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——— Abstract

In this paper, we present a new framework, called “RYU”, for constructing “safe” regions — specifically, sets that are

guaranteed to contain the dual solution of a target optimization problem. Our framework applies to the standard case
where the objective function is composed of two components: a closed, proper, convex function with Lipschitz-smooth
gradient and another closed, proper, convex function. We show that the RYU framework not only encompasses but also
improves upon the state-of-the-art methods proposed over the past decade for this class of optimization problems.
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1 Introduction

1.1 Context and state of the art
In this paper, we consider the following family of optimization problems:

find x* € argmin P(x) £ f(Ax) + g(x) (P)
xER™®
where A € R™*" is some known matrix, f: R™ — R, g: R” - R U {400} are proper, closed, convex functions
and f is “o~!-Lipschitz smooth over R™”, that is f is differentiable everywhere on R™ and its gradient obeys
the following regularity condition for some positive scalar a > 0:

Vz,2 € R™: |Vf(z) V(@) <a )z -2 (1)

We assume moreover that (P) is well-posed in the sense that at least one minimizer x* exists. Instances of
problems satisfying these hypotheses are common in the literature of machine learning, statistics or signal
processing, and include (among many others) least-squares sparse regression [4], logistic sparse regression [16] or
the “Elastic Net” problem [27].

The focus of this paper is on the construction of “safe regions”, i.e., subsets of R™ provably containing the
unique solution of the dual problem of (P). More specifically, our goal is to identify some subset S C R™ such
that u* € S where

u” = argmax D(u) 2 —f*(-u) —g"(ATu) (D)
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2 Unifying safe ball regions for safe screening

and f*, g* denote the convex conjugates of f, g, respectively.

The construction of safe regions has become an active field of research during the last decade (see e.g.,
[5, 10, 14, 15, 18, 21, 22, 23, 24, 25, 26]) and has been triggered by the so-called “safe feature elimination”
technique (also referred to as “safe screening”), a procedure to accelerate the resolution of (P), first proposed
in [6] and further extended in many contributions, see e.g., [7, 8, 12, 19]. One central element in the effectiveness
of these acceleration methods is the identification (preferably at low computational cost) of small safe regions
with some specific geometry (e.g., ball, ellipsoid, dome, etc). In this paper, we focus on safe regions having a
“ball” geometry, that is

S=Be,r)={ueR"[|lu—c|><r} (2)

for some ¢ € R™ and r > 0. In this respect, the state-of-the-art safe ball for the general family of optimization
problems considered in this paper is indubitably the so-called “GAP ball” proposed in [10, 18]. It is defined for
any couple (x,u) € dom(P) x dom(—D) as

BGAP(Xa 11) £ B(CGAPa TGAP) (3)
where
Car = 1 (4a)
2GAP
Rt (4b)

and GAP(x,u) £ P(x) — D(u) is the so-called duality gap. The popularity of the GAP ball is due to the two

following assets:

1. The construction of the ball is valid for any problem satisfying our blanket hypotheses, that is f, g are proper,
closed, convex and f is o~ !-Lipschitz smooth over R™.

2. A GAP ball can be constructed from any primal-dual feasible couple (x,u). In particular, under strong
duality assumption and continuity of the duality gap over its domain, the radius of the ball can be made
arbitrarily small by choosing (x,u) sufficiently close to some primal-dual solution (x*,u*).

These features have led the GAP ball to be widely applied and to allow for substantial acceleration performance

in many setups, see e.g., [7, 9, 11, 12, 13].

Other constructions of safe balls, requiring either additional hypotheses on f and g or the knowledge of
some specific primal-dual couple (x,u), have also been proposed in the literature. All the safe ball constructions
(to the best of our knowledge) falling into the optimization framework considered in this paper are gathered
in Table 1 and will be reviewed in greater details in Section 4. We note that, although requiring additional
assumptions, some of these works put to the forth that the construction of safe balls smaller than the GAP ball
is possible. In particular, some contributions have highlighted two avenues for improvement. In [15], the authors
proposed a safe ball (referred to as “FNE ball”) for the LASSO problem and proved that it is a (potentially
strict) subset of the GAP ball. More recently, the authors of [26] introduced the so-called “dynamic EDPP ball”
and emphasized that the latter has a smaller radius than the GAP ball constructed with the same primal-dual
pair [26, Thm. 10].

In this paper, we provide a new mathematical framework gathering and extending these results to the general
family of optimization problems (P).

1.2 Contributions

The contribution of this paper is two-fold. We first introduce a new safe' ball referred to as “RYU ball”. This
ball is defined V (x,u) € dom(P) x dom(—D) as follows:

BRYU(X7 11) £ B(CRYU7 TRYU) (5)
where
Cryy £ %(u - Vf(Ax)) (6a)
2
rayu A \/GAP(O);’ u) _ ||U- + VZ(AX)H27 (6b)

! As defined in Section 1.1, a safe region is any subset of R™ that contains the unique dual solution u* of (D).
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Table 1 Summary of the main safe-ball constructions proposed in the literature during the last decade.
The first column provides the name and the references associated to the safe ball, the second describes
its connection with the proposed RYU ball, the third indicates the constraints on the primal-dual couple
(x,u) used in the construction. The last column specifies the setup considered by the authors in their
work.

Safe region Relation Cstr. on (x,u) Hyp. on f and g
GAP [10, 18, 19] D Bry(x,u) feasible (H1)-(H2)
x-GAP [14] D Bryu(x,u) feasible (H1)-(H2), g = X|| - |1
Dyn. EDPP [26] = Bayw(t*x,u) feasible f=1ly—-3 g=gauge
FNE [15] —Bu(ow)  ATuedg) f=1tly—-I3 9=l
SASVI [17] = Bayy(0n,u)  u € dom(—D) =Ly—-159=Al"IIh
EDPP [24] —Bu(ow)  (18)-(19)  f=1tly—I3 9=l
DPP [24] S Bu(ew)  (18)-(19)  f=1tly—-3 9=l
SAFE [6] > Bun(0a,w)  wedom(-D) =1y 9=l
SLORES [25] 2 Beyw(x,u) (18)—(19) f =logistic, g = Al - |1
SFER [21] = Bryu(x, u) (18)—(19) f =logistic, g = Al - |1

see Theorem 2.2 The name “RYU” stems from “Refined Fenchel-Young inequality” and refers to the fact that
the safeness of the ball is a consequence of the (double) application of a refined version of the well-known
Fenchel-Young inequality (see Appendix B). Our ball construction is valid under the same generic assumptions
as the GAP ball (see Section 3 for a detailed discussion about our working hypotheses). In particular: ¢) it can
be applied to any problem (P) involving a proper, closed, convex function f which is a~!-Lipschitz smooth over
R™, and a proper, closed, convex function g; #) primal-dual feasibility is the only assumption required for the
pair (x,u).

Second, we show that our safe ball construction generalizes or improves over all the existing results of the
literature. More specifically, we prove that all the existing safe balls correspond to particular cases or supersets of
the proposed ball. These results are summarized in the second column of Table 1 and correspond to Propositions 5
to 10 of the paper. As a byproduct, our analysis also provides a unified review of safe balls for problem (D)
under hypotheses (H1)—(H2) by connecting existing results in a common framework.

Interestingly, we note that the GAP ball is always a superset of the RYU ball, that is:

BR‘{U(X7 11) c BGAP(Xa 11)7 (7)

where the inclusion is shown to be strict as long as (x,u) is not a primal-dual optimal couple, see Theorem 5.
Moreover, a rapid inspection of (4b) and (6b) shows that the squared radius of the RYU ball is never greater
than half the squared radius of the GAP ball.

Since our construction is valid for any feasible® couple (x,u) and holds under general assumptions on f, g, the
results in Table 1 therefore emphasize that the proposed framework unifies and generalizes all the methodologies
previously proposed in the literature.

1.3 Paper organization

The rest of the paper is organized as follows. In Section 2, we detail the notational conventions used in the
paper. In Section 3, we describe the working hypotheses considered in our derivations and discuss some of their
implications. Section 4 is dedicated to the presentation of our new safe ball and its connection with the previous
results of the literature. Most of the technical details are deferred to Appendices A to C.

2 Notations

Unless mentioned explicitly, we will use the following notational conventions throughout the paper. Vectors
are denoted by lowercase bold letters (e.g., x,z) and matrices by uppercase bold letters (e.g., A). We use the

2 Note that the quantity under the square root in (6b) is necessarily nonnegative (see Theorem 14).

3 Strictly speaking, the proposed construction applies to any couple (x,u) € R™ x R™ but (similarly to the GAP ball) it
leads to a ball with infinite radius when (x,u) ¢ dom(P) X dom(—D). This is the reason why we restrict our construction to
dom(P) x dom(—D) in the paper.
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symbol “T” to denote the transpose of a vector or a matrix. The “all-zero” vector of dimension n is written 0,,.
(z | ) denotes the standard inner product between z and z’. We use the notation x; to refer to the jth entry of
a vector x. For matrices, we use a; to denote the jth column of A. We let R = RU{—00,+oc} where R refers
to the set of real numbers. Given an extended real-valued function h: R? — R/, we let

dom(h) 2 {z € R?| h(z) < +00} .
The subdifferential of h: R¢ — R at z € R? is denoted Oh(z). It is defined for any z € dom(h) as
oh(z) = {ge RY|VZ eR?: Wz')>h(z)+ (g|2 —2)}.
We refer to the elements of Oh(z) as “subgradients”, see [2, Def. 3.2]. Finally,
r:RY—R
z* — sup,cra (2°,2) — h(z),

denotes the convex conjugate of h, see [2, Def. 4.1].

3 Optimization framework

In this paper, we consider problem (P) with the following minimal assumptions:

(H1) f and g are proper, closed and convex functions.

(H2) f is a~!-Lipschitz smooth over R™.

We note that (H1) and (H2) correspond to the general hypotheses involved in the construction of the GAP
ball, see [19]. In the rest of this section we elaborate on some properties of problems (P)—(D) induced by these
hypotheses.

First, since f (resp. g) is proper, closed and convex from (H1), its convex conjugate f* (resp. g*) is proper,
closed and convex, see [2, Thms. 4.5 and 4.13]. Moreover, the convexity and a~!-Lipschitz smoothness over R™
of f in (H2) imply that f* is a-strongly convex, see [2, Thm. 5.26], that is:

V2,7 € dom(f*) and g € Of*(2) s F(2) = [*(2) + (g | 7' — 2) + 2|2’ — 2l ®)
Under the properness assumption in (H1), the duality gap, defined as
GAP: R" x R™ — R
(x,u) — P(x) — D(u)
is always a nonnegative quantity, see [1, Prop. 15.21.(i)]. Moreover, GAP(x,u) < 4oo if and only if (x,u) €

dom(P) x dom(—D). Hypotheses (H1)-(H2) also imply that strong duality holds for some primal-dual couple as
emphasized by the following lemma:

» Lemma 1. Let x* be a minimizer of (P). If (H1)~(H2) hold, then there exists u* € R™ such that
GAP(x*,u*) = 0. 9)
Proof. If (H1) is verified, we have from [1, Thms. 15.23 and 15.24.(viii)] that strong duality holds and a maximizer
u* to (D) exists provided that
relint(dom(f)) Nrelint(A dom(g)) # 0, (10)

where relint( - ) denotes the relative interior of a set. Now, under our o~ !-Lipschitz smoothness assumption (H2),
we have that dom(f) = R™ so that condition (10) reduces to relint(A dom(g)) # 0. Since g is a proper convex
function, its domain dom(g) is non-empty (by definition of properness) and convex [2, §2.3.1]. The set A dom(g)
is thus also non-empty convex as the image of a non-empty convex set under a linear operator A [1, Prop. 3.5].
Therefore, the relative interior of A dom(g) is non-empty as a consequence of [2, Thm. 3.17]. <

We note that any u* verifying (9) must obviously be a solution of (D). Hence, we have from Theorem 1 that

a maximizer of (D) exists under (H1)-(H2). Moreover, the a-strong convexity of f* implies that this maximizer

is unique, see [2, Thm. 5.25]. Finally, since strong duality holds, the following conditions must be satisfied by
any primal-dual optimal couple (x*,u*), see [1, Thm. 19.1]:

u* = -V f(Ax*) (11)

ATu* € 9g(x*). (12)
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4 The RYU framework and its connection to the state of the art

The main theoretical result of this paper is the following new safe ball:

» Theorem 2 (RYU ball). Assume (H1)—(H2) hold true. Then, we have for any (x,u) € dom(P) x dom(—D):
u* (S B}:{YU(X7 u) é B(CRYU, TRYU)
where

Cryu £ %(u — Vf(AX))

[I>

TRYU

\/GAP(X, u)  u+ V(A3
a 4 '

The name “RYU” stands for “Refined Fenchel-Young inequality”, a central element appearing in the proof
of the safeness of the proposed region, detailed in Appendix B.1.

A close inspection of the hypotheses of Theorem 2 reveals that the construction of the RYU ball can be
carried out under exactly the same assumptions as the GAP ball, that is: ¢) it holds for any problem satisfying
hypotheses (H1)-(H2) on f and g; ) it is valid for any primal-dual feasible couple (x,u). Despite of its generality,
a careful examination of the definition of the radius of the GAP and RYU balls in (4b) and (6b) indicates that —
given a feasible primal-dual pair (x,u) — the squared radius of the RYU ball is always at least twice as small
as the squared radius of the GAP ball. In fact, as emphasized in Section 4.1 below, the GAP ball is a strict
superset of the proposed RYU ball for any feasible primal-dual (x,u) different from (x*,u*).

In the rest of this section, we explain how the safe balls previously proposed in the literature relate to the
RYU ball. More specifically, we emphasize that the previous results of the state of the art can be seen as either
particular cases or supersets of the proposed ball. Our results are contained in Propositions 5 to 10 and are
summarized in the second column of Table 1. The third and fourth columns of the table specify assumptions
necessary for constructing the corresponding safe ball: the third column outlines potential constraints on the
primal-dual pair (x,u) used in the construction of the ball, while the fourth column details the nature of the
functions f, g defining (P).

Before proceedings to the connection between the RYU ball and the existing results of the literature, let us
make two important remarks regarding the choice of the couple (x,u) involved in the construction of the safe
ball.

First, an approach which has been considered (often implicitly) in many contributions of the literature
consists in choosing a feasible pair (x,u) such that

ATu € 9g(x). (14)

Interestingly, when (14) is satisfied the function GAP can be related to two other well-known quantities, namely
the Fenchel divergence of f (see [3, Def. 2]) and the Bregman divergence of f*. In particular, the following
lemma holds:

» Lemma 3. Assume (H1)—~(H2) hold and let*

Fen(x,u) £ f(Ax) + f*(-u) + (u | Ax) (15)
Breg(x,u) = f*(—u) - f*(Vf(Ax)) + (Ax | u + Vf(Ax)). (16)

If (14) s verified, then ¥V (x,u) € dom(P) x dom(—D):

GAP(x,u) = Fen(x,u) = Breg(x, u). (17)

4 Fen(x,u) corresponds to the Fenchel divergence of f evaluated at (Ax, —u); Breg(x,u) is reminiscent from the Bregman
divergence of f* evaluated at (—u, Vf(Ax)). We acknowledge that, in contrast to the standard definition of the Bregman
divergence, (16) does not impose differentiability of f*. However, under (H2), the differentiability of f implies that df(Ax) =
{Vf(Ax)}, and, since f is also convex, proper, and closed under (H1) (see Theorem 11), we have Ax € 9f*(Vf(Ax)).
Furthermore, when f* is differentiable, we recover Ax = V f*(V f(Ax)), and (16) coincides with the standard definition of the
Bregman divergence.
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We refer the reader to Appendix C.1 for a proof of this result. The connection between the duality gap
and the Fenchel /Bregman divergences is of interest in two respects. On the one hand, these divergences are
sometimes more straightforward to express than the duality gap and thus give an alternative formulation to
the proposed RYU ball under the particular assumption (14). On the other hand, some contributions of the
literature (see Section 4.5) have directly expressed their safe ball as a function of Breg(x, u). The connection
established in Theorem 3 will thus allow us to make a direct link between these works and the RYU framework
proposed in this paper.

Second, we mention that the following definition of primal-dual couple (x,u) has been considered in many
contributions of the literature (see e.g., [17, 21, 24, 25]):

(X7u) £ (Xj;v _7_1Vf(AX:;)) (18)
where v > 0 and
x} € argmin f(Ax) +vg(x). (19)
xeER™

This type of construction appears for example in “sequential” settings where one wants to solve (P) for
g(+) = Al - || where || - || denotes some norm on R™ and the solution of a similar problem with g(-) = Ao|| - || has
already been computed previously. The solution of the latter problem can then be expressed as in (19) with
=23 and g(-) = All-|.

The next lemma emphasizes that (18)—(19) correspond in fact to a particular strategy to build primal-dual
couples obeying (14):

> Lemma 4. If (x,u) is defined as in (18)—(19), then it verifies (14).

Proof. Since  is assumed positive, (19) can be equivalently rewritten:
x), € argmin 7 H(AX) + g(x). (20)
xeER™

The functions 4~ f and g are convex, proper and closed from (H1) and y~!f is (ya)~!-Lipschitz smooth over
R™. One obtains (14) by expanding the optimality conditions (11)—(12) associated to (20) and its dual. <

Since many safe balls proposed in the literature rely on the particular construction (18)—(19), the result in
Theorem 4 emphasizes that these constructions in fact consider a primal-dual feasible pair (x,u) verifying (14)
and that (from Theorem 3) the connection (17) between the duality gap and the Fenchel/Bregman divergences
is thus in force.

4.1 GAP balls

The GAP ball first proposed in [10] and later generalized in [18, 19] is defined in (4a)—(4b). Its construction is
valid under assumptions (H1)—-(H2) and can take any primal-dual (x,u) as input. The next result shows that the
RYU ball is always a subset of the GAP ball:

» Proposition 5 (The GAP ball contains the RYU ball). Assume (H1)-(H2) hold. Then, for any primal-dual pair
(x,u) € dom(P) x dom(—D):

Bryy(x,u) € B(ceap, raap)- (21)
Moreover, the inclusion is strict as soon as the primal-dual pair (x,u) is not optimal.

In [14, §IV.B] a variant of the GAP ball for the specific case where g = A|| - ||; was proposed. Although the
construction of the ball presented in [14] holds in a slightly more general setup,® we focus hereafter on the case
where f is proper, closed, convex and satisfies (H2). The center and radius of this ball (referred to as x-GAP
since its center depends on x instead of u as in the standard GAP ball) reads as follows:

Cx-GAP e —Vf(AX) (223)
2GAP(x,u
Tx-cap = 75( ) (22b)

where (x,u) can be any primal-dual feasible couple. Similarly to Theorem 5, the next result shows that the
x-GAP ball is also a superset of the proposed RYU region:

5 In particular, a slightly weaker version of (H2) is considered.
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» Proposition 6 (The x-GAP ball contains the RYU ball). Assume (H1)-(H2) hold. Then, for any primal-dual
pair (x,u) € dom(P) x dom(—D):

BRYU(X, 11) - B(Cx—GAPa Tx—GAP)« (23)

Moreover, the inclusion is strict as soon as the primal-dual pair (x,u) is not optimal.

The proof of Theorems 5 and 6 is given in Appendix C.2.

4.2 Dynamic EDPP ball

In [26], the authors focused on the particular family of problems where

f=s3lly =I5 (24)
g=Al-I (25)
for some vector y € R™, scalar A > 0 and norm || - |.° They introduced a new safe ball (see [26, Thm. 9]),

dubbed “dynamic EDPP ball” and valid for any primal-dual feasible couple (x,u). The center and radius of the
dynamic EDPP ball reads as follows:

1
Cdyn.EDPP = 5(}’ +u —t*Ax) (26a)

1
rag.zore = 5/ Iy — wll3 — 1+ Ax3 (26D)

where t* is defined as (with the conventions 0/0 =0 and 1/0 = +00):

A _
t* = max (O7 (Ax |y +w 5 2)\”XH> . (27)
||AXH2

The connection between the RYU and dynamic EDPP balls is established in the following proposition:
» Proposition 7 (Dynamic EDPP ball is a special case of the RYU ball). Assume (24)-(25) holds. Then, for any
(x,u) € dom(P) x dom(—D):

i. The quantity t* defined in (27) verifies

1
t* € arg min \/GAP(tx7u) ~1 u+ Vf(tAx)|3.
>0

ii. We have

B(Cdyn.EDPPa Tdyn.EDPP) = Bryy(t*x, u).

A proof of this result is available in Appendix C.3. In particular, the dynamic EDPP ball was shown to
exhibit a smaller radius as compared to the GAP ball constructed with the (feasible) primal-dual pair (x,u),
see [26, Thm. 10]. Ttem ii. of Theorem 7 (combined with Theorem 5) elucidates this connection by showing that
the dynamic EDPP ball is in fact a subset of the GAP ball Bgpp(t*x, u). Finally, item i. of Theorem 7 provides a
novel interpretation of the definition of ¢*, that is t* corresponds to a nonnegative rescaling of the primal vector
x minimizing the radius of the RYU ball.

4.3 FNE, EDPP, DPP and SASVI balls
FNE [15], (E)DPP [24] and SASVI [17] balls are safe regions designed for the same problem where

f=sly--13 (28)
g=Al"-l (29)

6 More precisely, the authors of [26] considered gauge functions instead of norms for the definition of g. Although the results
presented in this section still hold in this more general setup, we stick to norms to simplify the exposition.
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They all assume (explicitly or implicitly) that the primal-dual couple (x,u) used in the construction verifies (14).

We start with the description of the FNE ball which corresponds to the most general construction. We address

the EDPP, DPP and SASVI balls at the end of the section as particular cases or relaxation of the FNE region.
The FNE ball is defined by the following center and radius:

Ccpyg =u+ %(y —Ax —u) (30a)
rove = 3 lly — Ax — ul,. (30b)
In [15, Thm. 1], the authors showed that the FNE ball is safe for any primal-dual feasible pair (x,u) satisfying
(u] Ax) = Aljx[|x. (31)

The following result shows that the FNE ball in fact corresponds to a particular case of the RYU ball when (28)—
(29) and (31) hold:

> Proposition 8 (FNE ball is a special case of the RYU ball). Assume (28)—(29) holds. Then, for any (x,u) €
dom(P) x dom(—D) satisfying (31):

B(cexe; 7rve) = Bryu(x,1).

A proof of this result is available in Appendix C.4. We note that the authors also showed in [15, Lem. 1] that
the FNE ball is a strict subset of the GAP ball as long as (x,u) # (x*,u*). Interestingly, in view of Theorem 8,
this result turns out to be a particular case of Theorem 5 in the more general framework of the RYU ball.

The EDPP and SASVI balls represent specific instances of the FNE ball, resulting from particular choices of
the pair (x,u). On the one hand, the SASVI ball (see [17, §2.2]) corresponds to the case where (x,u) = (0,,u)
for some dual feasible point u, i.e.,

1

Csasvi = §(y +u) (32a)
1

Tsasvi = 5 ||y - U—||2 . (32b)

Tt is easy to see this couple trivially verifies (31). Using Theorem 8 with (x,u) = (0,,u), u € dom(—D), then
directly leads to
B(csusvt, rsasvr) = Bryu(0n, 1).

On the other hand, the center and radius of the EDPP ball (see [24, Thm. 13]) obeys the same definition (30a)-
(30b) as those of the FNE ball but for (x,u) defined as in (18)—(19) for some v > 0. Taking into account that

x|l = {z € R"|{z | x) = [Ix][1, [[z]l0c <1}, (33)

it is easy to see that (31) together with feasibility of (x,u) is in fact an equivalent rewriting of (14) for g = A|| - ||1.
Hence, in view of Theorem 4, the couple (x,u) considered in the EDPP construction verifies (31) and this ball is
nothing but a particular instance of FNE ball. Theorem 8 thus applies to the EDPP ball as well.

Finally, it was shown in [24, Thm. 13] that the DPP ball is always a superset of the EDPP ball. This directly
leads to the inclusion reported in Table 1.

4.4 SAFE ball

The SAFE ball is the first safe region proposed in the seminal paper [6]. It applies in the case where
f=s5ly—13 (34)
9=l (35)

Tts center and radius are defined ¥V u € dom(—D) as
CsaFE = Y
rsare = [y — ulf2.

In Appendix C.5, we show that the SAFE ball is a relaxation of the proposed RYU ball for (x,u) = (0,,u) with
u € dom(—D). More specifically, we prove that the following result holds:
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» Proposition 9. Assume (34)—(35) holds. Then, for any u € dom(—D):
B(csare, rsare) 2 Bryu (05, u). (36)

4.5 SLORE and SFER balls

We end up this section by considering the SLORES and SFER balls respectively proposed in [25, Thm. 2] and [21,
Cor. 1]. The focus of these papers is on problem (P) with the following definitions for f and g¢:

f(z) = Z log(1 + e~ %), (37)
9(z) = Az} (38)

The construction of these balls is moreover based on the knowledge of a primal-dual couple (x,u) verifying (18)—
(19) for some v > 0. The expression of the center and radius of the SLORE and SFER balls respectively read as

CsLores = YU (393)
1
TSLORES = 9 Breg(x, u)a (39b)
and
1
CSFER = 5(1 +7)u (40a)

T'SFER —

==

1
TBreg(xu) — ¢ (1l (40)
In [21, Thm. 3], it was shown that

B(csrer, rsrer) € B(Csvores, IsLores)- (41)

The next result shows that the SFER ball is a particular instance of RYU ball; thereby proving the results in
Table 1:

» Proposition 10. Assume (37)—(38) hold and (x,u) is defined as (18)—(19) for some v > 0. Then, we have
B(csrer; Tsrer) = Bayu(x, 1). (42)

A proof of this result is available in Appendix C.6.

5 Conclusion

In this paper, we introduced a new framework for constructing safe balls for a broad class of optimization
problems. Specifically, our approach addresses cases where the cost function consists of a closed, proper, convex,
Lipschitz-smooth term combined with another closed, proper, convex term, and only relies on the knowledge of a
primal-dual feasible pair. The proposed construction not only unifies existing methods but also extends and
improves upon all prior approaches from the last decade, providing a comprehensive framework for generating
safe balls within this family of optimization problems and connecting existing results of the literature.

A Convex analysis

This appendix reminds two standard results from convex analysis. The first result relates the subdifferential of a
function to the subdifferential of its convex conjugate:

» Lemma 11 (Subdifferential inversion). Let h: R? — R be a proper, closed and conver function. Then, for all
z,z* € R%:

z" € Oh(z) < z € Oh*(z"). (43)
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A proof of this lemma can be found in [2, Thm. 4.20].
The second result recalls two Fenchel-Young inequalities:

» Lemma 12 (Fenchel-Young inequalities). Let h: R? — R be a proper and conver function. Then, for all
z,z* € R%:

h(z) + h*(z%) = (z" | z) (44)
with equality if and only if z* € Oh(z).

If h is moreover closed and a-strongly convez, then for all z,z* € R%:

hz) +h7(z") = (2" | 2) +%IIZ*WL*(Z*)H§- (45)

We note that (44) corresponds to the standard formulation of the well-known Fenchel-Young inequality. A
proof of this result follows from [2, Thm. 4.6] and [2, Thm. 4.20]. (45) is a refined version of the Fenchel-Young
inequality which applies to closed and strongly convex functions. Since the latter is less common in the literature,
a proof is provided hereafter.”

Proof of (45). Assume that h is a-strongly convex and let z,z* € RY. First note that since h is proper, closed
and a-strongly convex, we have from [2, Thm. 5.26.(b)] that h* is a~!-Lipschitz smooth over R™. In particular,
dom(h*) = R? and h* is differentiable at any z* € RY, that is

Oh* (z*) = {Vh*(2")}. (46)

Second, if z ¢ dom(h), then the left-hand side of (45) is infinite and the inequality trivially holds true since the
right-hand side is finite. We conclude the proof by showing that (45) is also valid for z € dom(h). Using the fact
that h is proper, closed and convex, we obtain from Theorem 11 with the pair (Vh*(z*), z*) that

z" € Oh(Vh*(z")),
and from [1, Prop. 16.4.(i)],
Vh*(z*) € dom(h).

Invoking the first-order characterization of a-strong convexity of h at Vh*(z*) € dom(h) (see [2, Thm. 5.24])
then leads to

h(z) > h(VA* (")) + (2" | 2 = VI*(27)) + § ||z — VA" (2" (47)

Finally, considering the standard Fenchel-Young inequality (44) with z = VA*(z*) and using (46), we have that
the following equality holds:

h(Vh* (z)) + h*(2*) = (z* | VA" (z")). (48)

We obtain the desired result (45) by re-injecting (48) into (47). <

B Proofs related to construction of the RYU framework

B.1 Proof of Theorem 2

We first notice that our result in Theorem 2 is an equivalent rewriting® of the following proposition:

» Proposition 13. If hypotheses (H1)—(H2) hold true then the following inequality is satisfied for any (x,u) €
R" xR™:
2GAP(x,u)
lu* — w3 + [[u* + Vf(Ax)|; < — (49)
In the rest of this section, we thus concentrate on the proof of Theorem 13. Our arguments leverage the
following lemma whose proof is postponed to Appendix B.2:

7 Another version of the proof can be found in [20, Lem. 5].
8 See Appendix B.3.
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» Lemma 14. If hypotheses (H1)—(H2) hold true, then the following inequality is satisfied for any (x,u) €
R" xR™:
2GAP(x,u
Ju+ v (Ax) 3 < 2PN (50)
Theorem 13 can be proved by applying Theorem 14 for two different choices of couple (x,u). We remind the
reader that: {) we assume that (P) admits (at least) one minimizer x*; i) there exists a unique maximizer u*
to (D) under (H1)—(H2), see Theorem 1. A first application of Theorem 14 with (x*,u) then leads to

2(P(x*) = D(w)

-+ Vf(AX)]E < .

Since Theorem 1 also ensures that strong duality holds, we have P(x*) = D(u*) and u* = —V f(Ax*). Therefore,
the previous inequality can also be rewritten as

« 2(D(u*) — D(u))
lu—u*|3 < : (51)
@
A second application of Theorem 14 with the pair (x,u*) yields
. 2(P(x) — D(u*
Ju + 7 (as) 3 < 2EH PO, 52)

(07

Summing up (51) and (52) leads to the desired result (49).

B.2 Proof of Theorem 14

If (x,u) ¢ dom(P) x dom(—D), then (50) is trivially satisfied since the left-hand side is finite whereas the
right-hand side is equal to 4+o00. In the rest of the proof, we thus assume that (x,u) € dom(P) x dom(—D).

As discussed in Section 3, hypotheses (H1)—(H2) imply that f* is proper, closed and a-strongly convex.
Applying the refined Fenchel-Young inequality (45) with h = f*, z = —u and z* = Ax then leads to

FH(=u) + F(A%) 2 (~u | Ax) + Sllu+ VI (A3, (53)

Using [2, Thm. 4.8], we have that f** = f since f is proper, closed and convex by (H1). Therefore, (53) can be
equivalently rewritten as:

F(AX) + f*(—u) > (—u| Ax) + 5 u+ V(A3 (54)

In order to conclude the proof, we need to add g(x) + g*(ATu) to both sides of this inequality. Prior to this
operation, we have nevertheless to ensure that g(x) + g*(ATu) < +oc. To that end, we notice that f(x) > —oo
and f*(—u) > —oo since f and f* are proper. Hence,

P(x) < +o0 = g(x) < +0
—D(u) < 400 = g¢*(ATu) < +o0.
Since we assume that (x,u) € dom(P) x dom(—D), the left-hand sides of these implications are satisfied, so
that g(x) + ¢g*(ATu) < +oo0.
Adding g(x) + g*(ATu) to both sides of (54) then leads to
. «
P(x) = D(u) > g(x) + g"(A"w) — (u | Ax) + Z[u+ Vf(Ax)[3.

Finally, since ¢ is proper, closed and convex from (H1), we can apply the Fenchel-Young inequality (44) with
h=g,z=x and z* = ATu to obtain (50).

B.3 Equivalent rewriting of the RYU ball

In this section, we show the following set equality:

{u* cR™ | Hu* _ CRYUHZ < TR‘{U} — {u* cR™

2GAP(x,u
= ull + u + V(A0 <
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This result is a consequence of the parallelogram identity which reads (see, e.g., [1, Lem. 2.12.(ii)])
/ m ., 2 112 1 112 1 12
Vz,z € R™: |zll; + |2, = Sllz — 2]l + 5 llz + 2|5 - (55)
More precisely, applying (55) with

z=u"—u

z' = u* + Vf(Ax),

we obtain

u— Vf(Ax) |’

2

u* -

* * 1
ot =l + VA& = 5 -+ VA (AR5 + 2]

2

1 *
= 5 [+ VAAR)3 + 2 [u” — caoll}

Using this equality, we have

N . 2GAP(x,u 1 N 2GAP(x,u
w4+ Va2 < O L g A 2 e < 2P
GAP(x,u 1
= o — el < FEEY Ly vranlE 67)

o 4
One finally obtains the desired result by noting that the right-hand side of (57) is equal to rZy as defined in (6b).

C Proofs of the connections with existing results

This appendix gathers all the proofs related to the comparison of the proposed RYU ball with state-of-the-art
safe regions presented in Section 4.1 to Section 4.5.

C.1 Proof of Theorem 3

Let (x,u) € dom(P) x dom(—D). Using the definition of the primal and dual cost functions, we obtain:

6AP(x, u) = f(AX) + g(x) + f*(—w) + g"(ATu)
= f(AX) + f*(—u) + (Ax | u) + g(x) + g"(ATw) — (Ax | u)
= Fen(x,u) + g(x) + ¢*(ATu) — (Ax | u).

If (14) holds, we then have from Theorem 12 that
9(x) + g (ATu) — (Ax [ u) = 0.

This shows the first equality in (17).
The second inequality can be obtained by noticing that (from Theorem 12)

f(AX) + f1(Vf(Ax)) = (Vf(Ax) | Ax) (58)
since f is proper, convex and Jf(Ax) = {Vf(Ax)}. Hence,

Fen(x,u) = f(Ax) + f*(—u) + (Ax | u)
= () = f1(Vf(Ax)) + (Ax | u + Vf(Ax))
= Breg(x, u).

C.2 Proof of Theorem 5

Using Theorem 13, we have

B(cavo, Tav) = {u’ eR™ | —ul; + v + Vf(Ax)|; < : (59)

2GAP(x, u) }
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whereas the definitions of the GAP and x—GAP balls (see (4) and (22), respectively) lead to:

2GAP(x,u
B(ceap; Taar) = {u’ ER™||u - UHg < c(v)} (60)
, m , 2 _ 2GAP(x,u)
B(CX—GAP7TX—GAP) = u c R ||ll + Vf(AX)”Q S T . (61)

Since the membership conditions in (60) and (61) are relaxations of the inequality defining the RYU ball in (59),
inclusions (21) and (23) necessarily hold.
Finally, to prove strict inclusion it is then sufficient to note that

GAP(x,u)

Tryy <

< Tgap

GAP(x,u)
Tryy < 57— < TI'x-gap

whenever GAP(x,u) # 0.

C.3 Proof of Theorem 7

We first note that the RYU ball in Theorem 2 is well-defined. Indeed, functions f and g in (28)—(29) are closed,
proper and convex, so that (H1) holds. Moreover, (H2) is verified with o = 1. For any feasible (¢x,u) with ¢ > 0,
we thus have by definition:

cryo(t) = 3 (u+y — tAx) (62)
r2ny(t) = GAP(tx,u) — 1 [lu —y + tAx]f3 . (63)
Using the definitions of f and g in (24)—(25), we note that the duality gap can be expressed as
2 2 2
GAP(x,u) = 5 [ly — Ax[5 + Alx[| = 5 lyll> + 5 [ly — ull;

2 2
= Alx|l + 3 lly — Ax|l; = {y | w) + 5 [ul;
2
= Allx|| + 5 lu — y + Ax|[; — (Ax | u)

so that
2
rive(t) = M|x|| — t{Ax [ u) + 1 lu—y + tAx]];. (64)
Proving item i. of Theorem 7 is equivalent to showing that the variable ¢* defined in (27) verifies

t* € argmin rayy(t). (65)
>0

Since rgyy(t) is a convex function, it is sufficient to show that ¢* satisfies the problem’s first-order optimality
condition, i.e.,

Vi>0: (rigt) (t—t*) >0, (66)
where

(riwo ()" = Alx[l = 5(Ax | u+y) + §llAx]3.
We distinguish between three cases. First, if Ax = 0,,, then (rZy,(t))’ = M|x|| > 0 so that

0 € arg min ryy(t).
>0

In this case, the definition of ¢* in (27) also leads to t* = 0 (by using the conventions 0/0 = 0 and 1/0 = +c0).
Second, if Ax # 0,, and

o (Ax|y+u) —2|x]
[Ax[3

>0,
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we easily have that

t € argmin 2y (t)
>0

(Ax|y+u)—2A||x||

TAx]2 . Finally, if Ax # 0,, and t < 0, we then have
2

since (rgyy(t))’ = 0. In this case, one deduces t* =

2.~ ~
that (rZ(0))" > 0 since (r3y(0)) = —%t and t < 0. In this case, 0 is a minimizer since it verifies (66) and
this corresponds again to the definition of ¢* in (27).
Showing item ii. of Theorem 7 is tantamount to showing that

CRYU(t*) = Cdyn.EDPP (67)
Teyu(t™) = Tayn.EpPP- (68)

On the one hand, since item i. of Theorem 7 is true, we directly have from the expression of cpyy(t) in (62)
that (67) holds. On the other hand, (68) can be shown by examining the following two cases.
If t* = 0, the equality in (68) follows directly from the definition (64). If t* > 0, we have (12 (t*)) =0, i.e.,

Alxll = 5(Ax | u+y) - 5[ Ax]]3.
Plugging this equality into (64) then leads to
2 2
ri(t") = 3 (" Ax |y —u) — 3 [t*Ax|; + ;[ Ax — y + ul;
= illy —ull3 - ;1" Ax|]3

)
= Tdyn .EDPP"

C.4 Proof of Theorem 8

Tt is straightforward to see from the definition of f and g in (28)—(29) that (H1)-(H2) are satisfied with o = 1.
The RYU ball in Theorem 2 is therefore well-defined. We next show that the center and radius of the RYU and
FNE balls coincide.

First, using the definition of f in (28), we have

Vf(Ax) = ~(y - Ax). o)
Hence,
o = (0 — Vf(Ax)) = u+ L(y — Ax —u) = cpe.

Second, using the definition of g in (29) and (33), it can be seen that condition “(u | Ax) = A||x||;” in (31)
together with feasibility of (x,u) is equivalent to “ATu = dg(x)” in (14) so that Theorem 3 applies. In particular,
we have:

GAP(x,u) = Fen(x,u) = f(Ax) + f*(—u) + (u | Ax).
Since
* 1 2
() = slhullz + (uly),
the duality gap can thus also be written as
GAP(x,u) = 3|ly — Ax|[3 + 3[[ull3 — (u|y) + (u] Ax)
= 3ly — Ax —ulZ. (70)
Going back to the definition of the radius of the RYU ball (with a = 1), we finally obtain:
Ty = GAP(x, u) — § [u+ Vf(Ax)|l3
= 5lly — Ax—ull - flly - Ax —u|3
_ 2
= TFnE>

where we have used (69) and (70) in the second equality.
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C.5 Proof of Theorem 9

It is easy to see that the definitions of f and g in (28)—(29) verify (H1)-(H2) with « = 1, so that the RYU ball
in Theorem 2 is well-defined.
On the one hand, using the definition of f in (28) with x = 0,,, we have

Vf(Ax) = —y.

On the other hand, noticing that the couple (0,,,u) verifies (14) and using the same reasoning as in the proof of
Theorem 8, we obtain from (70):

GAP(x, u) = 5ly — ul3.
Finally, using Theorem 13, we have

Baro(0n, ) = {w' € R™ || = w3 + o = y; < ly — w3}, (71)
whereas the SAFE ball is defined as

Blcsurs, rowrs) = {w' € R™ |0’ —yIl; < [ly — uli3} (72)

Since the membership condition in (72) is a relaxation of the inequality in (71), inclusion (36) holds.

C.6 Proof of Theorem 10

Tt is easy to see from the definition of f and g in (37)—(38) that (H1)—(H2) hold with o = 4. The RYU ball in
Theorem 2 is therefore well-defined.

We next show that the center and the radius of the RYU and SFER balls coincide. Since (x,u) is defined as
in (18)—(19), we have from Theorem 4 that this couple satisfies (14). Using Theorem 3 then leads to

GAP(x,u) = Breg(x, u). (73)
Moreover, we also have from (18)—(19):

VF(Ax) = —yu. (74)
Using (73)—(74), we then easily find that

Cryy = %(u - Vf(Ax)) = %(1 +v)u = cgper
Ty = $GAP(x, 1) — f[lu+ Vf(Ax)[3
= 1 Breg(x,u) — 1[[(1 = )ulf}
2

= TSFER-

This shows the equality in (42).
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