︸ ︷︷ ︸
ξ=ϕ(X0)

+ 1
2

∫ t

t0

tr[Σ(s,X(s)) ds]︸ ︷︷ ︸
At

−
∫ t

t0

⟨η′(s) + ∇f(X(s)), X(s) − x⋆⟩ ds︸ ︷︷ ︸
Ut

+
∫ t

t0

⟨σ⋆(s,X(s))(X(s) − x⋆), dW (s)⟩︸ ︷︷ ︸
Mt

. (10)

Let us observe that, since ν ≥ 2, we have that E(supt≥t0∥X(t)∥2) < +∞. Moreover, since σ∞ ∈ L2([t0,+∞[)
we have

E
(∫ +∞

t0

∥σ⋆(s,X(s))(X(s) − x⋆)∥2 ds
)

≤ E
(

sup
t≥t0

∥X(t) − x⋆∥2
)∫ +∞

t0

σ2
∞(s) ds < +∞.

Therefore Mt is a square-integrable continuous martingale. It is also a continuous local martingale (see [29,
Theorem 1.3.3]), which implies that E(Mt) = 0.

Moreover, since F is a convex function, then ∂F is a monotone operator. On the other hand η′(t) ∈ ∂g(X(t))
a.s. for almost all t ≥ t0, so

⟨η′(t) + ∇f(X(t)), X(t) − x⋆⟩ ≥ 0, a.s.for almost all t ≥ t0.

We have that At and Ut defined as in (10) are two continuously adapted increasing processes with A0 = U0 = 0
a.s.. Since ϕ(X(t)) is nonnegative and supx∈H∥σ( · , x)∥HS ∈ L2([t0,+∞[), we deduce that limt→+∞ At < +∞.
Then, we can use Theorem 39 to conclude that∫ +∞

t0

⟨η′(t) + ∇f(X(t)), X(t) − x⋆⟩ dt < +∞ a.s. (11)

and

∀ x⋆ ∈ SF , ∃ Ωx⋆ ∈ F , such that P(Ωx⋆) = 1 and lim
t→+∞

∥X(ω, t) − x⋆∥ exists ∀ ω ∈ Ωx⋆ . (12)

Since H is separable, there exists a countable set Z ⊆ SF , such that cl(Z) = SF (where cl stands for the closure
of the set). Let Ω̃ =

⋂
z∈Z Ωz. Since Z is countable, a union bound shows

P(Ω̃) = 1 − P

(⋃
z∈Z

Ωc
z

)
≥ 1 −

∑
z∈Z

P(Ωc
z) = 1.

For arbitrary x⋆ ∈ SF , there exists a sequence (zk)k∈N ⊆ Z such that limk→∞ zk = x⋆. In view of (12), for every
k ∈ N there exists τk : Ωzk

→ R+ such that

lim
t→+∞

∥X(ω, t) − zk∥ = τk(ω), ∀ ω ∈ Ωzk
. (13)

Now, let ω ∈ Ω̃. Since Ω̃ ⊂ Ωzk
for any k ∈ N, and using the triangle inequality and (13), we obtain that

τk(ω) − ∥zk − x⋆∥ ≤ lim inf
t→+∞

∥X(ω, t) − x⋆∥ ≤ lim sup
t→+∞

∥X(ω, t) − x⋆∥ ≤ τk(ω) + ∥zk − x⋆∥.
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Now, passing to k → +∞, we deduce

lim sup
k→+∞

τk(ω) ≤ lim inf
t→+∞

∥X(ω, t) − x⋆∥ ≤ lim sup
t→+∞

∥X(ω, t) − x⋆∥ ≤ lim inf
k→+∞

τk(ω),

whence we deduce that limk→+∞ τk(ω) exists on the set Ω̃ of probability 1, and in turn

lim
t→+∞

∥X(ω, t) − x⋆∥ = lim
k→+∞

τk(ω).

Let us recall that there exists Ωcont ∈ F such that P(Ωcont) = 1 and X(ω, · ) is continuous for every
ω ∈ Ωcont. Now let x⋆ ∈ SF arbitrary, since the limit exists, for every ω ∈ Ω̃ ∩ Ωcont there exists T (ω) such
that ∥X(ω, t) − x⋆∥ ≤ 1 + limk→+∞ τk(ω) for every t ≥ T (ω). Besides, since X(ω, · ) is continuous, by Bolzano’s
theorem

sup
t∈[0,T (ω)]

∥X(ω, t)∥ = max
t∈[0,T (ω)]

∥X(ω, t)∥ def= h(ω) < +∞.

Therefore, supt≥t0∥X(ω, t)∥ ≤ max{h(ω), 1 + limk→+∞ τk(ω) + ∥x⋆∥} < +∞.

iii. Let Nt =
∫ t

t0
σ(s,X(s)) dW (s). This is a continuous martingale (w.r.t. the filtration Ft), which verifies

E(∥Nt∥2) = E
(∫ t

t0

∥σ(s,X(s))∥2
HS ds

)
≤ E

(∫ +∞

t0

σ2
∞(s) ds

)
< +∞, ∀ t ≥ t0.

According to Theorem 38, we deduce that there exists a H-valued random variable N∞ w.r.t. F∞, and which
verifies: E(∥N∞∥2) < +∞, and there exists ΩN ∈ F such that P(ΩN ) = 1 and

lim
t→+∞

Nt(ω) = N∞(ω) for every ω ∈ ΩN .

On the other hand, since x⋆ ∈ (∂F )−1(0) = (∇f + ∂g)−1(0), then −∇f(x⋆) ∈ ∂g(x⋆). Let T > t0 such that
η′(t) ∈ ∂g(X(t)) a.s., consequently,

⟨η′(t) + ∇f(X(t)), X(t) − x⋆⟩ = ⟨η′(t) − (−∇f(x⋆)), X(t) − x⋆⟩︸ ︷︷ ︸
≥0

+ ⟨∇f(X(t)) − ∇f(x⋆), X(t) − x⋆⟩

≥ ⟨∇f(X(t)) − ∇f(x⋆), X(t) − x⋆⟩

≥ 1
L

∥∇f(X(t)) − ∇f(x⋆)∥2
,

where ⟨η′(t) − (−∇f(x⋆)), X(t) − x⋆⟩ ≥ 0 by monotonicity of ∂g. Then by (11) we obtain∫ +∞

t0

∥∇f(X(t)) − ∇f(x⋆)∥2 dt < +∞ a.s.. (14)

Let ΩHS ∈ F be the event where (11) (and consequently (14)) is satisfied (P(ΩHS) = 1). Let Ωη ∈ F be the
event where η′(t) ∈ ∂g(X(t)) for almost all T > t0 (P(Ωη) = 1). Finally, let Ωconv

def= Ω̃ ∩ Ωcont ∩ ΩHS ∩ ΩN ∩ Ωη,
hence P(Ωconv) = 1. Let also ω ∈ Ωconv ⊆ ΩHS arbitrary, then

lim inf
t→+∞

∥∇f(X(ω, t)) − ∇f(x⋆)∥ = 0.

If also

lim sup
t→+∞

∥∇f(X(ω, t)) − ∇f(x⋆)∥ = 0,

then we conclude with the proof. Suppose by contradiction that there exists ω0 ∈ Ωconv such that

lim sup
t→+∞

∥∇f(X(ω0, t)) − ∇f(x⋆)∥ > 0.

Then, by Lemma 34, there exists δ(ω0) > 0 satisfying

0 = lim inf
t→+∞

∥∇f(X(ω0, t)) − ∇f(x⋆)∥ < δ(ω0) < lim sup
t→+∞

∥∇f(X(ω0, t)) − ∇f(x⋆)∥,
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and there exists (tk)k∈N ⊂ R+ such that limk→+∞ tk = +∞,

∥∇f(X(ω0, tk)) − ∇f(x⋆)∥ > δ(ω0) and tk+1 − tk > 1, ∀ k ∈ N.

Additionally, consider η′(ω0, t) ∈ ∂g(X(ω0, t)) for almost all T > t0. Since supt≥t0∥X(ω0, t)∥ < +∞, ∂g is
full domain, and the fact that ∂g maps bounded sets onto bounded sets, we have that there exists Cη(ω0) ≥ 0
such that ∥η′(ω0, t)∥2 ≤ Cη(ω0) for almost all T > t0.

We allow ourselves the abuse of notation X(t) def= X(ω0, t), η′(t) def= η′(ω0, t), Cη
def= Cη(ω0) and δ

def= δ(ω0)
during the rest of the proof from this point.

Let
C0

def= Cη + ∥∇f(x⋆)∥2;
C1

def= (2C0+1)2−1
C0

> 0;

ε ∈
]
0,min

{
δ2

4L2 , C1
}[

;

and C(ε) def=
√

C0ε+1−1
4C0

∈
]
0, 1

2
]
.

Note that this choice entails that the intervals ([tk, tk + C(ε)])k∈N are disjoint. On the other hand, according to
the convergence property of Nt and the fact that ∥∇f(X(t)) − ∇f(x⋆)∥ ∈ L2([t0,+∞[), there exists k′ > 0 such
that for every k ≥ k′

sup
t≥tk

∥Nt −Ntk
∥2 <

ε

4 and
∫ +∞

tk

∥∇f(X(t)) − ∇f(x⋆)∥2 dt < 1.

Also, we compute∫ t

tk

∥η′(s) + ∇f(X(s))∥2 ds ≤ 2
∫ t

tk

∥∇f(X(s)) − ∇f(x⋆)∥2 ds+ 2
∫ t

tk

∥η′(s) + ∇f(x⋆)∥2 ds

≤ 2 + 4C0(t− tk).

Furthermore, C(ε) was chosen such that C(ε) + 2C0C(ε)2 ≤ ε
8 . Besides for every k ≥ k′, t ∈ [tk, tk + C(ε)],

∥X(t) −X(tk)∥2 ≤ 2(t− tk)
∫ t

tk

∥η′(s) + ∇f(X(s))∥2 ds+ 2∥Nt −Ntk
∥2

≤ 4(t− tk) + 8C0(t− tk)2 + ε

2 ≤ ε.

Since ∇f is L-Lipschitz and L2ε ≤
(

δ
2
)2 by assumption on ε, we have that for every k ≥ k′ and t ∈ [tk, tk+C(ε)]

∥∇f(X(t)) − ∇f(X(tk))∥2 ≤ L2∥X(t) −X(tk)∥2 ≤
(
δ

2

)2
.

Therefore, for every k ≥ k′, t ∈ [tk, tk + C(ε)]

∥∇f(X(t)) − ∇f(x⋆)∥ ≥ ∥∇f(X(tk)) − ∇f(x⋆)∥ − ∥∇f(X(t)) − ∇f(X(tk))∥︸ ︷︷ ︸
≤ δ

2

≥ δ

2 .

Finally,∫ +∞

t0

∥∇f(X(s)) − ∇f(x⋆)∥2 ds ≥
∑
k≥k′

∫ tk+C(ε)

tk

∥∇f(X(s)) − ∇f(x⋆)∥2 ds

≥
∑
k≥k′

δ2C(ε)
4 = +∞,

which contradicts ∥∇f(X( · )) − ∇f(x⋆)∥ ∈ L2([t0,+∞[). So, for every ω ∈ Ωconv,

lim sup
t→+∞

∥∇f(X(ω, t)) − ∇f(x⋆)∥ = lim inf
t→+∞

∥∇f(X(ω, t)) − ∇f(x⋆)∥

= lim
t→+∞

∥∇f(X(ω, t)) − ∇f(x⋆)∥ = 0.
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On the other hand, since F is convex, by (11), we obtain∫ +∞

t0

F (X(t)) − minF dt < +∞, a.s.. (15)

Since supt≥t0 ∥X(t)∥ < +∞ a.s., and (∂F ) maps bounded sets onto bounded sets (since g is convex and
continuous), we can show that there exists L̃ > 0 such that

|F (X(t1)) − F (X(t2))| ≤ L̃∥X(t1) −X(t2)∥, ∀ t1, t2 ≥ t0, a.s..

Using the same technique as before, we can conclude that limt→+∞ F (X(t)) = minF a.s..

iv. Let ω ∈ Ωconv and X̃(ω) be a weak sequential limit point of X(ω, t). Equivalently, there exists an increasing
sequence (tk)k∈N ⊂ R+ such that limk→+∞ tk = +∞ and

w-lim
k→+∞

X(ω, tk) = X̃(ω).

Since limt→+∞ F (X(ω, t)) = minF and the fact that F is weakly lower semicontinuous (since it is convex and
continuous), we obtain directly that X̃(ω) ∈ SF . Finally, by Opial’s Lemma (see [32]) we conclude that there
exists X⋆(ω) ∈ SF such that

w-lim
t→+∞

X(ω, t) = X⋆(ω).

In other words, since ω ∈ Ωconv was arbitrary, there exists an SF -valued random variable X⋆ such that
w-limt→+∞ X(t) = X⋆ a.s.. ◀

3.3 Convergence rates of the objective
The following result, stated below, summarizes the global convergence rates in expectation satisfied by the
trajectories of (SDI), and it is a natural extension of [30, Theorem 3.2] to the non-smooth setting.

▶ Theorem 12. Consider the dynamic (SDI) where F = f + g and σ satisfy assumptions (H0) and (H).
Furthermore, assume that ∂g satisfies (Hλ) and that X0 ∈ L2(Ω;H) and is F0-measurable. The following
statements are satisfied by the unique solution trajectory X ∈ S2

H[t0] of (SDI):
i. Let F ◦X(t) def= t−1 ∫ t

t0
F (X(s)) ds and X(t) = t−1 ∫ t

t0
X(s) ds. Then

E
(
F (X(t)) − minF

)
≤ E

(
F ◦X(t) − minF

)
≤

E
(
dist(X0,SF )2)

2t + σ2
∗

2 , ∀ t > t0. (16)

Besides, if σ∞ is L2([t0,+∞[), then

E
(
F (X(t)) − minF

)
≤ E

(
F ◦X(t) − minF

)
= O

(
1
t

)
. (17)

ii. Moreover, if F ∈ Γµ(H) with µ > 0, then SF = {x⋆} and

E
(

∥X(t) − x⋆∥2
)

≤ E
(

∥X0 − x⋆∥2
)
e−µt + σ2

∗
µ
, ∀ t > t0. (18)

Besides, if σ∞ is non-increasing and vanishes at infinity, then:

E
(

∥X(t) − x⋆∥2
)

≤ E
(

∥X0 − x⋆∥2
)
e−µt + σ2

∗
µ
e

µt0
2 e− µt

2 + σ2
∞

(
t0 + t

2

)
, ∀ t > t0. (19)

Proof. By making use of the inequality

F (x) − minF ≤ ⟨y, x− x⋆⟩, for all y ∈ ∂F (x) and x⋆ ∈ SF , (20)

which is given by the convexity of F , and considering the anchor function defined by

ϕ(x) = 1
2∥x− x⋆∥2, for x⋆ ∈ SF ,

we apply Itô’s formula to ϕ(X(t)) and take expectation. Combining (20) with the result of Itô’s formula leads
to an integral equation governing the expected behavior of ϕ(X(t)), which can subsequently be leveraged to
establish convergence rates in expectation of the process. Since the arguments are essentially identical to those
of [30, Theorem 3.2], we refrain from reproducing the details here. ◀



14 SDIs and Tikhonov Regularization for Stochastic Convex Optimization

▶ Remark 13. In the deterministic setting, i.e., (DI), the quantity F (x(t)) − minF decreases monotonically and
one directly obtains the standard O(1/t), besides when F is strongly convex, we have linear convergence rate of
the distance to the unique minimizer, these convergence rates are obtained defining the same Lyapunov functions
as in Theorem 12, i.e., ϕ(x) = 1

2 ∥x−x⋆∥2 for x⋆ ∈ SF . By contrast, for the stochastic differential inclusion (SDI),
the main challenge we must overcome is that the term σ(t,X(t)) dW (t) generates both a martingale difference
noise and a quadratic variation term. We note that the martingale difference noise term vanishes after taking
expectation and that the quadratic variation term is controlled by uniform bounds on σ, leading to the bias
terms σ2

∗
2 (and σ2

∗
µ under strong convexity), moreover when σ∞ is square integrable, the bias terms vanishes over

time. These challenges, and the way they are addressed, are essential for extending the classical ODE-based
analysis to the stochastic setting. Naturally, setting σ ≡ 0 in (SDI) eliminates the stochastic terms, and all the
estimates in Theorem 12 reduce exactly to the classical bounds known for the deterministic subgradient flow.

4 Tikhonov regularization: Convergence properties for convex functions

It is important to provide insight into the technique of Tikhonov regularization. This allows us to pass from the
almost sure weak convergence towards the set of minimizers of the trajectory generated by (SDI0) to achieving
almost sure strong convergence of the trajectory generated by (SDI-TA), not only towards the set of minimizers
but to the minimal norm solution. The trade-off in order to achieve this is the proper tuning of the Tikhonov
parameter that depends on a local constant that could be hard to compute, besides that, we obtain slower
convergence rates of the objective, passing from O(t−1) to O(t−r +R(t)), where r < 1 and R(t) → 0 (defined
below in (37)).

4.1 Almost sure convergence of the trajectory to the minimal norm solution
Our second main result establish almost sure convergence of X(t) to x⋆ = PSF

(0) as t → +∞. It is based on a
subtle tuning of the Tikhonov parameter ε(t) formulated as conditions T1, T2, and T3 below. We know that
∥x⋆∥2 − ∥xε(t)∥2 tends to zero as t → +∞. By capitalizing on Proposition 23, we shall see in Theorem 24 that
the conditions T1, T2, and T3 are compatible for functions verifying Hölderian-type error bounds, which is the
case for Łojasiewicz functions (see Definition 16 and Proposition 18).

▶ Theorem 14. Consider the dynamic (SDI-TA) where F = f + g and σ satisfy the assumptions (H0) and (H),
respectively, furthermore assume that ∂g satisfy (Hλ). Let ν ≥ 2, and its initial data X0 ∈ Lν(Ω;H). Then,
there exists a unique solution X ∈ Sν

H[t0] of (SDI-TA). Let x⋆ def= PSF
(0) be the minimum norm solution, and

for ε > 0 let xε be the unique minimizer of Fε(x) def= F (x) + ε
2 ∥x∥2. Suppose that σ∞ ∈ L2([t0,+∞[), and that

ε : [t0,+∞[ → R+ satisfies the conditions:

T1. ε(t) → 0 as t → +∞;

T2.
∫ +∞

t0

ε(t) dt = +∞;

T3.
∫ +∞

t0

ε(t)
(
∥x⋆∥2 − ∥xε(t)∥2) dt < +∞.

Then we have

i.
∫ +∞

t0

ε(t)E[∥X(t) − x⋆∥2] dt < +∞.

ii. lim
t→+∞

∥X(t) − x⋆∥ exists a.s. and sup
t≥t0

∥X(t)∥ < +∞ a.s..

iii.
∫ +∞

t0

ε(t)∥X(t) − x⋆∥2 dt < +∞ a.s..

iv. s-lim
t→+∞

X(t) = x⋆ a.s.

▶ Remark 15. We note that assumptions T1 and T2 are the same as those required in the deterministic setting,
namely in Theorem 2. However, assumption T3 is new and can be viewed as the price for moving to the stochastic
case. This term appears in the proof of Theorem 2, specifically on the right-hand side of (40). While we could
recover Theorem 2 by directly assuming T3, this is unnecessary in the deterministic case. In the latter, one
deals with the differential inequality (40) to get the desired conclusion without relying on T3. In contrast, in the
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stochastic setting, we obtain an integral inequality that cannot be handled in the same way, as the stochasticity
removes some of the monotonicity structure inherent to the deterministic problem.

Proof. The existence and uniqueness of a solution X ∈ Sν
H[t0] follow directly from the fact that the conditions

of Theorem 8 are satisfied under (H0) and (H). The only subtlety to check is that supt≥t0 |ε(t)| < +∞, but this
can be assumed without loss of generality since ε(t) → 0 as t → +∞ (it might be necessary a redefinition of t0).

Our stochastic dynamic (SDI-TA) can be written equivalently as follows{
dX(t) ∈ −∂Fε(t)(X(t)) dt+ σ(t,X(t)) dW (t), t ≥ t0;
X(t0) = X0,

(SDIT)

i. Let us define the anchor function ϕ(x) = ∥x−x⋆∥2

2 . Since ∂g satisfy (Hλ), there exists a stochastic process
η̃ : Ω × [t0,+∞[ → H such that η̃(t) ∈ ∂Fε(t)(X(t)) a.s. for almost all t ≥ t0. Using Itô’s formula we obtain

ϕ(X(t)) = ∥X0 − x⋆∥2

2︸ ︷︷ ︸
ξ

+ 1
2

∫ t

t0

tr[Σ(s,X(s)) ds]︸ ︷︷ ︸
At

−
∫ t

t0

⟨η̃(s), X(s) − x⋆⟩ ds︸ ︷︷ ︸
Ut

+
∫ t

t0

⟨σ⋆(s,X(s))(X(s) − x⋆), dW (s)⟩︸ ︷︷ ︸
Mt

. (21)

Since X ∈ S2
H[t0] by Proposition 10, we have for every T > t0, that

E

(∫ T

t0

∥σ⋆(s,X(s))(X(s) − x⋆)∥2 ds
)

≤ E

(
sup

t∈[t0,T ]
∥X(t) − x⋆∥2

)∫ +∞

t0

σ2
∞(s) ds < +∞.

Therefore Mt is a square-integrable continuous martingale. It is also a continuous local martingale, which implies
that E(Mt) = 0.

Let us now take the expectation of (21). Using that

0 ≤ tr[Σ(s,X(s))] ≤ σ2
∞(s),

and (39) that we recall below

⟨y(t), X(t) − x⋆⟩ ≥ ε(t)ϕ(X(t)) + ε(t)
2
(
∥xε(t)∥2 − ∥x⋆∥2), (22)

where y : Ω × [t0,+∞[ → H is such that y(t) ∈ ∂Fε(t)(X(t)) a.s.. We obtain that

E(ϕ(X(t))) +
∫ t

t0

ε(s)E(ϕ(X(s))) ds

≤ E

(
∥X0 − x⋆∥2

2

)
+ 1

2

∫ t

t0

σ2
∞(s) ds+ 1

2

∫ t

t0

ε(s)
(
∥x⋆∥2 − ∥xε(s)∥2)ds.

According to our assumptions, we can write briefly the above relation as

E(ϕ(X(t))) +
∫ t

t0

ε(s)E(ϕ(X(s))) ds ≤ Υ(t), (23)

with Υ a nonnegative function defined by

Υ(t) def= E

(
∥X0 − x⋆∥2

2

)
+ 1

2

∫ t

t0

σ2
∞(s) ds+ 1

2

∫ t

t0

ε(s)
(
∥x⋆∥2 − ∥xε(s)∥2) ds

which satisfies limt→+∞ Υ(t) = Υ∞ < +∞ by the fact that X0 ∈ L2(Ω;H), σ∞ ∈ L2([t0,+∞[) and T3.
Let us integrate the above relation (23). We set

θ(t) def=
∫ t

t0

E(ϕ(X(s))) ds.
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We have θ̇(t) = E(ϕ(X(t))) and (23) is written equivalently as

θ̇(t) +
∫ t

t0

ε(s)θ̇(s) ds ≤ Υ(t). (24)

Equivalently

1
ε(t)

d
dt

∫ t

t0

ε(s)θ̇(s) ds+
∫ t

t0

ε(s)θ̇(s) ds ≤ Υ(t), (25)

that is

d
dt

∫ t

t0

ε(s)θ̇(s) ds+ ε(t)
∫ t

t0

ε(s)θ̇(s) ds ≤ ε(t)Υ(t). (26)

With m(t) def= exp
∫ t

t0
ε(s) ds, we get

d
dt

(
m(t)

∫ t

t0

ε(s)θ̇(s) ds
)

≤ ε(t)m(t)Υ(t). (27)

After integration we get∫ t

t0

ε(s)θ̇(s) ds ≤ 1
m(t)

∫ t

t0

m′(s)Υ(s) ds. (28)

Since Υ is bounded by assumption T3, we get

sup
t≥t0

E
[∫ t

t0

ε(s)∥X(s) − x⋆∥2
]

ds < +∞.

Equivalently∫ +∞

t0

E
[
∥X(t) − x⋆∥2

]
ε(t) dt < +∞.

The assumption T2 guarantees that the above inequality forces E
[
∥X(t) − x⋆∥2] to tend to zero.

ii. Consider (21), we define

Ãt
def= At +

∫ t

t0

ε(s)
2 (∥x⋆∥2 − ∥xε(s)∥2) ds, and Ũ t

def= Ut +
∫ t

t0

ε(s)
2 (∥x⋆∥2 − ∥xε(s)∥2) ds.

By (22) we have that Ũ t ≥
∫ t

t0
ε(s)ϕ(X(s)) ds ≥ 0. We can rewrite (21) as

ϕ(X(t)) = ξ + Ãt − Ũ t +Mt.

Since σ∞ ∈ L2([t0,+∞[) and T3, then limt→+∞ Ãt < +∞. Let us observe that, sinceX ∈ S2
H[t0] by Proposition 10,

we have for every T > t0 that

E

(∫ T

t0

∥σ⋆(s,X(s))(X(s) − x⋆)∥2 ds
)

≤ E

(
sup

t∈[t0,T ]
∥X(t) − x⋆∥2

)∫ +∞

t0

σ2
∞(s) ds < +∞.

Therefore, Mt is a square-integrable continuous martingale. It is also a continuous local martingale (see [29,
Theorem 1.3.3]), which implies that E(Mt) = 0.

By Theorem 39, we get that limt→+∞ ∥X(t) − x⋆∥ exists a.s. and that limt→+∞ Ũ t < +∞ a.s..

iii. Using the lower bound we had on Ũ t, we obtain∫ +∞

t0

ε(t)∥X(t) − x⋆∥2 dt < +∞.

iv. By the previous item, T2, and Lemma 32 we conclude that limt→+∞ X(t) = x⋆ a.s..

This completes the proof. ◀
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4.2 Practical situations
We will consider situations where the three conditions T1, T2 and T3 are satisfied simultaneously. These are
properties of the viscosity curve that we will now study. The difficulty comes from T2 and T3 which are a
priori not compatible. Indeed, T2 requires the parameter ε(t) to converge slowly towards zero for the Tikhonov
regularization to be effective. On the other hand in T3 the parameter ε(t) must converge sufficiently quickly
towards zero so that the term

(
∥x⋆∥2 − ∥xε(t)∥2) converges to zero fairly quickly, and thus corrects the infinite

value of the integral of ε(t).

4.2.1 Łojasiewicz property
Our first objective is to evaluate the rate of convergence towards zero of

(
∥x⋆∥2 − ∥xε∥2) as ε → 0. Using the

differentiability properties of the viscosity curve is not a good idea, because the viscosity curve can be of infinite
length in the case of a general differentiable convex function, see [44]. To overcome this difficulty, we assume
that F = f + g satisfies the Łojasiewicz property. This basic property has its roots in algebraic geometry, and it
essentially captures a domination inequality between the objective value and its (sub)gradient.

▶ Definition 16 (Łojasiewicz inequality). Let f : H → R be a convex function with S ≠ ∅ and q ∈ [0, 1[. f satisfies
the Łojasiewicz inequality on S with exponent q if there exists r > min f and µ > 0 such that:

µ(f(x) − min f)q ≤
∥∥∂0f(x)

∥∥, ∀ x ∈ [min f < f < r], (29)

where we recall ∥∂0f(x)∥ = minu∈∂f(x) ∥u∥. We will write f ∈ Lq(S).

Error bounds have also been successfully applied to various branches of optimization, and in particular to
complexity analysis. Of particular interest in our setting is the Hölderian error bound.

▶ Definition 17 (Hölderian error bound). Let f : H → R be a proper function such that S ≠ ∅. Then f satisfies a
Hölderian (or power-type) error bound inequality on S with exponent p ≥ 1, if there exists γ > 0 and r > min f
such that:

f(x) − min f ≥ γ dist(x,S)p, ∀ x ∈ [min f ≤ f ≤ r], (30)

and we will write f ∈ EBp(S).

A deep result due to Łojasiewicz states that for arbitrary continuous semi-algebraic functions, the Hölderian
error bound inequality holds on any compact set, and the Łojasiewicz inequality holds at each point. In fact, for
convex functions, the Łojasiewicz property and Hölderian error bound are actually equivalent.

▶ Proposition 18. Assume that f ∈ Γ0(H) with S ≠ ∅. Let q ∈ [0, 1[, p def= 1
1−q ≥ 1 and r > min f . Then f

verifies the Łojasiewicz inequality with exponent q (see (29)) at [min f < f < r] if and only if the Hölderian
error bound with exponent p (see (30)) holds on [min f < f < r].

Proof. This is a consequence of [11, Theorem 5]. ◀

4.2.2 Quantitative stability of variational systems
Our first objective is to evaluate the rate of convergence towards zero of

(
∥x⋆∥2 − ∥xε∥2) as ε → 0. Using the

differentiability properties of the viscosity curve is not a good idea, because the viscosity curve can be of infinite
length in the case of a general differentiable convex function, see [44]. To overcome this difficulty, we assume that
F = f + g satisfies the Łojasiewicz property (see (29)). This basic property has its roots in algebraic geometry,
and it essentially describes a relationship between the objective value and its gradient (or subgradient). Once
this is assumed, we will need tools from variational analysis to conclude.

We start by recalling the notion of bounded Hausdorff distance for functions introduced in [7] to study
stability of minimization problems. All the results of this section until Theorem 24 do not need separability of H.

For a set C ⊂ H × R and ρ ≥ 0, we denote Cρ
def= C ∩ ρB, where B is the unit ball in the box norm on H × R.

For two sets C,D ⊂ H × R, the excess function of C on D is defined as

e(C,D) def= sup
x∈C

dist(x,D).



18 SDIs and Tikhonov Regularization for Stochastic Convex Optimization

For any ρ ≥ 0, the ρ-Hausdorff distance between C and D is defined as

hausρ(C,D) def= max(e(Cρ, D), e(Dρ, C)).

For ρ = +∞, we recover the Hausdorff distance. A metrizable topology is naturally attached to the ρ-Hausdorff
distance. When H is finite dimensional, the convergence with respect to the ρ-Hausdorff distances is nothing but
the classical Painlevé–Kuratowski set-convergence.

▶ Definition 19. For ρ ≥ 0, the ρ-Hausdorff (epi-)distance between two functions f, g : H → R ∪ {+∞} is

hausρ(f, g) def= hausρ(epi f, epi g).

This device was extended in [6] to set-valued operators by identifying them with their graphs.

▶ Definition 20. For ρ ≥ 0, the ρ-Hausdorff distance between two operators A,B : H ⇒ H is

hausρ(A,B) def= hausρ(gphA, gphB),

where the unit ball is that of H × H equipped with the box norm.

We recall the following two results that have been obtained in [6, 7] and that will be important to prove our
quantitative stability result. It is a particular case of [6, Proposition 1.2] with ρ = 0, λ = 1.

▶ Proposition 21. Let A,B : H ⇒ H be two maximal monotone operators, then

∥JA(0) − JB(0)∥ ≤ 3 haus∥JA(0)∥(A,B),

where JA
def= (I +A)−1, JB

def= (I +B)−1 are the resolvent of the operators A and B, respectively.

The second abstract result is the equivalence of the uniform structure on the class of subdifferentials of
convex lsc functions between the bounded Hausdorff distance and the uniform convergence on bounded sets of
resolvents.

▶ Proposition 22 ([7, Theorem 5.2]). Let f and g ∈ Γ0(H). To any ρ > max(dist(0, epi(f)),dist(0, epi(g))) there
correspond some constants κ and ρ0 (that depend on ρ) such that

hausρ(∂f, ∂g) ≤ κ(hausρ0(f, g))
1
2 .

The following proposition is new and is a consequence of the previous two results. Since this is not obvious,
we are going to present the whole proof.

▶ Proposition 23. Let f ∈ Γ0(H) be a function such that S def= argminH(f) ̸= ∅, and that f ∈ EBp(S). Let also
x⋆ = PS(0) and for ε > 0, let xε be the unique minimizer of fε(x) = f(x) + ε

2 ∥x∥2. Then there exists C0, ε
⋆ > 0

such that

∥xε − x⋆∥ ≤ C0ε
1

2p , ∀ ε ∈ ]0, ε⋆]. (31)

Consequently, there exists C > 0 such that

∥x⋆∥2 − ∥xε∥2 ≤ Cε
1

2p , ∀ ε ∈ ]0, ε⋆]. (32)

Proof. Let φε
def= 1

ε (f − min f). By optimality of xε, we have

xε = (I + ∂φε)−1(0) = J∂φε
(0).

We have that φε increases to ιS as ε decreases to zero, and

x⋆ = PS(0) = (I + ∂ιS)−1(0) = J∂ιS (0),

where ιS : H → {0,+∞} is the indicator function of S, that takes 0 on S and +∞ otherwise. Therefore

∥xε − x⋆∥ = ∥(I + ∂φε)−1(0) − (I + ∂ιS)−1(0)∥ = ∥J∂φε
(0) − J∂ιS (0)∥.
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Applying Proposition 21 with A = ∂φε, and B = ∂ιS , we have that

∥xε − x⋆∥ ≤ 3 hausρ(∂φε, ∂ιS),

for ρ > ∥x⋆∥. Now, since max(dist(0, epi(φε)),dist(0, epi(ιS))) ≤ ∥x⋆∥, we fix ρ ≥ ∥x⋆∥, and Proposition 22
entails that there exists constants κ, ρ0 > 0 (depending on ρ) such that

∥xε − x⋆∥ ≤ 3κ(hausρ0(φε, ιS))
1
2 . (33)

To complete our proof we just need to bound the right hand side of the last inequality. Observe first that since
ιS ≥ φε we just need to compute e((epiφε)ρ0 , epi ιS) = e((epiφε)ρ0 ,S × R+). It then follows from Definition 19
that

hausρ0(φε, ιS) = max
(x1,r1)∈epi(φε)∩ρ0B

min
(x2,r2)∈S×R+

max(∥x1 − x2∥, |r1 − r2|),

where B is the unit ball of the max norm on H × R+. Besides, the inner minimization problem is bounded above
by taking r2 = r1. Hence,

hausρ0(φε, ιS) ≤ max
(x1,r1)∈epi(φε)∩ρ0B

dist(x1,S) = max
x1∈[min f≤f≤εr1+min f ],∥x1∥≤ρ0,r1≤ρ0

dist(x1,S)

≤ max
x∈[min f≤f≤ερ0+min f ],∥x∥≤ρ0

dist(x,S).

We will now invoke the assumption that f ∈ EBp(S). By the latter, there exists γ > 0, r > min f such that (30)
holds. Now choose ε0

def= r−min f
ρ0

> 0. We then have for any ε ∈ ]0, ε0] that

hausρ0(φε, ιS) ≤ max
x∈[0≤f−min f≤ερ0]

dist(x,S) ≤ max
x∈[0≤f−min f≤ερ0]

(
f(x) − min f

γ

) 1
p

≤
(
ρ0

γ

) 1
p

ε
1
p , (34)

where we have used that ρ0ε ≤ ρ0ε0 ≤ r − min f so that (30) applies. Combining (33) and (34) gives (31) where
C0 = 3κ

(
ρ0
γ

) 1
2p .

On the other hand, from Theorem 1.i and the triangle inequality, we have

∥x⋆∥2 − ∥xε∥2 ≤ 2∥x⋆∥∥xε − x⋆∥, ∀ ε ≥ 0.

Taking ε⋆ = ε0 and C = 2C0∥x⋆∥ and using (31), we get (32). ◀

The previous proposition was the key to deriving a proper tuning of the parameter ε(t) that satisfies all
the conditions presented in Theorem 14. In the following, we make this precise, recalling that the setting of
Theorem 14 happened in the separable real Hilbert space H, and that the previous proposition remains valid
without separability.

▶ Theorem 24. Consider the setting of Theorem 14 and suppose that F = f + g ∈ EBp(SF ). Then taking the
Tikhonov parameter ε(t) = 1

tr with

1 ≥ r >
2p

2p+ 1 ,

then the three conditions T1, T2, and T3 of Theorem 14 are satisfied simultaneously. In particular, the solution
X ∈ Sν

H[t0] of (SDI-TA) is unique and we get almost sure (strong) convergence of X(t) to the minimal norm
solution x⋆ = PSF

(0).

Proof. It is direct to check T1 and T2. In order to check T3, let ε⋆ > 0 from Proposition 23 and T ⋆ =
max

(
t0,
( 1

ε⋆

) 1
r

)
, then we have

∥x⋆∥2 − ∥xε(t)∥2 ≤ C
1
t

r
2p
, ∀ t ≥ T ⋆.

Therefore,∫ +∞

t0

∥x⋆∥2 − ∥xε(t)∥2

tr
dt =

∫ T ⋆

t0

∥x⋆∥2 − ∥xε(t)∥2

tr
dt︸ ︷︷ ︸

I1

+
∫ +∞

T ⋆

∥x⋆∥2 − ∥xε(t)∥2

tr
dt︸ ︷︷ ︸

I2

.
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Is clear that I1 is bounded (by T ⋆t−r
0 ∥x⋆∥2 for instance). Hence T3 holds under the condition that∫ +∞

T ⋆

1
tr

C

t
r

2p
dt < +∞,

which is true when r + r
2p > 1, whence we deduce our condition 1 ≥ r > 2p

2p+1 . ◀

4.3 Convergence rates of the objective in the smooth case
In this subsection, we turn our attention to the smooth case (i.e. g ≡ 0) and derive explicit global convergence
rates in expectation. Recall that in the previous subsections, we established almost sure strong convergence
with Tikhonov regularization, but did not obtain any convergence rate. To fill this gap, at least in the smooth
setting, we first revisit the result of [2] which provides rates in the deterministic case. We then adapt their proof
strategy–together with the stochastic analysis tools developed earlier– to control the additional variance term
and obtain the decay of the objective value and distance to the minimal norm solution in expectation.

▶ Theorem 25 ([2, Theorem 5]). Take ε(t) = 1
tr and 0 < r < 1. Let us consider (DI-TA) in the case where

g ≡ 0, i.e.,

ẋ(t) + ∇f(x(t)) + 1
tr
x(t) = 0. (35)

Let x : [t0,+∞[ → H be a solution trajectory of (DI-TA). For ε > 0 define fε(x) def= f(x) + ε
2 ∥x∥2, let xε be

the unique minimizer of fε, and consider the Lyapunov function

E(t) def= fε(t)(x(t)) − fε(t)(xε(t)) + ε(t)
2 ∥x(t) − xε(t)∥2.

Then, we have :
i. E(t) = O

( 1
t

)
as t → +∞;

ii. f(x(t)) − min(f) = O
( 1

tr

)
as t → +∞;

iii. ∥x(t) − xε(t)∥2 = O
( 1

t1−r

)
as t → +∞.

In light of Proposition 23, we can now characterize the rate at which the trajectory solution of (DI-TA)
converges to the minimum norm solution. To the best of our knowledge, this convergence rate estimate is new.

▶ Corollary 26. Consider the setting of Theorem 25, then we have strong convergence of x(t) to the minimum
norm solution x⋆ = PS(0). Moreover, if f ∈ EBp(S), then

∥x(t) − x⋆∥2 =

O
(

1
t

r
p

)
, if r ∈

]
0, p

p+1

[
O
( 1

t1−r

)
, if r ∈

[
p

p+1 , 1
[ as t → +∞. (36)

Proof. Combine the third item of Theorem 25 and Proposition 23. ◀

▶ Remark 27. We observe that the convergence rate is governed by a piecewise function, attaining its optimum
when r = p

p+1 , in which case we obtain

∥x(t) − x⋆∥2 = O
(

1
t

1
p+1

)
, as t → +∞.

We also remark that this is strictly slower than the convergence rate of (deterministic) gradient flow when f

satisfies a Hölderian error bound, in which case we have

dist2(x(t),S) = O
(

1
t

2
p

)
, as t → +∞.

This reflects the trade-off for ensuring strong convergence to the minimal norm solution with the Tikhonov
regularization term ε(t) = 1

t
p

p+1
, p ≥ 1.

We are ready now to state the main theorem of this subsection, which establishes global convergence rates
in expectation for the trajectories of (SDI-TA) when g ≡ 0. Moreover, this result recovers the deterministic
convergence rates of Theorem 25 and Corollary 26. Indeed, by setting σ2

∞ = 0, the stochastic term vanishes and
we retrieve exactly the bounds of the deterministic case.
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▶ Theorem 28. Consider (SDI-TA) with g ≡ 0, ε(t) = 1
tr where 0 < r < 1, i.e.{

dX(t) = −∇f(X(t)) dt− 1
trX(t) dt+ σ(t,X(t)) dW (t), t ≥ t0;

X(t0) = X0.
(SDE-TA)

where the initial data X0 ∈ Lν(Ω;H) for ν ≥ 2. Assume that f ∈ Γ0(H) ∩ C2
L(H) with S def= argmin(f) ̸= ∅, and

f ∈ EBp(S). Suppose also that σ satisfies (H), and that σ∞ ∈ L2([t0,+∞[) and is non-increasing. For ε > 0, let
fε(x) def= f(x) + ε

2 ∥x∥2, xε be the unique minimizer of fε. Let x⋆ def= PS(0). Consider the energy function

E(t, x) def= fε(t)(x) − fε(t)(xε(t)) + ε(t)
2 ∥x− xε(t)∥2,

and for t1 > t0,

R(t) def= e− t1−r

1−r

∫ t

t1

e
s1−r

1−r σ2
∞(s) ds. (37)

Then, the solution trajectory X ∈ Sν
H[t0] is unique, and the following holds:

i. R converges to 0 at the rate,

R(t) = O
(

exp(−tr(1 − 2−r)) + trσ2
∞

(
t1 + t

2

))
.

If, moreover, σ2
∞(t) = O(t−α) for α > 1, then R(t) = O(tr−α).

ii. E[E(t,X(t))] = O
( 1

t +R(t)
)
.

iii. E[f(X(t)) − min(f)] = O
( 1

tr +R(t)
)
. In addition, if σ2

∞(t) = O(t−α) for α > 1, then

E[f(X(t)) − min(f)] =
{

O
( 1

tα−r

)
, if α ∈ ]1, 2r[;

O
( 1

tr

)
, if α ≥ 2r.

iv. E[∥X(t)−xε(t)∥2] = O
( 1

t1−r + trR(t)
)
, which goes to 0 as t → +∞ if r ∈ ]0, 1

2 ]. If, moreover, σ2
∞(t) = O(t−α)

for α > max{2r, 1}, then

E[∥X(t) − xε(t)∥2] =
{

O
( 1

tα−2r

)
, if α ∈ ]max{2r, 1}, r + 1[;

O
( 1

t1−r

)
, if α ≥ r + 1.

v. E[∥X(t) − x⋆∥2] = O
(

1
t1−r + 1

t
r
p

+ trR(t)
)
, which goes to 0 as t → +∞ if r ∈ ]0, 1

2 ]. In addition, if
σ2

∞(t) = O(t−α) for α > max{2r, 1}, then

E[∥X(t) − x⋆∥2] = O
(

1
t1−r

+ 1
t

r
p

+ 1
tα−2r

)
.

In particular,

E[∥X(t) − x⋆∥2] =



O
(

1
t1−r

)
, if r ∈

]
p

p+ 1 , 1
[
, α > r + 1;

O
(

1
t

r
p

)
, if r ∈

]
0, p

p+ 1

[
, α > max{1, r(2p+ 1)

p
};

O
(

1
tα−2r

)
, if r ∈

]
p

2p+ 1 , 1
[
, α ∈

(
max{2r, 1},min

{
r + 1, r(2p+ 1)

p

})
.

Proof. The existence and uniqueness of a solution was already stated in Theorem 14.
The first item is a direct consequence of Lemma 35, for the second one we recall that σ∞ ∈ L2([t0,+∞[) and

is non-increasing, and we proceed as follows:

R(t) = e− t1−r

1−r

∫ t1+t
2

t1

e
s1−r

1−r σ2
∞(s) ds+ e− t1−r

1−r

∫ t

t1+t
2

e
s1−r

1−r σ2
∞(s) ds

≤ e(
t0
2 )r

e−tr(1−2−r)
∫ +∞

t1

σ2
∞(s) ds+ σ2

∞

(
t1 + t

2

)
D 1

1−r ,1−r(t),



22 SDIs and Tikhonov Regularization for Stochastic Convex Optimization

where

Da,b(t) = e−atb

∫ t

0
easb

ds.

As a corollary of an upper bound of the Dawson integral shown in [31, Section 7.8], we have that

Da,b(t) ≤ 2
ab
t1−b, 0 < b ≤ 2, a > 0, t > 0,

thus we obtain

R(t) = O
(

exp(−tr(1 − 2−r)) + trσ2
∞

(
t1 + t

2

))
.

Since σ2
∞ is non-increasing and r < 1, we have

0 ≤ tσ2
∞(t) ≤ 2

∫ t

t
2

σ2
∞(u) du,

and the right hand side goes to 0 as t → +∞ since σ∞ ∈ L2([t0,+∞[) by assumption. Thus we obtain that
limt→∞ tσ2

∞(t) = 0 which proves claim i.
The remainder of the proof follows by applying Itô’s formula to (SDE-TA) with the function

ϕ(t, x) def= Φ(t)E(t, x) where Φ(t) def= exp
(∫ t

t1

s−r ds
)
,

and then taking expectation. Following similar computations as in [2, Theorem 3], we obtain

E[ϕ(t,X(t))] ≤ E[ϕ(t0, X0)] − ∥x⋆∥2
∫ t

t0

ε̇(s)Φ(s) ds+
∫ t

t0

E
[
tr[σ(s,X(s))σ⋆(s,X(s))∇2ϕ(s,X(s))]

]
ds

≤ E[ϕ(t0, X0)] − ∥x⋆∥2
∫ t

t0

ε̇(s)Φ(s) ds+
(
L+ 2t−r

0
) ∫ t

t0

Φ(s)σ2
∞(s) ds.

Dividing by Φ(t), we have equivalently that

E[E(t,X(t))] ≤ E[ϕ(t0, X0)]
Φ(t) − ∥x⋆∥2

Φ(t)

∫ t

t0

ε̇(s)Φ(s) ds+ (L+ 2t−r
0 )

Φ(t)

∫ t

t0

Φ(s)σ2
∞(s) ds

≤ E[ϕ(t0, X0)]
Φ(t) + ∥x⋆∥2

ρt
+ (L+ 2t−r

0 )
Φ(t)

∫ t

t0

Φ(s)σ2
∞(s) ds,

for ρ < 1
r (see the proof of [2, Theorem 5]). By definition 1

Φ(t)
∫ t

t0
Φ(s)σ2

∞(s) ds = R(t), and since 1
Φ(t) decays

exponentially, we conclude with the claim of item ii. Besides, by [2, Lemma 3], we have

f(x) − min f ≤ E(t, x) + ε(t)
2 ∥x⋆∥2 and ∥x− xε(t)∥2 ≤ E(t, x)

ε(t) .

Taking expectation and inserting the bound of ii, we obtain claims iii and iv. Finally, for item v, we combine iv
and Proposition 23. To conclude with the particular convergence rates, we plug in the derived rates for R(t)
obtained in i and the rate of σ2

∞(t). ◀

▶ Remark 29. In the finite-dimensional case, i.e., H = Rd (not necessarily K), we can weaken the assumption
f ∈ C2

L(H) to f ∈ C1,1
L (H) thanks to [30, Proposition 2.2].

▶ Remark 30. Comparing Theorem 28 to its deterministic counterpart Theorem 25 (see also Corollary 26),
one has the additional term R(t) that appears in each rate. This necessarily slows down the convergence rate
compared to the deterministic setting. But as expected, it is the price to be paid to account for stochastic noise
while ensuring convergence.
▶ Remark 31. Our result in Theorem 14 ensures that with the Tikhonov regularization, the solution trajectory
strongly converges in almost sure sense to the minimal norm solution, provided that the regularization coefficient
ε(t) is well chosen (verifies T1, T2 and T3), and the diffusion term decays fast enough. While it is easy to
choose ε(t) so that T1 and T2 hold, fulfilling T3 required more involved arguments, and for instance that f
verifies a Hölderian error bound. This also allowed to derive the (pointwise) convergence rates in expectation of
Theorem 28. These quantitative estimates reveal that there is a trade-off between the decay of ε(t) and that of
the diffusion term σ∞(t) in order to maintain convergence and have meaningful convergence rates. This is clearly
reflected in the form of the function R(t) in Theorem 28.i. For instance, mere square-integrability of σ∞(t) is not
sufficient as σ∞(t) must decrease at least as t−α, α > 1.
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5 Conclusion, Perspectives

The purpose of this work was to study the convergence properties of trajectories of subgradient-like flows
under stochastic errors in infinite dimensional separable real Hilbert spaces. The motivation stems from solving
non-smooth convex optimization problems with noisy subgradient oracles with vanishing variance. We have
shown important properties of these trajectories, such as the almost sure weak (resp. strong) convergence to a
minimizer (resp. minimal norm one) without (resp. with) Tikhonov regularization. We have also investigated the
convergence rates and highlighted the trade-off between the tuning of the Tikhonov regularization coefficient
and the noise variance. This work leads us to important extensions, among which,we mention the following ones:

Extend our results, with and without Tikhonov regularization, to the case of to the case of operators where
∇f and ∂g are replaced by, respectively, a co-coercive operator B and a maximal monotone operator A.
Investigate the transition to second-order dynamics via time-scaling and averaging, and analyzing its
corresponding convergence properties.
Study second-order dynamics with inertia in view of understanding the behavior of accelerated dynamics in
the presence of stochastic errors.

Some of these aspects are already the subject of ongoing research work.

A Auxiliary results

A.1 Deterministic results
▶ Lemma 32. Let t0 ≥ 0 and a, b : [t0,+∞[ → R+. If limt→∞ a(t) exists, b /∈ L1([t0,+∞[) and

∫∞
t0
a(s)b(s) ds <

+∞, then limt→∞ a(t) = 0.

▶ Lemma 33 (Comparison Lemma). Let t0 ≥ 0 and T > t0. Assume that h : [t0,+∞[ → R+ is measurable with
h ∈ L1([t0, T ]), that ψ : R+ → R+ is continuous and non-decreasing, φ0 > 0 and the Cauchy problem{

φ′(t) = −ψ(φ(t)) + h(t) for almost all t ∈ [t0, T ]
φ(t0) = φ0

has an absolutely continuous solution φ : [t0, T ] → R+. If a bounded from below lower semicontinuous function
ω : [t0, T ] → R+ satisfies

ω(t) ≤ ω(s) −
∫ t

s

ψ(ω(τ)) dτ +
∫ t

s

h(τ) dτ

for t0 ≤ s < t ≤ T and ω(t0) = φ0, then

ω(t) ≤ φ(t) for t ∈ [t0, T ].

▶ Lemma 34. Let f : R+ → R and lim inft→∞ f(t) ̸= lim supt→∞ f(t). Then there exists a constant α, satisfying
lim inft→∞ f(t) < α < lim supt→∞ f(t), such that for every β > 0, we can define a sequence (tk)k∈N ⊂ R such
that

f(tk) > α, tk+1 > tk + β, ∀ k ∈ N.

Proof. See proof in [30, Lemma A.3]. ◀

▶ Lemma 35. Take t0 > 0, and let f ∈ L1([t0,+∞[) be continuous. Consider a non-decreasing function
φ : [t0,+∞[ → R+ such that limt→+∞ φ(t) = +∞. Then

lim
t→+∞

1
φ(t)

∫ t

t0

φ(s)f(s) ds = 0.

Proof. See proof in [5, Lemma A.5] ◀
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A.2 Stochastic results
A.2.1 On stochastic processes
Let us recall some elements of stochastic analysis. Throughout the paper, (Ω,F ,P) is a probability space and
{Ft|t ≥ 0} is a filtration of the σ-algebra F . Given C ∈ P(Ω), we will denote σ(C) the σ-algebra generated by C.
We denote F∞

def= σ
(⋃

t≥0 Ft

)
∈ F .

The expectation of a random variable ξ : Ω → H is denoted by

E(ξ) def=
∫

Ω
ξ(ω) dP(ω).

An event E ∈ F happens almost surely if P(E) = 1, and it will be denoted as “E, P-a.s.” or simply “E, a.s.”. The
characteristic function of an event E ∈ F is denoted by

1E(ω) def=
{

1 if ω ∈ E,

0 otherwise.

An H-valued stochastic process starting at t0 ≥ 0 is a function X : Ω × [t0,+∞[ → H. It is said to be continuous
if X(ω, · ) ∈ C([t0,+∞[;H) for almost all ω ∈ Ω. We will denote X(t) def= X( · , t). We are going to study SDEs,
and in order to ensure the uniqueness of a solution, we introduce an equivalence relationship over stochastic
processes. Two stochastic processes X,Y : Ω × [t0, T ] → H are said to be equivalent if X(t) = Y (t), ∀ t ∈ [t0, T ],
P-a.s. This leads us to define the equivalence relation R, which associates the equivalent stochastic processes in
the same class.

Furthermore, we will need some properties about the measurability of these processes. A stochastic process
X : Ω × [t0,+∞[ → H is progressively measurable if for every t ≥ t0, the map Ω × [t0, t] → H defined by
(ω, s) → X(ω, s) is Ft ⊗ B([t0, t])-measurable, where ⊗ is the product σ-algebra and B is the Borel σ-algebra.
On the other hand, X is Ft-adapted if X(t) is Ft-measurable for every t ≥ t0. It is a direct consequence of the
definition that if X is progressively measurable, then X is Ft-adapted.

Let us define the quotient space:

S0
H[t0, T ] def= {X : Ω × [t0, T ] → H, X is a prog. measurable cont. stochastic process}

/
R.

Set S0
H[t0] def=

⋂
T ≥t0

S0
H[t0, T ]. For ν > 0, we define Sν

H[t0, T ] as the subset of processes X(t) in S0
H[t0, T ] such

that

Sν
H[t0, T ] def=

{
X ∈ S0

H[t0, T ] : E

(
sup

t∈[t0,T ]
∥Xt∥ν

)
< +∞

}
.

We define Sν
H[t0] def=

⋂
T ≥t0

Sν
H[t0, T ].

Following the notation of [20, Section 2.1.2], we say that Wt is a K-valued cylindrical Brownian motion
defined on the filtered space (Ω,F ,Ft,P) if:
i. For an arbitrary t ≥ 0, the mapping Wt : K → L2(Ω;R) is linear;
ii. For an arbitrary k ∈ K, Wt(k) is an Ft Brownian motion;
iii. For arbitrary k, k′ ∈ K and t ≥ 0, E[Wt(k)Wt(k′)] = t⟨k, k′⟩K.

▶ Remark 36. There is no K-valued process W̃ t such that:

Wt(k)(ω) = ⟨W̃ t(ω), k⟩K.

However, if Q is a non-negative definite symmetric trace-class operator on K, then a K-valued Q-Brownian motion
can be defined (see e.g. [20, Definition 2.6], [19, Section 4.1]). Moreover, if K = Rm, then Wt(k) = ⟨W̃ t, k⟩K,
where W̃ t denotes the standard m-dimensional Brownian motion. Thus, the Rm-cylindrical Brownian motion
coincides with the standard m-dimensional Brownian motion.

Besides, let G : Ω×R+ → L2(K;H) be a measurable and Ft-adapted process, then we can define
∫ t

0 G(s) dW (s)
which is the stochastic integral of G, and we have that G →

∫ ·
0 G(s) dW (s) is an isometry between the measurable

and Ft-adapted L2(K;H)-valued processes and the space of H-valued continuous square-integrable martingales
(see [20, Theorem 2.4]).
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A.3 Proof of Theorem 2
Proof. Set Fε(x) def= F (x) + ε

2 ∥x∥2. Then (DI-TA) can be written equivalently in a compact form as

ẋ(t) + ∂Fε(t)(x(t)) ∋ 0.

Set h(t) def= 1
2 ∥x(t) − x⋆∥2 where x⋆ = PSF

(0). Derivation of f and the constitutive equation (DI-TA) give

ḣ(t) + ⟨−ẋ(t), x(t) − x⋆⟩ = 0, (38)

where −ẋ(t) ∈ ∂Fε(t)(x(t)). By strong convexity of Fε(t), we get

Fε(t)(x⋆) ≥ Fε(t)(x(t)) + ⟨y(t), x⋆ − x(t)⟩ + ε(t)
2 ∥x(t) − x⋆∥2,

for every y(t) ∈ ∂Fε(t)(x(t)). Using that Fε(t)(x(t)) ≥ Fε(t)(xε(t)), we get

F (x⋆) + ε(t)
2 ∥x⋆∥2 ≥ F (xε(t)) + ε(t)

2 ∥xε(t)∥2 + ⟨y(t), x⋆ − x(t)⟩ + ε(t)
2 ∥x(t) − x⋆∥2,

for every y(t) ∈ ∂Fε(t)(x(t)). Besides, from F (x⋆) ≤ F (xε(t)) we deduce

⟨y(t), x(t) − x⋆⟩ ≥ ε(t)h(t) + ε(t)
2
(
∥xε(t)∥2 − ∥x⋆∥2), (39)

for every y(t) ∈ ∂Fε(t)(x(t)). Combining (38) with (39) we obtain

ḣ(t) + ε(t)h(t) ≤ 1
2ε(t)

(
∥x⋆∥2 − ∥xε(t)∥2). (40)

Set m(t) def= exp
∫ t

t0
ε(s) ds. Integrating (40) from t0 to t, we get

h(t) ≤ h(t0)
m(t) + 1

2m(t)

∫ t

t0

m′(s)
(
∥x⋆∥2 − ∥xε(s)∥2)ds. (41)

According to hypothesis i and the classical property of the Tikhonov approximation we have xε(t) → x⋆, and
hence ∥x⋆∥2 − ∥xε(s)∥2 → 0. To pass to the limit on (41) we use hypothesis ii which tells us that m(t) → +∞.
Let us complete the argument by using that convergence implies ergodic convergence. Precisely, given δ > 0, let
tδ > t0 such that |∥x⋆∥2 − ∥xε(s)∥2| ≤ δ for s ≥ tδ. Then split the integral as follows

h(t) ≤ h(t0)
m(t) + 1

2m(t)

∫ tδ

t0

m′(s)
(
∥x⋆∥2 − ∥xε(s)∥2) ds+ δ

1
2m(t)

∫ t

tδ

m′(s) ds (42)

≤ h(t0)
m(t) + 1

2m(t)

∫ tδ

t0

m′(s)
(
∥x⋆∥2 − ∥xε(s)∥2) ds+ δ

2 . (43)

Then let t tend to infinity, to get lim supt→+∞ h(t) ≤ δ
2 . This being true for any δ > 0 gives the result. ◀

A.4 Existence and uniqueness of the SDI
We now prove Theorem 8, which specifies conditions ensuring the existence and uniqueness of a solution to (SDI0).
The argument builds on prior results while addressing aspects not covered in [34].

Proof. The existence of a solution (X, η) in the sense of Definition 5 comes from [34, Theorem 3.5] (see [19,
Section 7.1.1] for the SDE case). We now turn to uniqueness. Let (X1, η1) and (X2, η2) be two solutions of (SDI0).
By Itô’s formula, we have

∥X1(t) −X2(t)∥2 = 2
∫ t

t0

⟨b(s,X1(s)) − b(s,X2(s)), X1(s) −X2(s)⟩ ds

− 2
∫ t

t0

⟨η′
1(s) − η′

2(s), X1(s) −X2(s)⟩ ds+
∫ t

t0

∥σ(s,X1(s)) − σ(s,X2(s))∥2
HS ds

+
∫ t

t0

⟨X1(s) −X2(s), [σ(s,X1(s)) − σ(s,X2(s))] dW (s)⟩.
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Since for almost all t ≥ 0, η′
i(t) ∈ A(Xi(t)), i = {1, 2}, by monotonicity of A, we have that for almost all t ≥ t0,

⟨η′
1(t) − η′

2(t), X1(t) −X2(t)⟩ ≥ 0,

and thus the second term on the right-hand side is non-positive. Now, let n ∈ N arbitrary and consider the
stopping time τn = inf{t ≥ t0 : ∥X1(t) − X2(t)∥ ≥ n} and evaluate the previous equation at t ∧ τn, denoting
Xn

i (t) = Xi(t ∧ τn) (i = {1, 2}), we have

∥Xn
1 (t) −Xn

2 (t)∥2 ≤ 2
∫ t∧τn

t0

⟨b(s,X1(s)) − b(s,X2(s)), X1(s) −X2(s)⟩ ds

+
∫ t∧τn

t0

∥σ(s,X1(s)) − σ(s,X2(s))∥2
HS ds

+
∫ t∧τn

t0

⟨X1(s) −X2(s), [σ(s,X1(s)) − σ(s,X2(s))] dW (s)⟩

≤ L(L+ 2)
∫ t∧τn

t0

∥X1(s) −X2(s)∥2 ds

+
∫ t∧τn

t0

⟨X1(s) −X2(s), [σ(s,X1(s)) − σ(s,X2(s))] dW (s)⟩

≤ L(L+ 2)
∫ t

t0

∥Xn
1 (s) −Xn

2 (s)∥2 ds

+
∫ t∧τn

t0

⟨X1(s) −X2(s), [σ(s,X1(s)) − σ(s,X2(s))] dW (s)⟩.

Note that we have used Cauchy–Schwarz inequality and the Lipschitz assumption on (b, σ) in the second
inequality. Taking expectation of both sides and using the properties of Itô’s integral we obtain

E(∥Xn
1 (t) −Xn

2 (t)∥2) ≤ L(L+ 2)
∫ t

t0

E(∥Xn
1 (s) −Xn

2 (s)∥2) ds.

By Grönwall’s inequality, we obtain that

E(∥Xn
1 (t) −Xn

2 (t)∥2) = 0, ∀ t ≥ t0, ∀ n ∈ N.

On the other hand, we have that limn→+∞ t ∧ τn = t. Therefore, taking lim infn→+∞ in the previous expression,
using Fatou’s Lemma and the fact that X1, X2 are a.s. continuous processes, we conclude that E(∥X1(t) −
X2(t)∥2) = 0, consequently

P(X1(t) = X2(t),∀ t ∈ [t0, T ]) = 1, for every T > t0.

Let T > t0 arbitrary, let us prove that E
(

supt∈[t0,T ] ∥X(t)∥ν
)
< +∞. Using Itô’s formula with the solution

process X and the anchor function ϕ(x) = ∥x− x⋆∥2 for x⋆ ∈ A−1(0), we obtain for every t ∈ [t0, T ]:

∥X(t) − x⋆∥2 = ∥X0 − x⋆∥2 + 2
∫ t

t0

⟨b(s,X(s)), X(s) − x⋆⟩ ds− 2
∫ t

t0

⟨η′(s), X(s) − x⋆⟩ ds

+
∫ t

t0

∥σ(s,X(s))∥2
HS ds + 2

∫ t

t0

⟨X(s) − x⋆, σ(s,X(s)) dW (s)⟩.

Since η′(t) ∈ A(X(t)) for almost all t ≥ 0, and 0 ∈ A(x⋆), by monotonicity of A we have that for every t ∈ [t0, T ],

⟨η′(t), X(t) − x⋆⟩ ≥ 0, for almost all t ≥ 0.

Thus the second integral is nonnegative, which implies

∥X(t) − x⋆∥2 ≤ ∥X0 − x⋆∥2 + 2
∫ t

t0

⟨b(s,X(s)), X(s) − x⋆⟩ ds+
∫ t

t0

∥σ(s,X(s))∥2
HS ds

+ 2
∫ t

t0

⟨X(s) − x⋆, σ(s,X(s)) dW (s)⟩. (44)
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Moreover, we have

2⟨b(t, x), x− x⋆⟩ + ∥σ(t, x)∥2
HS ≤ 2∥b(t, x)∥∥x− x⋆∥ + ∥σ(t, x)∥2

HS ≤ C(1 + ∥x− x⋆∥2), ∀ t ≥ t0, ∀ x ∈ H.

We now proceed as in the proof of [24, Lemma 3.2] to conclude that X ∈ Sν
H[t0]. In fact, we take power ν

2 at
both sides of (44), then using that (a+ b+ c) ν

2 ≤ 3 ν−2
2 (a ν

2 + b
ν
2 + c

ν
2 ) we have

∥X(t) − x⋆∥ν ≤ 3
ν−2

2

(
∥X0 − x⋆∥ν + C

ν
2

(∫ t

t0

1 + ∥X(s) − x⋆∥2 ds
) ν

2
)

+ 3
ν−2

2 2 ν
2

(∫ t

t0

⟨X(s) − x⋆, σ(s,X(s)) dW (s)⟩
) ν

2

.

Now taking supremum t ∈ [t0, T ] and then expectation at both sides, we have that there exists K = K(ν, T )
such that:

E

(
sup

t∈[t0,T ]
∥X(t) − x⋆∥ν

)
≤ K

(
1 + E(∥X0 − x⋆∥ν) +

∫ T

t0

E(∥X(s) − x⋆∥ν) ds
)

+ KE

(
sup

t∈[t0,T ]

∣∣∣ ∫ t

t0

⟨X(s) − x⋆, σ(s,X(s)) dW (s)⟩
∣∣∣ ν

2

)
.

By Proposition 37, we get that, for a redefined K = K(ν, T ),

E

(
sup

t∈[t0,T ]
∥X(t) − x⋆∥ν

)
≤ K

(
1 + E(∥X0 − x⋆∥ν) +

∫ T

t0

E(∥X(s) − x⋆∥ν) ds
)

+ KE

(∣∣∣ ∫ T

t0

∥X(s) − x⋆∥2∥σ(s,X(s))∥2
HS ds

∣∣∣ ν
4

)
. (45)

Note that by Cauchy–Schwarz and Young’s inequality,

E

(∣∣∣ ∫ T

t0

∥X(s) − x⋆∥2∥σ(s,X(s))∥2
HS ds

∣∣∣ ν
4

)

≤ E

 sup
t∈[t0,T ]

∥X(t) − x⋆∥ ν
2

(∫ T

t0

∥σ(s,X(s))∥2
HS

) ν
4


≤ 1
2KE

(
sup

t∈[t0,T ]
∥X(t) − x⋆∥ν

)
+ K

2 E

(∫ T

t0

∥σ(s,X(s))∥2
HS

) ν
2


≤ 1
2KE

(
sup

t∈[t0,T ]
∥X(t) − x⋆∥ν

)
+ KC

ν
2

2 E

(∫ T

t0

1 + ∥X(s) − x⋆∥2 ds
) ν

2


≤ 1
2KE

(
sup

t∈[t0,T ]
∥X(t) − x⋆∥ν

)
+ KC

ν
2

2 T
ν−2

2 E

[(∫ T

t0

(1 + ∥X(s) − x⋆∥2) ν
2 ds

)]
.

Substituting this into (45), we have, for a possibly different K = K(ν, T ),

E

(
sup

t∈[t0,T ]
∥X(t) − x⋆∥ν

)
≤ K

(
1 + E(∥X0 − x⋆∥ν) +

∫ T

t0

E

(
sup

t∈[0,s]
∥X(t) − x⋆∥ν

)
ds
)
.

By Grönwall’s inequality, we obtain

E

(
sup

t∈[t0,T ]
∥X(t) − x⋆∥ν

)
≤ K(1 + E(∥X0 − x⋆∥ν))eKT < +∞.

Since T > t0 is arbitrary, we conclude that X ∈ Sν
H[t0]. ◀
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A.5 On martingales
▶ Proposition 37 (Burkholder-Davis-Gundy Inequality, see [15] and [36, Section 1.2]). Let p > 0, W be a K-valued
cylindrical Brownian motion defined over a filtered probability space (Ω,F , {Ft}t≥0,P) and g : Ω × R+ → K a
progressively measurable process (with our usual notation g(t) def= g( · , t)) such that

E

(∫ T

0
∥g(s)∥2 ds

) p
2
 < +∞, ∀ T > 0.

Then, there exists Cp > 0 (only depending on p) for every T > 0 such that:

E

[
sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0
⟨g(s), dW (s)⟩

∣∣∣∣∣
p]

≤ CpE

(∫ T

0
∥g(s)∥2 ds

) p
2
.

▶ Theorem 38. Let H be a real separable Hilbert space and (Mt)t≥0 : Ω → H be a continuous martingale
such that supt≥0 E

(
∥Mt∥2) < +∞. Then there exists a H-valued random variable M∞ ∈ L2(Ω;H) such that

s-limt→∞ Mt = M∞ a.s..

Proof. Consider (Mk)k∈N to be the embedded discrete parameter martingale. Since supk∈N E∥Mk∥2 < +∞, then
(Mk)k∈N is uniformly integrable and by [40, Theorem 3], there exists a measurable H-valued random variable
M∞ ∈ L2(Ω;H) such that limk→∞∥Mk −M∞∥ = 0 a.s.. In turn, using the dominated convergence theorem
(see [39, Theorem 1.34]), we also have

lim
k→∞

E(∥Mk −M∞∥2) = 0. (46)

The rest of the proof is inspired by the arguments in the proof of [21, Theorem 2.2].
We consider an arbitrary k ∈ N∗ and δ > 0. Since (Mt+k −Mk)t≥0 is also a H-valued martingale, we can use

Doob’s maximal inequalities for H-valued martingales shown in [20, Theorem 2.2], which gives us

δ2P

(
sup

s∈[0,t]
∥Ms+k −Mk∥ > δ

)
≤ E(∥Mt+k −Mk∥2). (47)

Let n ∈ N∗ be arbitrary. We have

P

(
sup

s∈Q∩[0,n]
∥Ms+k −M∞∥ > δ

)
≤ P

(
sup

s∈Q∩[0,n]
∥Ms+k −Mk∥ > δ

2

)
+ P

(
∥Mk −M∞∥ > δ

2

)
.

Using (47) and Markov’s inequality, we get the bound

δ2P

(
sup

s∈Q∩[0,n]
∥Ms+k −M∞∥ > δ

)
≤ 4E(∥Mn+k −Mk∥2) + 4E(∥Mk −M∞∥2)

≤ 8E(∥Mn+k −M∞∥2) + 12E(∥Mk −M∞∥2).
(48)

In turn, we get

δ2P

(
sup

s∈Q,s≥k
∥Ms −M∞∥ > δ

)
≤ δ2P

( ⋃
n∈N∗

{
sup

s∈Q∩[0,n]
∥Ms+k −M∞∥ > δ

})

≤ δ2 lim inf
n→∞

P

(
sup

s∈Q∩[0,n]
∥Ms+k −M∞∥ > δ

)
≤ 12E

(
∥Mk −M∞∥2),

where we have used (48) and in the last inequality, that limn→∞ E(∥Mn+k −M∞∥2) = 0 by (46). Taking k → ∞,
and using again (46), we conclude that for all δ > 0

lim
k→∞

P

(
sup

s∈Q,s≥k
∥Ms −M∞∥ > δ

)
= 0.
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For k ∈ N∗, we define Ak
def= {ω ∈ Ω : sups∈Q,s≥k ∥Ms(ω) − M∞(ω)∥ > δ}, since (Ak)k∈N∗ is a non-increasing

sequence of sets:

0 = lim
k→∞

P(Ak) = P

( ⋂
k∈N∗

Ak

)
.

Defining for l ≥ 0, Dl = {ω ∈ Ω : ∥Ml(ω) −M∞(ω)∥ > δ}, it is direct to check that
⋃

l≥k,l∈QDl ⊆ Ak for every
k ∈ N∗. Therefore, we obtain that

P

 ⋂
k∈N∗

⋃
l≥k,l∈Q

Dl

 = 0,

which is equivalent to s-lims→∞,s∈QMt = M∞ a.s.. The result follows from classical arguments of continuity of
the martingale. ◀

▶ Theorem 39 ([29, Theorem 1.3.9]). Let {At}t≥0 and {Ut}t≥0 be two continuous adapted increasing processes
with A0 = U0 = 0 a.s.. Let {Mt}t≥0 be a real-valued continuous local martingale with M0 = 0 a.s.. Let ξ be a
nonnegative F0-measurable random variable. Define

Xt = ξ +At − Ut +Mt for t ≥ 0.

If Xt is nonnegative and limt→∞ At < ∞, then limt→∞ Xt exists and is finite, and limt→∞ Ut < ∞.
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