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Abstract
While there already exist randomized subspace Newton methods that restrict the search direction to a random subspace
for a convex function, we propose a randomized subspace regularized Newton method for a non-convex function and more
generally we investigate thoroughly, for the first time, the local convergence rate of the randomized subspace Newton
method. In our proposed algorithm, we use a modified Hessian of the function restricted to some random subspace so
that, with high probability, the function value decreases at each iteration, even when the objective function is non-convex.
We show that our method has global convergence under appropriate assumptions and its convergence rate is the same as
that of the full regularized Newton method. Furthermore, we obtain a local linear convergence rate under some additional
assumptions, and prove that this rate is the best we can hope, in general, when using a random subspace. We furthermore
prove that if the Hessian, at the local optimum, is rank deficient then super-linear convergence holds.
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1 Introduction

While first-order optimization methods such as stochastic gradient descent methods are well studied for large-scale
machine learning optimization, second-order optimization methods have not received much attention due to the
high cost of computing second-order information until recently. However, in order to overcome relatively slow
convergence of first-order methods, there has been recent interest in second-order methods that aim to achieve
faster convergence speed by utilizing subsampled Hessian information and stochastic Hessian estimate (see e.g.,
[4, 44, 46] and references therein).

In this paper, we develop a Newton-type iterative method with random projections for the following
unconstrained optimization problem:

min
x∈Rn

f(x), (1)

where f : Rn → R is a possibly non-convex twice differentiable function. In our method, at each iteration, we
restrict the function f to a random subspace and compute the next iterate by choosing a descent direction on
this random subspace.

There are some existing studies on developing second-order methods with random subspace techniques for
convex optimization problems (1). Let us now review randomized subspace Newton (RSN) existing work [18],
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2 Theoretical analysis of the randomized subspace regularized Newton method

while gradient-based randomized subspace algorithms are reviewed in Section 2.1. RSN computes the descent
direction dk and the next iterate as

dRSN
k = −P T

k (Pk∇2f(xk)P T
k )−1Pk∇f(xk),

xk+1 = xk + 1
L̂

dRSN
k ,

where Pk ∈ Rs×n is a random matrix with s < n and L̂ is some fixed constant. RSN is expected to be highly
computationally efficient with respect to the original Newton method, since it does not require computation of
the full Hessian inverse. RSN is also shown to achieve a global linear convergence for strongly convex f . We first
note that the second-order Taylor approximation around xk restricted in the affine subspace {xk}+ Range(P T

k )
is expressed as

f(xk + P T
k u) ≃ f(xk) +∇f(xk)TP T

k u + 1
2uTPk∇2f(xk)P T

k u,

and the direction dRSN
k is obtained as dRSN

k = P T
k u∗

k where u∗
k is the minimizer of the above subspace Taylor

approximation, i.e.,

u∗
k = arg min

u∈Rs

(
f(xk) +∇f(xk)TP T

k u + 1
2uTPk∇2f(xk)P T

k u

)
.

Hence, we can see that the next iterate of RSN is computed by using the Newton direction for the function

fxk
: u 7−→ f(xk + P ⊤

k u). (2)

Other second-order subspace descent methods, such as cubically-regularized subspace Newton methods, [22],
have been studied in the literature. More precisely, the method in [22] can be seen as a stochastic extension of
the cubically-regularized Newton method [32] and also as a second-order enhancement of stochastic subspace
descent [28]. In [27], a random subspace version of the BFGS method is proposed. The authors prove local linear
convergence, if the function is assumed to be self-concordant. Apart in recent Shao’s Ph.D thesis [37] and the
associated papers [11, 12] which have been done parallelly to this paper, to the best of our knowledge, existing
second-order subspace methods have iteration complexity analysis only for convex optimization problems. The
thesis [37] and the paper [12] propose a random subspace adaptive regularized cubic method for unconstrained
non-convex optimization and show a global convergence property with sub-linear rate to a stationary point1. In
this paper we propose a new subspace method based on the regularized Newton method and discuss the local
convergence rate together with global iteration complexity.2 Notice indeed that, to the best of our knowledge, the
local convergence of such methods never seems to have been thoroughly studied3; one would expect super-linear
convergence for second order methods and no papers discuss whether super-linear convergence holds or not for
second order methods. Indeed any iterative algorithm can be easily adapted to a random subspace method as
it suffices to apply it to the function restricted to the subspace: u 7→ f(xk + P ⊤

k u). We therefore believe that
it is important to investigate thoroughly whether the properties of such full-space algorithms are preserved
or not when adapted to the random subspace setting. If the objective function f is not convex, the Hessian
is not always positive semidefinite and dRSN

k is not guaranteed to be a descent direction so that we need to
use a modified Hessian. Based on the regularized Newton method (RNM) for the unconstrained non-convex
optimization [39, 40], we propose the randomized subspace regularized Newton method (RS-RNM):

dk = −P T
k (Pk∇2f(xk)P T

k + ηkIs)−1Pk∇f(xk),
xk+1 = xk + tkdk,

where ηk is defined to ensure that search direction dk is a descent direction and the step size tk is chosen so that
it satisfies Armijo’s rule. As with RSN, this algorithm is expected to be computationally efficient since we use
projections onto lower-dimensional spaces. In this paper, we first show that RS-RNM has global convergence

1 The author also proves that if the Hessian matrix has low rank and scaled Gaussian sketching matrices are used, then the
Hessian at the stationary point is approximately positive semidefinite with high probability.

2 Just as the ordinary cubic method is superior to the Newton method in terms of iteration complexity, similar observation
seems to hold between the subspace cubic method [37] and ours.

3 Some papers, as we will see later, investigate when local linear convergence holds.
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under appropriate assumptions, more precisely, we have ∥∇f(xk)∥ ≤ ε after at most O(ε−2) iterations with
some probability, which is the same as the global convergence rate shown in [39] for the full regularized Newton
method. We then prove that under additional assumptions, we can obtain a linear convergence rate locally. In
particular, one contribution of the paper is to propose, to the best of our knowledge, the weakest conditions until
now for local linear convergence. To do so we will extensively use the fact that the subspace is chosen at random.
From these conditions, we can derive a random-projection version of the Polyak–Lojasiewicz (PL) inequality (3),

∀ x ∈ Rn, ∥∇f(x)∥2 ≥ c0(f(x)− f(x∗)), (3)

which will be satisfied when the function is restricted to a random subspace. One other contribution of this paper
is to prove that, in general, linear convergence is the best rate we can hope for this method. Furthermore, we
also prove that if the Hessian at the local optima is rank deficient, then one can achieve super-linear convergence
using a subspace dimension s large enough.

Our randomized subspace method for nonconvex optimization problems is based on the regularized Newton
method in [39, 40]. While various other regularized Newton methods have been proposed in recent years, most
of them are for convex problems or non-smooth optimization problems. For example, [31] presents a globally
convergent proximal Newton-type method for non-smooth convex optimization and [8] develops coderivative-based
Newton methods combined with Wolfe line-search for non-smooth problems. Recently [45] proposes a generalized
regularization method that includes quadratic, cubic, and elastic net regularizations. Also [14] proposes, in the
convex case, a variant of the Newton method with quadratic regularization and proves better global rate. Recent
papers, [19, 47, 48], propose regularization methods for the non-convex case. However, although these methods
obtained better iterations complexity, the subroutines involved to compute are quite complex and not as simple
as in [39, 40]. By applying similar random subspace techniques to these methods, we may be able to develop
random subspace variants with state-of-the-art theoretical guarantees, but that is a topic for future work.

The rest of this paper is organized as follows. After reviewing gradient-based randomized subspace algorithms
and introducing properties of random projections in Section 2, we introduce our random subspace Newton
method for non-convex functions in Section 3. In Section 4, we prove global convergence properties for our
method. In Section 5, we investigate local linear convergence as well as local super-linear convergence. Finally,
in Section 6, we show some numerical examples to illustrate the theoretical properties derived in the paper.
In Section 7 we conclude the paper.

2 Preliminaries

▶ Notation. In this paper we call a matrix P ∈ Rs×n a random projection matrix or a random matrix when its
entries Pij are independently sampled from the normal distribution N(0, 1/s). Let In be the identity matrix of
size n. We denote by gk the gradient of the k-th iterate of the obtained sequence and by Hk it’s Hessian.

2.1 Related optimization algorithms using random subspace
As introduced in Section 1, random subspace techniques are used for second-order optimization methods with
the aim of reducing the size of Hessian matrix. Here we refer to other types of subspace methods focusing on
their convergence properties.

Cartis et al. [6] proposed a general random embedding framework for global optimization of a function f .
The framework projects the original problem onto a random subspace and solves the reduced subproblem in
each iteration:

min
u

f(xk + P ⊤
k u) subject to xk + P ⊤

k u ∈ C.

These subproblems need to be solved to some required accuracy by using a deterministic global optimization
algorithm. This study is further expanded in [7] and [5], when f has low effective dimension.

There are also various subspace first-order methods based on coordinate descent methods (see e.g. [43]).
In [9] a randomized coordinate descent algorithm is introduced assuming some subspace decomposition which
is suited to the A-norm, where A is a given preconditioner. In [30], minimizing f(Ãx) + λ

2 ∥x∥
2, where f is

a strongly convex smooth function and Ã is a high-dimensional matrix, is considered and a new randomized
optimization method that can be seen as a generalization of coordinate descent to random subspaces is proposed.
The paper [20] deals with a convex optimization problem minx f(x) + g(x), where f is convex and differentiable
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and g is assumed to be convex, non-smooth and sparse inducing such as ∥x∥1. To solve the problem, they
propose a randomized proximal algorithm leveraging structure identification: the variable space is sampled
according to the structure of g. The approach in [38] is to optimize a smooth convex function by choosing, at
each iteration a random direction on the sphere. Recently, in some contexts such as iteration complexity analysis,
the assumption of strong convexity has been replaced by a weaker one, the PL inequality (3). Indeed, [29] has
introduced a new first-order random subspace and proved that if the non-convex function is differentiable with a
Lipschitz continuous first derivative and satisfies the PL inequality (3) then linear convergence rate is obtained
in expectation. Notice that in all these papers a local linear convergence rate is only obtained when assuming
that the objective function is, at least locally, strongly convex or satisfies the PL inequality.

From above, without (locally) strong convexity nor the PL inequality, it seems difficult to construct first-order
algorithms having (local) linear convergence rates. Indeed, the probabilistic direct-search method [34] in reduced
random spaces is applicable to both convex and non-convex problems but it obtains sub-linear convergence.

In this paper, we will prove that our algorithm achieves local linear convergence rates without locally strong
convexity nor the PL inequality assumption on the full space. This is due to randomized Hessian information
used in our algorithm. More precisely, our assumptions will allow us to prove that the function, restricted to a
random subspace, satisfies a condition similar to the PL inequality.

2.2 Properties of random projection
In this section, we recall basic properties of random projection matrices. One of the most important features of a
random projection defined by a random matrix is that it nearly preserves the norm of any given vector with
arbitrary high probability. The following lemma is known as a variant of the Johnson–Lindenstrauss lemma [25].

▶ Lemma 1 ([41, Lemma 5.3.2, Exercise 5.3.3]). Let P ∈ Rs×n be a random matrix whose entries Pij are
independently drawn from N(0, 1/s). Then for any x ∈ Rn and ε ∈ (0, 1), we have

Prob[(1− ε) ∥x∥2 ≤ ∥Px∥2 ≤ (1 + ε) ∥x∥2] ≥ 1− 2 exp(−C0ε2s),

where C0 is an absolute constant.

The next lemma shows that when P is a Gaussian matrix, we can obtain a bound on the norm of PP ⊤.

▶ Lemma 2. For a s× n random matrix P whose entries are sampled from N(0, 1/s), there exists a constant
C > 0 such that∥∥PP T∥∥ (=

∥∥P TP
∥∥ = ∥P∥2) ≤ Cn

s
,

with probability at least 1− 2e−s.

Proof. By [41, Theorem 4.6.1], there exists a constant C such that∥∥∥ s

n
PP ⊤ − Is

∥∥∥ ≤ 2C

√
s

n

holds with probability at least 1− 2e−s. Therefore, we have∥∥PP T∥∥ ≤ ∥∥∥PP T − n

s
Is

∥∥∥+
∥∥∥n

s
Is

∥∥∥ ≤ 2C

√
n

s
+ n

s
≤ 2C

n

s
+ n

s
= (2C + 1)n

s
.

Setting C = 2C + 1 ends the proof. ◀

All the results of this paper are stated in a probabilistic way. In the proofs we will constantly use the following
fact:

For any two events E1 and E2 : Prob(E1 ∩ E2) ≥ 1− ((1− Prob(E1)) + (1− Prob(E2))) . (4)

3 Randomized subspace regularized Newton method

In this section, we describe a randomized subspace regularized Newton method (RS-RNM) for the following
unconstrained minimization problem,

min
x∈Rn

f(x), (5)
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Algorithm 1 Randomized subspace regularized Newton method (RS-RNM)
input: x0 ∈ Rn, 0 ≤ γ < 1, c1 > 1, c2 > 0, α, β ∈ (0, 1)

1: k ← 0
2: repeat
3: sample a random matrix: Pk ∼ D
4: compute the regularized sketched Hessian:

Mk = PkHkP T
k + c1ΛkIs + c2 ∥gk∥γ

Is,

where Λk = max(0,−λmin(PkHkP T
k ))

5: compute the search direction: dk = −P T
k M−1

k Pkgk

6: apply the backtracking line search with Armijo’s rule by finding the smallest integer lk ≥ 0 such that (8)
holds. Set tk = βlk , xk+1 = xk + tkdk and k ← k + 1

7: until some stopping criteria is satisfied return the last iterate xk

where f is a twice continuously differentiable function from Rn to R. In what follows, we denote the gradient
∇f(xk) and the Hessian ∇2f(xk) as gk and Hk, respectively.

The paper [39] develops a regularized Newton methods (RNM) that constructs a sequence of iterates with
the following update rule:

xk+1 = xk − tk(Hk + c′
1Λ′

kIn + c′
2 ∥gk∥γ′

In)−1gk,

where Λ′
k = max(0,−λmin(Hk)), c′

1, c′
2, γ′ are some positive parameter values and tk is the step-size chosen by

Armijo’s step size rule, and show that this algorithm achieves ∥gk∥ ≤ ε after at most O(ε−2) iterations and it has
a super-linear rate of convergence in a neighborhood of a local optimal solution under appropriate conditions.

To increase the computational efficiency of this algorithm using random projections, based on the randomized
subspace Newton method [18], we propose the randomized subspace regularized Newton method (RS-RNM)
with Armijo’s rule, which is described in Algorithm 1 and outlined below. Since RS-RNM is a subspace version
of RNM, all discussions of global convergence guarantees made in Section 4 are based on the one in [39].

Let D denote the set of Gaussian matrices of size s × n whose entries are independently sampled from
N(0, 1/s). With a Gaussian random matrix Pk from D, the regularized sketched Hessian is defined by:

Mk := PkHkP T
k + ηkIs ∈ Rs×s, (6)

where ηk := c1Λk + c2 ∥gk∥γ and Λk := max(0,−λmin(PkHkP T
k )). We then compute the search direction:

dk := −P T
k M−1

k Pkgk. (7)

The costly part of Newton-based methods, the inverse computation of a (approximate) Hessian matrix, is done
in the subspace of size s. We note that dk defined by (7) is a descent direction for f at xk, i.e., g⊤

k dk < 0 if
gk ̸= 0, since it turns out that Mk is positive definite from the definition of Λk, and therefore x⊤P T

k M−1
k Pkx > 0

holds for ∀ x due to Pkx ̸= 0 with high probability.
The backtracking line search with Armijo’s rule finds the smallest integer lk ≥ 0 such that

f(xk)− f(xk + βlk dk) ≥ −αβlk gT
k dk. (8)

Starting with lk = 0, lk is increased by lk ← lk + 1 until the condition (8) holds. The sufficient iteration number
to find such a step-size is discussed in convergence analysis later.

4 Global convergence properties

In Section 4.1, we discuss the global convergence of the RS-RNM under Assumption 3. We further prove the
global iteration complexity of the algorithm in Section 4.2 by considering further assumptions.

▶ Assumption 3. The level set of f at the initial point x0 is bounded, i.e., Ω := {x ∈ Rn : f(x) ≤ f(x0)} is
bounded.
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By (8), we have that for any k ∈ N, f(xk+1) ≤ f(xk), implying all xk ∈ Ω. Since Ω is a bounded set and f is
continuously differentiable, there exists Ug > 0 such that

∥gk∥ ≤ Ug, ∀ k ≥ 0. (9)

Similarly, there exists L > 0 such that for all x ∈ Ω,

∥∇2f(x)∥ ≤ L. (10)

In particular, for all k > 0,

∥Hk∥ ≤ L. (11)

Notice that by (10), ∇f is L-Lipschitz continuous. We also define f∗ = infx∈Ω f(x).

4.1 Global convergence
We first show that the norm of dk can be bounded from above.

▶ Lemma 4. Suppose that ∥dk∥ ≠ 0. Then, dk defined by (7) satisfies

∥dk∥ ≤ C
n

s

∥gk∥1−γ

c2
,

with probability at least 1− 2e−s.

Proof. By Lemma 2 we have
∥∥P T

k Pk

∥∥ ≤ C n
s , holds with probability at least 1− 2e−s. Then, it follows from (7)

that

∥dk∥ =
∥∥P T

k M−1
k Pkgk

∥∥
=
∥∥P T

k (PkHkP T
k + ηkIs)−1Pkgk

∥∥
≤
∥∥P T

k (PkHkP T
k + ηkIs)−1Pk

∥∥ ∥gk∥

≤
∥∥P T

k

∥∥ ∥Pk∥
∥∥(PkHkP T

k + ηkIs)−1∥∥ ∥gk∥

=
∥∥P T

k Pk

∥∥ ∥gk∥
λmin(PkHkP T

k + c1ΛkIs + c2 ∥gk∥γ
Is)

(as
∥∥P T

k

∥∥ ∥Pk∥ =
∥∥P T

k Pk

∥∥)

≤ Cn

s

∥gk∥1−γ

c2
. ◀

We next show that, when ∥gk∥ is at least ε away from 0, ∥dk∥ is bounded above by some constant.

▶ Lemma 5. Suppose that Assumption 3 holds. Suppose also that there exists ε > 0 such that ∥gk∥ ≥ ε. Then,
with probability at least 1− 2e−s, dk defined by (7) satisfies

∥dk∥ ≤ r(ε), (12)

where

r(ε) := Cn
c2s

max
(

U1−γ
g ,

1
εγ−1

)
.

Proof. If γ ≤ 1, it follows from Lemma 4 and (9) that

∥dk∥ ≤
Cn
s

U1−γ
g

c2
.

Meanwhile, if γ > 1, it follows from Lemma 4 and ∥gk∥ ≥ ε that

∥dk∥ ≤
Cn
s

1
c2εγ−1 .

This completes the proof. ◀
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When ∥gk∥ ≥ ε, we have from Lemma 5 that

xk + τdk ∈ Ω + B(0, r(ε)), ∀ τ ∈ [0, 1].

By boundedness of Ω + B(0, r(ε)) and by using the fact that f is twice continuously differentiable, we deduce
that there exists UH(ε) > 0 such that∥∥∇2f(x)

∥∥ ≤ UH(ε), ∀ x ∈ Ω + B(0, r(ε)). (13)

The following lemma indicates that a step size smaller than some constant satisfies Armijo’s rule when
∥gk∥ ≥ ε.
▶ Lemma 6. Suppose that Assumption 3 holds. Suppose also that there exists ε > 0 such that ∥gk∥ ≥ ε. Then,
with probability at least 1− 2e−s, a step size t′

k > 0 such that

t′
k ≤

2(1− α)c2
2ε2γs

((1 + c1) Cn
s UH(ε) + c2Uγ

g )UH(ε)Cn
satisfies Armijo’s rule, i.e.,

f(xk)− f(xk + t′
kdk) ≥ −αt′

kgT
k dk.

Proof. From Taylor’s theorem, there exists τ ′
k ∈ (0, 1) such that

f(xk + t′
kdk) = f(xk) + t′

kgT
k dk + 1

2 t′
k

2
dT

k∇2f(xk + τ ′
kt′

kdk)dk.

Then, we have

f(xk)− f(xk + t′
kdk) + αt′

kgT
k dk

= (α− 1)t′
kgT

k dk −
1
2 t′

k
2
dT

k∇2f(xk + τ ′
kt′

kdk)dk

= (1− α)t′
kgT

k P T
k M−1

k Pkgk −
1
2 t′

k
2
gT

k P T
k M−1

k Pk∇2f(xk + τ ′
kt′

kdk)P T
k M−1

k Pkgk (14)

(by (7))

≥ (1− α)t′
kλmin(M−1

k ) ∥Pkgk∥2

− 1
2 t′

k
2
λmax(∇2f(xk + τ ′

kt′
kdk))λmax(M−1

k PkP T
k M−1

k ) ∥Pkgk∥2

≥ (1− α)t′
kλmin(M−1

k ) ∥Pkgk∥2 − 1
2 t′

k
2
UH(ε)λmax(M−1

k PkP T
k M−1

k ) ∥Pkgk∥2
,

(by (13))

where the first inequality derives from the fact that

gT
k P T

k M−1
k Pk∇2f(xk + τ ′

kt′
kdk)P T

k M−1
k Pkgk ≤ λmax(M−1

k Pk∇2f(xk + τ ′
kt′

kdk)P T
k M−1

k )∥Pkgk∥2

≤ λmax(∇2f(xk + τ ′
kt′

kdk))λmax(M−1
k PkP T

k M−1
k ) ∥Pkgk∥2

.

By Lemma 2, we have that, with probability at least 1−2e−s,
∥∥PkP T

k

∥∥ ≤ Cn
s . In addition, we have ∥Hk∥ ≤ UH(ε)

from (13), which gives us
∥∥PkHkP T

k

∥∥ ≤ Cn
s UH(ε). For these reasons, we obtain evaluation of the values of

λmin(M−1
k ) and λmax(M−1

k PkP T
k M−1

k ):

λmin(M−1
k ) = 1

λmax(Mk)

= 1
λmax(PkHkP T

k + c1ΛkIs + c2 ∥gk∥γ
Is)

≥ 1
Cn
s UH(ε) + c1

Cn
s UH(ε) + c2 ∥gk∥γ

, (15)

λmax(M−1
k PkP T

k M−1
k ) ≤

∥∥PkP T
k

∥∥λmax(M−1
k )2

≤ Cn
s

1
λmin(PkHkP T

k + c1ΛkIs + c2 ∥gk∥γ
Is)2

≤ Cn
s

1
c2

2 ∥gk∥2γ ,
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so that we have

f(xk)− f(xk + t′
kdk) + αt′

kgT
k dk

≥ (1− α)t′
k

Cn
s UH(ε) + c1

Cn
s UH(ε) + c2 ∥gk∥γ

∥Pkgk∥2 − 1
2 t′

k
2 Cn

s

UH(ε)
c2

2 ∥gk∥2γ ∥Pkgk∥2

≥ (1− α)t′
k

Cn
s UH(ε) + c1

Cn
s UH(ε) + c2Uγ

g

∥Pkgk∥2 − 1
2 t′

k
2 Cn

s

UH(ε)
c2

2ε2γ
∥Pkgk∥2

(by (9) and ∥gk∥ ≥ ε)

= CUH(ε)n
2c2

2ε2γs
t′
k

(
2(1− α)c2

2ε2γs

((1 + c1) Cn
s UH(ε) + c2Uγ

g )UH(ε)Cn
− t′

k

)
∥Pkgk∥2

≥ 0,

which completes the proof. ◀

As a consequence of this lemma, it turns out that the step size tk used in RS-RNM can be bounded from
below by some constant.

▶ Corollary 7. Suppose that Assumption 3 holds. Suppose also that there exists ε > 0 such that ∥gk∥ ≥ ε. Then,
with probability at least 1− 2e−s, the step size tk chosen in Line 6 of RS-RNM satisfies

tk ≥ tmin(ε), (16)

where

tmin(ε) = min
(

1,
2(1− α)βc2

2ε2γs

((1 + c1) Cn
s UH(ε) + c2Uγ

g )UH(ε)Cn

)
.

Proof. If

2(1− α)c2
2ε2γs

((1 + c1) Cn
s UH(ε) + c2Uγ

g )UH(ε)Cn
> 1,

we know that tk = 1 satisfies Armijo’s rule (8) from Lemma 6. If not, there exists lk ∈ {0, 1, 2, . . . } such that

βlk+1 <
2(1− α)c2

2ε2γs

((1 + c1) Cn
s UH(ε) + c2Uγ

g )UH(ε)Cn
≤ βlk ,

and by Lemma 6, we have that the step size βlk+1 satisfies Armijo’s rule (8). Then, from the definition of βlk in
Line 6 of RS-RNM, we have

tk = βlk ≥ βlk+1 = β · βlk ≥ 2(1− α)βc2
2ε2γs

((1 + c1) Cn
s UH(ε) + c2Uγ

g )UH(ε)Cn
.

This completes the proof. ◀

Using Corollary 7, we can show the global convergence of RS-RNM under Assumption 3.

▶ Theorem 8. Suppose that Assumption 3 holds. Let δ ∈ (0, 1) and define δs := 2
(
exp(−C0

4 s) + exp(−s)
)

and

m =
⌊

f(x0)− f∗

(1− δ)(1− δs)p(ε)ε2

⌋
+ 1, where p(ε) = αtmin(ε)

2C(1 + c1) n
s UH(ε) + 2c2Uγ

g

.

Then, with probability at least 1− exp
(
− δ2

2 (1− δs)m
)

there exists k ∈ {0, 1, . . . , m− 1} such that ∥gk∥ < ε.

Proof. We first notice that, by Lemma 1, applied with ε = 1/2, and Lemma 2, we have, using (4), that
∥Pkgk∥2 ≥ 1

2 ∥gk∥2 and ∥PkP ⊤
k ∥ ≤ C n

s holds for all k ∈ {0, 1, . . . , m− 1} with the given probability.
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Suppose, for the sake of contradiction, that ∥gk∥ ≥ ε for all k ∈ {0, 1, . . . , m − 1}. From Armijo’s rule
(8), we can estimate how much the function value decreases in one iteration. We have that with probability
1− 2

(
exp(−C0

4 s) + exp(−s)
)
:

f(xk)− f(xk+1) ≥ −αtkgT
k dk

= αtkgT
k P T

k M−1
k Pkgk

≥ αtkλmin(M−1
k

) ∥Pkgk∥2

≥ αtmin(ε)
2(1 + c1) Cn

s UH(ε) + 2c2 ∥gk∥γ
∥gk∥2

(by ∥Pkgk∥2 ≥ 1
2 ∥gk∥2)

≥ p(ε)ε2. (by (9) and ∥gk∥ ≥ ε)

Let us denote by Ak the event, only depending of Pk, where the above inequality holds. Conditionally to the
complement of Ak we have only that f(xk)− f(xk+1) ≥ 0. Let us denote by Tk ∈ {0, 1} the random variable
equal to 1 if and only if Ak holds. Notice that the random variables {Tk} are mutually independent because Tk

depends only on Pk. By the above remark we have that for all k: f(xk)− f(xk+1) ≥ p(ε)ε2Tk. Hence by adding
up all these inequalities from k = 0 to k = m− 1, we get

f(x0)− f(xm) ≥ p(ε)ε2
m−1∑
k=0

Tk. (17)

Since, for all k, E[Tk] ≥ 1− 2
(
exp(−C0

4 s) + exp(−s)
)

:= 1− δs, we have by a Chernoff bound (see [41]), that for
all δ ∈ (0, 1),

P

(
m−1∑
k=0

Tk ≥ (1− δ)(1− δs)m
)
≥ 1− exp

(
−δ2

2 (1− δs)m
)

. (18)

Notice that by definition of m, we have that

m >
f(x0)− f∗

(1− δ)(1− δs)p(ε)ε2 .

Hence

(1− δ)(1− δs)p(ε)ε2m > f(x0)− f∗. (19)

Thus, with probability at least 1− exp
(
− δ2

2 (1− δs)m
)

f(x0)− f∗ ≥ f(x0)− f(xm)
≥ (1− δ)(1− δs)mp(ε)ε2

> f(x0)− f∗,

where the second inequality holds by (17) together with (18) and the strict inequality holds by (19). This is a
contradiction, hence there exists k ∈ {0, 1, . . . , m− 1} such that ∥gk∥ < ε. ◀

Because of the dependency of p(ε) on ε, the above discussion can not lead to the iteration complexity analysis,
as we need to quantify the exact dependency of the iteration complexity bound with respect to ε. This will be
done, under a few additional assumptions, in the next subsection.

4.2 Global iteration complexity
We now estimate the global iteration complexity of the RS-RNM under Assumption 3 and the following
assumption.



10 Theoretical analysis of the randomized subspace regularized Newton method

▶ Assumption 9.
i. γ ≤ 1/2,
ii. α ≤ 1/2,
iii. There exists LH > 0 such that∥∥∇2f(x)−∇2f(y)

∥∥ ≤ LH ∥x− y∥ , ∀ x, y ∈ Ω + B(0, r1),

where r1 :=
CU1−γ

g n

c2s
.

From the definition of r1 in iii, Lemma 4 and (9), we have

∥dk∥ ≤
Cn
s

∥gk∥1−γ

c2
≤ Cn

s

U1−γ
g

c2
= r1.

Note that unlike (12), the bound has no dependency on ε. For this reason, we have

xk + τdk ∈ Ω + B(0, r1), ∀ τ ∈ [0, 1].

Moreover, since Ω + B(0, r1) is bounded and f is twice continuously differentiable, there exists UH > 0 such that∥∥∇2f(x)
∥∥ ≤ UH , ∀ x ∈ Ω + B(0, r1). (20)

Similar to the result of Lemma 6, we can show that a step size smaller than some constant satisfies Armijo’s
rule and therefore, tk can be bounded from below by some constant.

▶ Lemma 10. Suppose that Assumption 3 and Assumption 9 hold. Then, with probability at least 1− 2e−s, a
step size t′

k > 0 such that

t′
k ≤ min

(
1,

c2
2s2

C2
LHU1−2γ

g n2

)
,

satisfies Armijo’s rule, i.e.,

f(xk)− f(xk + t′
kdk) ≥ −αt′

kgT
k dk.

Proof. As (14) is obtained in the proof of Lemma 6, there exists τ ′
k ∈ (0, 1) such that

f(xk)− f(xk + t′
kdk) + αt′

kgT
k dk

= (1− α)t′
kgT

k P T
k M−1

k Pkgk −
1
2 t′

k
2
gT

k P T
k M−1

k Pk∇2f(xk + τ ′
kt′

kdk)P T
k M−1

k Pkgk.

Since we have 1− α ≥ 1/2 ≥ t′
k/2 from Assumption 9.ii, we obtain

f(xk)− f(xk + t′
kdk) + αt′

kgT
k dk

≥ 1
2 t′

k
2
gT

k P T
k M−1

k Pkgk −
1
2 t′

k
2
gT

k P T
k M−1

k Pk∇2f(xk + τ ′
kt′

kdk)P T
k M−1

k Pkgk

= 1
2 t′

k
2
gT

k P T
k (M−1

k −M−1
k PkHkP T

k M−1
k )Pkgk

− 1
2 t′

k
2
gT

k P T
k M−1

k Pk(∇2f(xk + τ ′
kt′

kdk)−Hk)P T
k M−1

k Pkgk. (21)

We next evaluate the first and second terms respectively. Since we have

M−1
k −M−1

k PkHkP T
k M−1

k = M−1
k −M−1

k (Mk − ηkIs)M−1
k

= ηk(M−1
k )2, (22)

the first term can be bounded as follows:
1
2 t′

k
2
gT

k P T
k (M−1

k −M−1
k PkHkP T

k M−1
k )Pkgk = 1

2 t′
k

2
ηk

∥∥M−1
k Pkgk

∥∥2

≥ 1
2 t′

k
2
c2 ∥gk∥γ ∥∥M−1

k Pkgk

∥∥2
.
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Using Lemma 2 and Assumption 9.iii, we also obtain, with probability at least 1− 2e−s, the bound of the second
term:

1
2 t′

k
2
gT

k P T
k M−1

k Pk(∇2f(xk + τ ′
kt′

kdk)−Hk)P T
k M−1

k Pkgk

≤ 1
2 t′

k
2 ∥∥∇2f(xk + τ ′

kt′
kdk)−Hk

∥∥∥∥PkP T
k

∥∥ ∥∥M−1
k Pkgk

∥∥2

≤ Cn2s
LHt′

k
3 ∥dk∥

∥∥M−1
k Pkgk

∥∥2
.

Thus, we have

f(xk)− f(xk + t′
kdk) + αt′

kgT
k dk ≥

1
2 t′

k
2
(

c2 ∥gk∥γ − Cn
s

LHt′
k ∥dk∥

)∥∥M−1
k Pkgk

∥∥2

= Cn2s
LHt′

k
2 ∥dk∥

(
c2s ∥gk∥γ

CLHn ∥dk∥
− t′

k

)∥∥M−1
k Pkgk

∥∥2
. (23)

Moreover, from (9), Lemma 4 and Assumption 9.i, we have

∥gk∥γ

∥dk∥
≥ c2s

Cn ∥gk∥1−2γ ≥
c2s

CU1−2γ
g n

,

so that we finally obtain

f(xk)− f(xk + t′
kdk) + αt′

kgT
k dk ≥

Cn
2s

LHt′
k

2 ∥dk∥

(
c2

2s2

C2
LHU1−2γ

g n2
− t′

k

)∥∥M−1
k Pkgk

∥∥2

≥ 0.

This completes the proof. ◀

▶ Corollary 11. Suppose that Assumption 3 and Assumption 9 hold. Then, with probability at least 1− 2e−s, the
step size tk chosen in Line 6 of RS-RNM satisfies

tk ≥ tmin, (24)

where

tmin = min
(

1,
βc2

2s2

C2
LHU1−2γ

g n2

)
.

Proof. We get the conclusion in the same way as in the proof of Corollary 7 using Lemma 10. ◀

▶ Remark 12. Since (24) is equivalent to βlk ≥ tmin, and moreover

lk ≤ log tmin/ log β,

Corollary 11 tells us that the number of the backtracking steps is bounded above by some constant independent
of k.

Now, we can obtain the global iteration complexity of RS-RNM.

▶ Theorem 13. Suppose that Assumption 3 and Assumption 9 hold. Consider any δ ∈ (0, 1). Let

m =
⌊

f(x0)− f∗

(1− δ)(1− δs)pε2

⌋
+ 1, where p = αtmin

2C(1 + c1) n
s UH + 2c2Uγ

g

,

and where δs = 2
(
exp(−C0

4 s)− exp(−s)
)
. Then, we have that√

f(x0)− f∗

mp
≥ min

k=0,1,...,m−1
∥gk∥

holds with probability at least 1− exp
(
− δ2

2 (1− δs)m
)

.
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Proof. Replacing UH(ε) and tmin(ε) with UH , in (20), and tmin respectively in the argument in the proof of
Theorem 8, we have

f(xk)− f(xk+1) ≥ p ∥gk∥2 (k = 0, 1, . . . , m− 1),

with the given probability. Therefore, by using the same notation as in the proof of Theorem 8, we obtain:

f(x0)− f∗ ≥ f(x0)− f(xm)

=
m−1∑
k=0

(f(xk)− f(xk+1))

≥ p

m−1∑
k=0
∥gk∥2

Tk

≥ p

(
min

k=0,1,...,m−1
∥gk∥2

)m−1∑
k=0

Tk

≥ (1− δ)(1− δs)mp

(
min

k=0,1,...,m−1
∥gk∥2

)
,

where the last inequality holds with probability 1 − exp
(
− δ2

2 (1− δs)m
)

as shown in (18). This prove the
theorem. ◀

If we ignore the probability, Theorem 13 shows that we get ∥gk∥ ≤ ε after at most O(ε−2) iterations. This
global complexity O(ε−2) is the same as that obtained in [39] for the regularized Newton method. Notice that,
by a cubic regularization, the R-ARC algorithm in [37] achieves O(ε−3/2) to obtain a first order stationary point.

5 Local convergence

In this section, we investigate local convergence properties of the sequence {xk} assuming that it converges to
a strict local minimizer x. First we will show that the sequence converges locally linearly to the strict local
minimizer; then we will prove that, when f is strongly convex, we cannot aim at local super-linear convergence
using random subspace. Finally, we will prove that when the Hessian at x is rank deficient then we can attain
super-linear convergence for s < n large enough.

▶ Assumption 14. For all x, y

∥∇2f(x)−∇2f(y)∥ ≤ LH∥x− y∥

holds in some neighborhood BH of x.

5.1 Local linear convergence
In this subsection we will show that the sequence {f(xk) − f(x)} converges locally linearly, i.e. there exists
κ ∈ (0, 1) such that for k large enough,

f(xk+1)− f(x) ≤ (1− κ)(f(xk)− f(x)).

We will further prove that κ can be expressed as κ = O( s
nκ̃(∇2f(x)) ), where κ̃(∇2f(x)) is the ratio of the largest

eigenvalue value over the smallest non-zero eigenvalue of ∇2f(x). Notice that, to the best of our knowledge, until
now, local linear convergence is always proved for subspace algorithms assuming that the function is locally
strongly convex or satisfies some PL-inequality (3). In this section we prove that under a Hölderian error bound
condition, and an additional mild assumptions on the rank of the Hessian at the local minimizer, we can prove
local linear convergence. More precisely let us denote by r = rank(∇2f(x)), which measures the number of
positive eigenvalues of ∇2f(x). We will first prove, under some assumption on the rank of the Hessian at x and
on s, that for any x in the a neighborhood of x, the function

f̃x : u 7−→ f(x + P ⊤u), where P is a random matrix sampled from D (25)

is strongly convex with high probability in a neighborhood of 0. Let us fix σ ∈ (0, 1). We recall here that
P ∈ Rs×n is equal to 1√

s
times a random Gaussian matrix. In this subsection, we make the following additional

assumptions:
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▶ Assumption 15.
i. There exists σ ∈ (0, 1) such that r = rank(∇2f(x)) ≥ σn.
ii. There exist ρ ∈ (0, 3) and C̃ such that in a neighborhood of x, f(xk)− f(x) ≥ C̃∥xk − x∥ρ holds.

▶ Assumption 16. We have that s ≤ min
(

σ
4C2 , 4(1−σ)

C2

)
n.

From Assumption 15.i, ∇2f(x) has r positive eigenvalues, i.e, λ1(x) ≥ . . . λr(x) > 0. By continuity of the
eigenvalues, there exists a neighborhood B of x such that for any x ∈ B, λr(x) ≥ λr(x)

2 . Here, we assume, w.l.o.g.
that B ⊆ BH , where BH is defined in Assumption 14. Let us denote

λ := λr(x)
2 . (26)

Assumption 15.ii is called a Hölderian growth condition or a Hölderian error bound condition [24]. The condition
is weaker than local strong convexity in the sense that it holds with ρ = 2 if f is locally strongly convex.

▶ Proposition 17. Assume that Assumption 15.i and Assumption 16 hold. Let us consider f̃x defined by (25).
There exists a neighborhood B∗ ⊆ B such that for any x ∈ B∗,

∇2f̃x(0) ⪰ n

8s
σλIs

holds with probability at least 1− 6 exp(−s).

Proof. Let x ∈ B be fixed and let P ∈ Rs×n be a Gaussian matrix. Because of ∇2f̃x(0) = P∇2f(x)P ⊤, we
have u⊤∇2f̃x(0)u = (P ⊤u)⊤∇2f(x)(P ⊤u) for any u ∈ Rs. Let ∇2f(x) = U(x)D(x)U(x)⊤ be the eigenvalue
decomposition of ∇2f(x). Since ∇2f̃x(0) = (PU(x))D(x)(PU(x))⊤ and PU(x) has the same distribution as P ,
we can assume here w.l.o.g. that PU(x) = P . Here

D(x) =


λ1(x) 0 . . . 0

0 λ2(x) . . . 0
...

. . .
...

0 0 . . . λn(x)

 ,

where λ1(x) ≥ · · · ≥ λn(x) and λr(x) ≥ λ (since x ∈ B). Let us decompose P ⊤ such that

P ⊤ =
(

P 1

P 2

)
where P 1 ∈ Rn1×s and P 2 ∈ Rn2×s, where n1 and n2 are chosen such that n1 = r and n2 = n− r. Furthermore
let D1(x) and D2(x) be respectively the n1 × n1 and n2 × n2 diagonal matrix such that D(x) =

(
D1(x) 0

0 D2(x)

)
.

We have

(P ⊤u)⊤D(x)(P ⊤u) = (P 1u)⊤D1(x)(P 1u) + (P 2u)⊤D2(x)(P 2u). (27)

By Assumption 15.i, and by definition of B, we have that D1(x) ⪰ λr(x)In1 ⪰ λIn1 ≻ 0, and D2(x) ⪰ λn(x)In2 .
Hence from (27), we have

(P ⊤u)⊤D(x)(P ⊤u) ≥ λ∥P 1u∥2 + λn(x)∥P 2u∥2. (28)

Let σmax(·) and σmin(·) denote respectively the largest and the smallest singular value of a matrix. Using [41,
Theorem 4.6.1], there exists a constant C such that with probability at least 1− 6 exp(−s):√

n

s
− C ≤ σmin(P ⊤) ≤ σmax(P ⊤) ≤

√
n

s
+ C,√

n1

s
− C ≤ σmin(P 1) ≤ σmax(P 1) ≤

√
n1

s
+ C, (29)√

n2

s
− C ≤ σmin(P 2) ≤ σmax(P 2) ≤

√
n2

s
+ C.
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More precisely, since all the three matrices P ⊤, P 1 and P 2 are Gaussian random matrices, we can apply [41,
Theorem 4.6.1] and deduce that each of the three inequalities above holds with probability 1− 2 exp(−s). The
probability that all the three equations hold is derived using (4). Hence, with probability at least 1− 6e−s, for
any u ∈ Rs,

∥P 1u∥ ≥
√

n/s

(√
n1
s − C√
n/s

)
∥u∥,

∥P 2u∥ ≤
√

n/s

(√
n2
s + C√
n/s

)
∥u∥.

We have that n1 ≥ σn and n2 ≤ (1− σ)n. Furthermore, we have by Assumption 16 that s ≤ σ
4C2 n implies that√

σn
s − C ≥

1
2
√

σn
s and s ≤ 4(1−σ)

4C2 n implies that
√

(1−σ)n
s + C ≤ 2

√
(1−σ)n

s . Hence√
n1
s − C√
n/s

≥ 1
2
√

σ &
√

n2
s + C√
n/s

≤ 2
√

(1− σ).

Therefore,

∥P 1u∥ ≥1
2
√

σ(n/s)∥u∥,

∥P 2u∥ ≤2
√

(1− σ)(n/s)∥u∥.

Hence, from (28), we have that

(P ⊤u)⊤D(x)(P ⊤u) ≥ n/s

(
1
4σλ + 4(1− σ) min(λn(x), 0)

)
∥u∥2.

We conclude the proposition by noticing that min(λn(x), 0) tends to 0, hence the claim holds by considering a
neighborhood B∗ ⊆ B of x small enough. ◀

We deduce the following PL inequality for f̃x when x ∈ B∗.

▶ Proposition 18. Assume that Assumption 14, Assumption 15.i and Assumption 16 hold, and let P ∈ Rs×n

be a Gaussian matrix. There exist neighborhoods B̂ ⊂ B∗ and B0 (a neighborhood of 0 ∈ Rs) such that for any
x ∈ B̂,

∇f̃x(0)⊤(P∇2f(x)P ⊤)−1∇f̃x(0) ≥ f(x)− min
u∈B0

f(x + P ⊤u)

holds with probability at least 1− 6 exp(−s).

Proof. Let B̂ ⊂ B∗, and let x ∈ B̂. By the Taylor expansion of f̃x at 0, there exists x̃ ∈ [x, x + P ⊤u] such that

f(x + P ⊤u) = f(x) + (P∇f(x))⊤u + 1
2u⊤P∇2f(x̃)P ⊤u.

Since, by Proposition 17, we have that P∇2f(x̃)P ⊤ ≻ 0 for any x + P ⊤u ∈ B∗, we deduce by Assumption 14
that for u small enough:

f(x + P ⊤u) ≥ f(x) + (P∇f(x))⊤u + 1
4u⊤P∇2f(x)P ⊤u. (30)

Let B0 be a neighborhood of 0 ∈ Rs such that, (30) holds, and x + P ⊤u ∈ B∗ for any x ∈ B̂. Let g(u) =
(P∇f(x))⊤u + 1

4 u⊤P∇2f(x)P ⊤u. By the above inequality we have that

min
u∈B0

f(x + P ⊤u) ≥ f(x) + min
u∈B0

g(u). (31)

By Proposition 17 we know that for any u ∈ Rs such that x + P ⊤u ∈ B∗, g is convex. Thus, the minimum is
attained at the point u∗ satisfying

∇g(u∗) = P∇f(x) + 1
2P∇2f(x)P ⊤u∗ = 0.
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Hence, since ∥∇f(x)∥ tends to 0 as x tends to x, we can ensure, by taking B̂ small enough, that u∗ ∈ B0. Hence

min
u∈B0

g(u) = −2(P∇f(x))⊤(P∇2f(x)P ⊤)−1P∇f(x) + 1
44(P∇f(x))⊤(P∇2f(x)P ⊤)−1P∇f(x)

= −(P∇f(x))⊤(P∇2f(x)P ⊤)−1P∇f(x)

holds and (31) yields the desired inequality. ◀

Before proving local linear convergence, we prove the following technical proposition.

▶ Proposition 19. Assume that Assumption 14, Assumption 16, and Assumption 15 hold. There exists k0 ∈ N
such that if k ≥ k0, we have with probability 1− 6(exp(−s) + exp(−C0

4 s)):

f(xk)− min
u∈B0

f̃xk
(u) ≥ λ0

4λmax(H)
(√

n
s + C

)2 (f(xk)− f(x)),

where λ0 is the minimal non-zero eigenvalue of H := ∇2f(x).

Proof. Using a Taylor expansion around x, we have that for all y ∈ B̂,

|f(y)− f(x)− 1
2(y − x)⊤H(y − x)| ≤ LH∥y − x∥3, (32)

where we define

H := ∇2f(x). (33)

Also, for u ∈ Rd small enough, we have by setting y = xk + P ⊤
k u in (32), that for k large enough such that

xk + P ⊤
k u ∈ B̂,

|f(xk + P ⊤
k u)− f(x)− 1

2(xk − x)⊤H(xk − x)− 1
2u⊤PkHP ⊤

k u− (PkH(xk − x))⊤u| (34)

≤ LH∥xk − x + P ⊤
k u∥3

holds. Let g(u) = 1
2 u⊤PkHP ⊤

k u + (PkH(xk − x))⊤u. By a reasoning similar to that of Proposition 17, g is
strongly convex with probability 1− 6e−s and hence is minimized at

u∗ = −(PkHP ⊤
k )−1PkH(xk − x). (35)

Notice that as k tends to infinity ∥u∗∥ tends to 0, hence for k large enough we have xk + P ⊤
k u∗ ∈ B̂ and u∗ ∈ B0.

Plugging (35) in (34) yields

f(xk + P ⊤
k u∗)

≤ f(x) + 1
2(xk − x)⊤H(xk − x)− 1

2(xk − x)⊤HP ⊤
k (PkHP ⊤

k )−1PkH(xk − x) + LH∥xk − x + P ⊤
k u∗∥3,

from which we deduce

f(xk)− f(xk + P ⊤
k u∗)

≥ f(xk)− f(x)− 1
2(xk − x)⊤H(xk − x) + 1

2(xk − x)⊤Π(xk − x)− LH∥xk − x + P ⊤
k u∗∥3,

where Π = HP ⊤
k (PkHP ⊤

k )−1PkH. Using (32), we further obtain

f(xk)− f(xk + P ⊤
k u∗) ≥ 1

2(xk − x)⊤Π(xk − x)− LH(∥xk − x + P ⊤
k u∗∥3 + ∥xk − x∥3). (36)

We have (xk − x)⊤Π(xk − x) = (H1/2(xk − x))⊤Π(H1/2(xk − x)), where Π := H
1/2

P ⊤
k (PkHP ⊤

k )−1PkH
1/2

is an orthogonal projection matrix into Range(H1/2
P ⊤

k ) parallel to ker PkH
1/2. Hence

(xk − x)⊤Π(xk − x) = ∥ΠH
1/2(xk − x)∥2.
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Since ∥PkH
1/2∥2∥ΠH

1/2(xk − x)∥2 ≥ ∥PkH
1/2ΠH

1/2(xk − x)∥2, we have

(xk − x)⊤Π(xk − x) ≥ 1

∥PkH
1/2∥2

∥PkH
1/2ΠH

1/2(xk − x)∥2

= 1

∥PkH
1/2∥2

∥PkH(xk − x)∥2

≥ 1

2∥PkH
1/2∥2

∥H(xk − x)∥2

≥ λ0

2∥PkH
1/2∥2

∥H1/2(xk − x)∥2

= λ0

2λmax(PkHPk)
∥H1/2(xk − x)∥2

= λ0

2λmax(PkHPk)
(xk − x)⊤H(xk − x). (37)

where the second inequality holds with probability at least 1 − 2 exp(−C0
4 s) (by Lemma 1 with ε = 1

2 ), and
the third holds as λ0 is the smallest non-zero eigenvalue of H. The second equality holds as σmax(PkH

1/2)2 =
λmax(PkHkPk). We have therefore proved that

(H1/2(xk − x))⊤Π(H1/2(xk − x)) ≥ λ0

2λmax(PkHPk)
(xk − x)⊤H(xk − x). (38)

Hence, by (36), we have

f(xk)− f(xk + P ⊤
k u∗)

≥ λ0

4λmax(PkHPk)
(xk − x)⊤H(xk − x)− LH(∥xk − x + P ⊤

k u∗∥3 + ∥xk − x∥3). (39)

From (35), we have that ∥xk − x + P ⊤
k u∗∥ = ∥(In − P ⊤

k (PkHP ⊤
k )−1PkH)(xk − x)∥. Hence

∥xk − x + P ⊤
k u∗∥ ≤ ∥In − P ⊤

k (PkHP ⊤
k )−1PkH∥∥xk − x∥. (40)

Since P ⊤
k (PkHP ⊤

k )−1PkH is projection matrix (along Im(P ⊤
k ) parallel to Ker(PkH)), we have by [1] that

∥In − P ⊤
k (PkHP ⊤

k )−1PkH∥ = ∥P ⊤
k (PkHP ⊤

k )−1PkH∥. (41)

Furthermore, by Proposition 17, we have that with probability at least 1− 6 exp(−s),

PkHP ⊤
k ⪰

n

8s
σλIs.

Hence, we deduce from (41) that

∥In − P ⊤
k (PkHP ⊤

k )−1PkH∥ ≤ ∥P
⊤
k ∥2∥H∥

n
8s σλ

. (42)

Therefore, we deduce by (39), (40) and (42) for β1 > 0 suitably chosen, we have

f(xk)− f(xk + P ⊤
k u∗) ≥ λ0

4λmax(PkHPk)
(xk − x)⊤H(xk − x)− β1∥xk − x∥3. (43)

By taking y = xk in (32), we have that

1
2(xk − x)⊤H(xk − x) ≥ f(xk)− f(x)− LH∥xk − x∥3.

Hence, by (43)

f(xk)− f(xk + P ⊤
k u∗) ≥ λ0

2λmax(PkHPk)
(f(xk)− f(x))−

(
λ0

2λmax(PkHPk)
LH + β1

)
∥xk − x∥3.
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By Assumption 15.ii,

f(xk)− f(xk + P ⊤
k u∗) ≥

(
λ0

2λmax(PkHPk)
−
(

λ0

2λmax(PkHPk)
LH + β1

)
1
C̃
∥xk − x∥3−ρ

)
(f(xk)− f(x)).

Since ∥xk − x∥ tends to 0 as k tends to infinity and ρ < 3, we have that for k large enough

f(xk)− min
u∈B0

f(xk + P ⊤
k u) ≥ f(xk)− f(xk + P ⊤

k u∗) ≥ λ0

4λmax(PkHPk)
(f(xk)− f(x)),

where the first inequality holds as, by (35), u∗ ∈ B0 for k large enough. The probability bound in the statement
of the theorem is obtained by using (4): in the whole proof we only use Lemma 1 with ε = 1

2 , which holds with
probability at least 1− 2 exp(−C0

4 s), and the inequalities (29) which hold with probability at least 1− 6 exp(−s).
We also factorize the expression, using that 1− 2 exp(−C0

4 s) > 1− 6 exp(−C0
4 s). We end the proof by noticing

that λmax(PkHPk) ≤ λmax(H)σmax(Pk)2, hence by the first equation of (29)

λmax(PkHPk) ≤ λmax(H)
(√

n

s
+ C

)2

. (44)

◀

We are now ready to prove the main theorem of this section.

▶ Theorem 20. Assume that Assumption 14, Assumption 15 and Assumption 16 hold. There exist 0 < κ < 1,
k0 ∈ N, such that if k ≥ k0, then

f(xk+1)− f(x) ≤
(

1− 1
2α(1− α) λ0

4λmax(H)
(√

n
s + C

)2

)
(f(xk)− f(x))

holds with probability at least 1− 6(exp(−s) + exp(−C0
4 s)). Here α ∈ (0, 1) is a parameter of Algorithm 1.

Proof. We recall that we use a backtracking line search to find at each iteration k a step-size tk such that

f(xk + tkdk) ≤ f(xk) + αtk∇f(xk)⊤dk,

with dk = P ⊤
k uk and the update rule tk ← βtk for 0 < α < 1 and 0 < β < 1. We recall that

uk = −(PkHkP ⊤
k + ηkIs)−1Pkgk, (45)

where we recall that ηk = c1Λk + c2 ∥gk∥γ . By a Taylor expansion of f around xk, there exists x∗
k ∈ [xk, xk+1]

such that

f(xk + tkP ⊤
k uk) = f(xk) + tk(Pkgk)⊤uk + t2

k

2 u⊤
k Pk∇2f(x∗

k)P ⊤
k uk. (46)

Notice that ∇2f is Lipschitz continuous (by Assumption 14). Furthermore, by Proposition 17, for k large enough,
PkHkP ⊤

k is positive definite with probability at least 1− 6 exp(−s) as the sequence {xk} converges to x. Hence,
for k large enough

u⊤
k Pk∇2f(x∗

k)P ⊤
k uk ≤ u⊤

k PkHkP ⊤
k uk + ∥P ⊤

k uk∥2∥Hk −∇2f(x∗
k)∥

≤ u⊤
k PkHkP ⊤

k uk + LH∥P ⊤
k uk∥2∥xk − xk+1∥ ≤ 2u⊤

k PkHkP ⊤
k uk

holds with probability at least 1− 6(exp(−s) + exp(−C0
4 s)). By (46), we deduce that for k large enough:

f(xk + tkP ⊤
k uk) ≤ f(xk) + tk(Pkgk)⊤uk + 2 t2

k

2 u⊤
k PkHkP ⊤

k uk

≤ f(xk) + tk(Pkgk)⊤uk + t2
ku⊤

k (PkHkP ⊤
k + ηkIs)uk,

where the second inequality holds as ηk ≥ 0. Let

µ2
k := −g⊤

k dk = (Pkgk)⊤(PkHkP ⊤
k + ηkIs)−1(Pkgk). (47)
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Since (Pkgk)⊤uk = g⊤
k (P ⊤

k uk) = −µ2
k, and by definition of uk in (45), we can write

f(xk + tkP ⊤
k uk) ≤ f(xk)− tkµ2

k + t2
ku⊤

k (PkHkP ⊤
k + ηkIs)uk = f(xk)− tkµ2

k + t2
kµ2

k. (48)

Hence, we have

f(xk+1) ≤ f(xk)− tk (1− tk) µ2
k.

Thus the step-size tk = 1− α satisfies the exit condition, f(xk)− f(xk + tkdk) ≥ −αtkgT
k dk, in the backtracking

line search as we have

(1− tk) = α

for such tk. Therefore, the backtracking line search stops with some tk ≥ 1− α, and we have

f(xk+1) ≤ f(xk)− α(1− α)µ2
k. (49)

Notice that since ηk tends to 0, we have that

µ2
k = (Pkgk)⊤(PkHkP ⊤

k + ηkIs)−1(Pkgk) ≥ 1
2(Pkgk)⊤(PkHP ⊤

k )−1(Pkgk).

Hence, by Proposition 18, we have that when k is large enough,

f(xk+1)− f(x) ≤ f(xk)− f(x)− 1
2α(1− α)

(
f(xk)− min

u∈B0
f̃xk

(u)
)

(50)

holds with probability at least 1− 6(exp(−s) + exp(−C0
4 s)). By Proposition 19, we have that

f(xk)− min
u∈B0

f̃xk
(u) ≥ λ0

4λmax(H)
(√

n
s + C

)2 (f(xk)− f(x))

holds with probability at least 1− 6(exp(−s) + exp(−C0
4 s)). Hence

f(xk+1)− f(x) ≤
(

1− 1
2α(1− α) λ0

4λmax(H)
(√

n
s + C

)2

)
(f(xk)− f(x)) , (51)

which proves the theorem. ◀

▶ Remark 21. Notice that the rate we obtain corresponds to a high probability estimation of the local convergence
rate derived, when f is assumed to be strongly convex, in the stochastic subspace cubic Newton method [22].
This can be seen in the proof of Proposition 19, where the rate λ0

4λmax(H)(
√

n
s +C)2 corresponds to a lower bound

of λmin(H1/2
P ⊤

k (PkHP ⊤
k )−1PkH

1/2), as seen in (38) and (44). More specifically, this corresponds to a high
probability lower bound of the parameter ζ = λmin[E(Π)] = λmin[E(H1/2

P ⊤
k (PkHP ⊤

k )−1PkH
1/2)] that appears

in the local convergence rate in Theorem 6.2 of [22].

Let us define

κ := 1
2α(1− α) λ0

4λmax(H)
(√

n
s + C

)2 < 1.

We have the following direct corollary:

▶ Corollary 22. Assume that Assumption 14, Assumption 15 and Assumption 16 hold. There exist k0 ∈ N such
that if k ≥ k0, then, for any m ∈ N,

f(xk+m)− f(x) ≤ (1− κ)m(f(xk)− f(x))

holds with probability at least 1− 6m(exp(−s) + exp(−C0
4 s)).

Proof. This is a direct consequence of Theorem 20 where the success probability is obtained by union bound,
using (4). ◀
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Notice that one can also derive an expectation version of Theorem 20 as follows.

▶ Corollary 23. Assume that Assumption 14, Assumption 15 and Assumption 16 hold. There exist k0 ∈ N such
that if k ≥ k0, then,

E [f(xk+1)− f(x)] ≤ (1− p2κ)E [f(xk)− f(x)] ,

where p := 1 − 6(exp(−s) + exp(−C0
4 s)). Here the expectation is taken with respect to the random variables

P0, P1, P2, . . . , Pk.

Proof. By (50) we have that

f(xk+1)− f(x) ≤ f(xk)− f(x)− 1
2α(1− α)

(
f(xk)− min

u∈B0
f̃xk

(u)
)

holds with probability p = 1− 6(exp(−s) + exp(−C0
4 s)). Let us denotes by E the event, with respect to Pk, on

which the above equation holds. Since f(xk+1)− f(x) ≤ f(xk)− f(x) holds with probability one, we can write
that

f(xk+1)− f(x) ≤ f(xk)− f(x)− 1
2α(1− α)

(
f(xk)− min

u∈B0
f̃xk

(u)
)

1E ,

where 1E is the indicator function over E . Let us consider the following conditional expectation: E [· | P0, . . . , Pk−1].
We have that

E [f(xk+1)− f(x) | P0, . . . , Pk−1]

≤ f(xk)− f(x)− 1
2α(1− α)E

[(
f(xk)− min

u∈B0
f̃xk

(u)
)

1E

∣∣∣∣ P0, . . . , Pk−1

]
(52)

holds as f(xk)− f(x) is measurable with respect to the sigma algebra generated by P1, . . . , Pk−1. Let us define
the event

E ′ =
{

f(xk)− min
u∈B0

f̃xk
(u) ≥ λ0

4λmax(H)
(√

n
s + C

)2 (f(xk)− f(x))

∣∣∣∣∣ xk

}
,

on this sigma algebra, which holds by probability at least p = 1− 6(exp(−s) + exp(−C0
4 s)), by Proposition 19.

By conditioning the right-hand-side of (52) with respect to this event, we obtain that when k is large enough

E [f(xk+1)− f(x) | P0, . . . , Pk−1]

≤ f(xk)− f(x)− 1
2α(1− α)E

[
λ0

4λmax(H)
(√

n
s + C

)2 (f(xk)− f(x))1E

]
p

≤ (f(xk)− f(x))
(

1− 1
2α(1− α) λ0

4λmax(H)
(√

n
s + C

)2 p2

)
.

Where the first inequality holds as in any case we have that f(xk) − minu∈B0 f̃xk
(u) ≥ 0. By taking the

expectation with respect to P0, . . . , Pk−1 we deduce the corollary. ◀

Let consider the following assumption.

▶ Assumption 24. There exists ρ > 0 such that for k large enough

∥∇f(xk)∥ ≥ ρ∥xk − x∥. (53)

Notice that Assumption 24 is actually stronger than Assumption 15.ii.

▶ Lemma 25. We have, under Assumption 14 and Assumption 24, that for k large enough:

ρ

2
√

λmax(H)
∥xk − x∥ ≤ ∥

√
H(xk − x)∥.
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Proof. Using a Taylor expansion of t 7→ ∇f(x + t(xk − x)) around 0, we have that

∇f(xk) = ∇f(x) +
∫ 1

0
∇2f(x + t(xk − x))(xk − x)dt =

∫ 1

0
∇2f(x + t(xk − x))(xk − x)dt. (54)

By Assumption 14, for any t ∈ [0, 1] we have ∥∇2f(x + t(xk − x))−H∥ ≤ tLH∥xk − x∥. Hence we deduce that

∥∇f(xk)∥ ≤ ∥H(xk − x)∥+ ∥∇2f(x + t(xk − x))−H∥∥xk − x∥ ≤ ∥H(xk − x)∥+ LH∥xk − x∥2. (55)

Therefore, by (53), we deduce that

ρ∥xk − x∥ − LH∥xk − x∥2 ≤ ∥∇f(xk)∥ − LH∥xk − x∥2
(55)
≤ ∥H(xk − x)∥. (56)

Since ∥xk − x∥ tends to 0, we deduce that for k large enough:

ρ

2∥xk − x∥ ≤ ∥H(xk − x)∥ ≤
√

λmax(H)∥
√

H(xk − x)∥. ◀

Let us now define the semi-norm:

∥x∥2
H

:= x⊤Hx. (57)

Notice that by Lemma 25, under Assumption 24, when k is large enough, ∥ · ∥H is a norm for xk − x as we have
that ∥xk − x∥H = 0 if and only if ∥xk − x∥ = 0.

▶ Proposition 26. Assume that Assumption 14, Assumption 16, Assumption 15.i and Assumption 24 hold.
Then for k large enough:

∥xk+1 − x∥H ≤

(√
1− λ0

4λmax(H)
(√

n
s + C

)2

)
∥xk − x∥H

holds with probability at least 1− 6(exp(−s) + exp(−C0
4 s)).

Proof.√
H(xk+1 − x) =

√
H(xk+1 − xk) +

√
H(xk − x)

= −
√

HP ⊤
k (PkHkP ⊤

k + ηkIs)−1Pkgk +
√

H(xk − x)

= −
√

HP ⊤
k (PkHkP ⊤

k + ηkIs)−1PkHk(xk − x) +
√

HP ⊤
k (PkHkP ⊤

k + ηkIs)−1Pk(gk −Hk(xk − x)) (58)

+
√

H(xk − x)

= −A + B +
√

H(xk − x), (59)

where A :=
√

HP ⊤
k (PkHkP ⊤

k + ηkIs)−1PkHk(xk −x) and B :=
√

HP ⊤
k (PkHkP ⊤

k + ηkIs)−1Pk(gk −Hk(xk −x)).
First let us bound B. In order to do so, we bound ∥P ⊤

k (PkHkP ⊤
k + ηkIs)−1Pk∥. Notice that from PkHkP ⊤

k ≻ 0,
ηk ≥ 0 and Proposition 17, we have

∥P ⊤
k (PkHkP ⊤

k + ηkIs)−1Pk∥ ≤ ∥P ⊤
k (PkHkP ⊤

k )−1Pk∥ ≤
∥P ⊤

k ∥2

n
8s σλ

(60)

with probability at least 1− 6 exp(−s). Therefore, by Lemma 2, we have

∥P ⊤
k (PkHkP ⊤

k + ηkIs)−1Pk∥ ≤
8C
σλ

. (61)

By Taylor expansion at x of ∇f , as in (54), and by subtracting Hk(xk − x) to both sides, we obtain by
Assumption 14 that

∥gk −Hk(xk − x)∥ ≤
∫ 1

0
∥∇2f(x + t(xk − x))−∇2f(x)∥∥xk − x∥dt = O(∥xk − x∥2). (62)
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Hence, by (61) and (62), there exists a constant β1 > 0 such that

B ≤ ∥
√

H∥∥P ⊤
k (PkHkP ⊤

k + ηkIs)−1Pk∥∥(gk −Hk(xk − x))∥ ≤ β1∥xk − x∥2. (63)

Let us now bound A =
√

HP ⊤
k (PkHkP ⊤

k +ηkIs)−1PkHk(xk−x). Let us furthermore decompose A = A1 +A2
such that√

HP ⊤
k (PkHkP ⊤

k + ηkIs)−1PkHk(xk − x)

=
√

HP ⊤
k (PkHP ⊤

k + ηkIs)−1PkH(xk − x) +
√

HP ⊤
k ((PkHkP ⊤

k + ηkIs)−1Pk(Hk −H)(xk − x). (64)

Notice that by Assumption 14, we have that ∥(H −Hk)∥ tends to 0. Therefore, we deduce from (61) and (63)
that

∥
√

HP ⊤
k ((PkHkP ⊤

k + ηkIs)−1PkHk − (PkHP ⊤
k + ηkIs)−1PkH)(xk − x)∥ = o(∥xk − x∥).

Therefore by (58), (63) and (64), we deduce that√
H(xk+1 − x) = −A + B +

√
H(xk − x) = −A1 +

√
H(xk − x) + o(∥xk − x∥).

Hence, by evaluating the norm of A2 as o(∥xk − x∥), we deduce that with probability at least 1− 6(exp(−s) +
exp(−C0

4 s))

∥
√

H(xk+1 − x)∥ ≤
∥∥∥(In −

√
HP ⊤

k (PkHP ⊤
k + ηkIs)−1Pk

√
H
)√

H(xk − x)
∥∥∥+ o(∥xk − x∥).

We can write(
In −

√
HP ⊤

k (PkHP ⊤
k + ηkIs)−1Pk

√
H
)√

H(xk − x)

=
(

In −
√

HP ⊤
k (PkHP ⊤

k )−1Pk

√
H
)√

H(xk − x)

−
√

HP ⊤
k ((PkHP ⊤

k + ηkIs)−1 − (PkHP ⊤
k )−1)PkH(xk − x).

Hence, using the same reasoning as before, we obtain that

∥
√

H(xk+1 − x)∥ ≤
∥∥∥(In −

√
HP ⊤

k (PkHP ⊤
k )−1Pk

√
H
)√

H(xk − x)
∥∥∥+ o(∥xk − x∥). (65)

Notice that
√

HP ⊤
k (PkHP ⊤

k )−1Pk

√
H is an orthogonal projection, hence∥∥∥(In −

√
HP ⊤

k (PkHP ⊤
k )−1Pk

√
H
)√

H(xk − x)
∥∥∥2

= ∥
√

H(xk − x)∥2 − ∥
√

HP ⊤
k (PkHP ⊤

k )−1PkH(xk − x)∥2.

Then similarly to the proof of Proposition 19 and similarly to (37), we have that with probability at least
1− 6(exp(−s) + exp(−C0

4 s)),

∥
√

HP ⊤
k (PkHP ⊤

k )−1PkH(xk − x)∥2 = (xk − x)⊤Π(xk − x),

and

∥
√

HP ⊤
k (PkHP ⊤

k )−1PkH(xk − x)∥2 ≥ λ0

2λmax(PkHP ⊤
k )
∥
√

H(xk − x)∥2,

where λ0 is the first non-zero eigenvalue of H. Therefore, we have that∥∥∥(In −
√

HP ⊤
k (PkHP ⊤

k )−1Pk

√
H
)√

H(xk − x)
∥∥∥ ≤√1− λ0

2λmax(PkHP ⊤
k )
∥
√

H(xk − x)∥.

Therefore, by (65), we have that

∥
√

H(xk+1 − x)∥ ≤
√

1− λ0

2λmax(PkHP ⊤
k )
∥
√

H(xk − x)∥+ o(∥xk − x∥).

By Lemma 25, we have o(∥xk − x∥) = o(∥
√

H(xk − x)∥), hence we deduce that when k is large enough,

∥
√

H(xk+1 − x)∥ ≤
√

1− λ0

4λmax(PkHP ⊤
k )
∥
√

H(xk − x)∥.

We complete the proof using (44). ◀
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5.2 Impossibility of local super-linear convergence in general
In this section we will prove that when f is strongly convex locally around the strict local minimizer x, we
cannot aim, with high probability, at local super-linear convergence using random subspace. More precisely, the
goal of this section is to prove that there exists a constant c > 0 such that when k is large enough, we have that
with probability 1− 2 exp(−C0

4 )− 2 exp(−s),

∥xk+1 − x∥ ≥ c∥xk − x∥.

From that, we will easily deduce that there exists a constant c′ such that

f(xk+1)− f(x) ≥ c′(f(xk)− f(x))

holds with high probability when k is large enough. This will prove that the results obtained in the previous
section are optimal when f is locally strongly-convex. Indeed, by local strong-convexity of f and Hessian Lipschitz
continuity (i.e. Assumption 14), there exists l2 ≥ l1 > 0 such that for k large enough,

l1∥xk − x∥2 ≤ f(xk)− f(x) ≤ l2∥xk − x∥2.

This immediately proves the existence of the constant c′ described above. In this subsection we make the following
additional assumption.

▶ Assumption 27. We assume that

(C + 2)2s < n,

where C is the constant that appears in (29).

We recall here that for all k:

xk+1 = xk − tkP ⊤
k ((Pk∇2f(xk)P ⊤

k ) + ηkIs)−1Pk∇f(xk),

where tk is the step-size and ηk > 0 is a parameter that tends to 0 when k tends to infinity.
Let us fix k. Using a Taylor expansion of t 7→ ∇f(x + t(xk+1 − x)) around 0, as in (54), we have that

∥∇f(xk+1)∥ ≤
∫ 1

0
∥∇2f(x + t(xk+1 − x))∥∥xk+1 − x∥dt ≤

∫ 1

0
2λmax(∇2f(x))∥xk+1 − x∥dt, (66)

where λmax(·) denotes the largest eigenvalue, and the second inequality holds for k large enough under Assump-
tion 14. Hence, for k large enough and under Assumption 14,

∥xk+1 − x∥ ≥ 1
2λmax(∇2f(x))∥∇f(xk+1)∥ (67)

holds. Using a Taylor expansion of ∇f around xk, we have that

∇f(xk+1) = ∇f(xk) +
∫ 1

0
∇2f(xk + t(xk+1 − xk))(xk+1 − xk)dt.

Hence,

∇f(xk+1) = ∇f(xk) +∇2f(xk)(xk+1 − xk) +
∫ 1

0
(∇2f(xk + t(xk+1 − xk))−∇2f(xk))(xk+1 − xk).

We deduce therefore that

∥∇f(xk+1)∥ ≥ ∥∇f(xk) +∇2f(xk)(xk+1 − xk)∥ −
∫ 1

0
∥(∇2f(xk + t(xk+1 − xk))−∇2f(xk))(xk+1 − xk)∥.

By Assumption 14, the Hessian is LH -Lipschitz in BH . Since xk and xk + t(xk+1 − xk) ∈ BH for k large enough,
we have that for t ≤ 1,

∥(∇2f(xk + t(xk+1 − xk))−∇2f(xk))(xk+1 − xk))∥ ≤ LH∥xk+1 − xk∥2.

Hence (67) leads to

∥xk+1 − x∥ ≥ 1
2λmax(∇2f(x))

(
∥gk + Hk(xk+1 − xk)∥ − LH∥xk+1 − xk∥2) . (68)
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▶ Proposition 28. Assume that Assumption 14 and Assumption 27 hold and that f is strongly convex locally
around x. There exists a constant β > 0 such that if k is large enough, then with probability at least 1 −
2 exp(−C0

4 s)− 2 exp(−s), we have

∥gk + Hk(xk+1 − xk)∥ ≥ β∥xk+1 − xk∥.

Proof. Recalling the updated rule xk+1 = xk − tkP T
k M−1

k Pkgk in Algorithm 1, we have

∥gk + Hk(xk+1 − xk)∥ = ∥(In − tkHkP ⊤
k M−1

k Pk)gk∥,

where Mk is defined in (6). If k is large enough, Hk is invertible by strong convexity of f . Notice that
∥(In − tkHkP ⊤

k M−1
k Pk)gk∥ = ∥Hk(H−1

k − tkP ⊤
k M−1

k Pk)gk∥. Hence since for any invertible matrix A we have
∥Ax∥ ≥ ∥x∥

∥A−1∥ , we deduce that

∥(In − tkHkP ⊤
k M−1

k Pk)gk∥ ≥
1

∥H−1
k ∥
∥(H−1

k − tkP ⊤
k M−1

k Pk)gk∥.

Furthermore, we have

∥(H−1
k − tkP ⊤

k M−1
k Pk)gk∥2 = ∥H−1

k gk∥2 + ∥tkP ⊤
k M−1

k Pkgk∥2 − 2⟨H−1
k gk, tkP ⊤

k M−1
k Pkgk⟩. (69)

Let H−1
k gk = P ⊤

k z1 + z2 be the orthogonal decomposition of H−1
k gk on Im(P ⊤

k ) parallel to Ker(Pk). Since
Pkz2 = 0, we have

⟨H−1
k gk, tkP ⊤

k M−1
k Pkgk⟩ = ⟨P ⊤

k z1, tkP ⊤
k M−1

k Pkgk⟩.

Hence, by (69), we deduce that

∥(H−1
k − tkP ⊤

k M−1
k Pk)gk∥2 ≥ ∥H−1

k gk∥2 + ∥tkP ⊤
k M−1

k Pkgk∥2 − 2∥P ⊤
k z1∥∥tkP ⊤

k M−1
k Pkgk∥. (70)

Since H−1
k gk = P ⊤

k z1 + z2 with Pkz2 = 0, we have that PkH−1
k gk = PkP ⊤

k z1. Which implies (since PkP ⊤
k is

invertible with probability 1) that z1 = (PkP ⊤
k )−1PkH−1

k gk. Hence

∥P ⊤
k z1∥ = ∥P ⊤

k (PkP ⊤
k )−1PkH−1

k gk∥ ≤ ∥P ⊤
k (PkP ⊤

k )−1∥∥PkH−1
k gk∥.

By Lemma 1, we have that with probability at least 1−2 exp(−C0
4 s) that ∥PkH−1

k gk∥ ≤ 2∥H−1
k gk∥. Furthermore,

by writing the singular value decomposition, UΣV ⊤, of P ⊤
k , we have that ∥P ⊤

k (PkP ⊤
k )−1∥ = ∥UΣ−1V ⊤∥ =

1
σmin(P ⊤

k
) . Since σmin(P ⊤

k ) ≥
√

n
s −C holds with probability at least 1− 2e−s (we only consider the first equation

of (29)), we deduce that

∥P ⊤
k z1∥ ≤

2√
n
s − C

∥H−1
k gk∥.

Hence, from (70) we have

∥(H−1
k − tkP ⊤

k M−1
k Pk)gk∥2 (71)

≥ ∥H−1
k gk∥2 + ∥tkP ⊤

k M−1
k Pkgk∥2 − 4√

n
s − C

∥H−1
k gk∥∥tkP ⊤

k M−1
k Pkgk∥

≥

(
1− 2√

n
s − C

)
∥H−1

k gk∥2 +
(

1− 2√
n
s − C

)
∥tkP ⊤

k M−1
k Pkgk∥2,

where we used that 2ab ≤ a2 + b2 in the last inequality, and that
(

1− 2√
n
s −C

)
> 0 holds by Assumption 27.

Hence, from (71) we proved that

∥(In − tkHkP ⊤
k M−1

k Pk)gk∥2 ≥ 1
∥H−1

k ∥2

(
1− 2√

n
s − C

)
∥tkP ⊤

k M−1
k Pkgk∥2

= 1
∥H−1

k ∥2

(
1− 2√

n
s − C

)
∥xk+1 − xk∥2.
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That is

∥gk + Hk(xk+1 − xk)∥ ≥

√
1− 2√

n
s −C

∥H−1
k ∥

∥xk+1 − xk∥. (72)

Considering k large enough, as xk tends to x, we can bound, using Assumption 14, 1
∥H−1

k
∥ ≥

1
2∥H

−1∥
, where we

recall that H = ∇2f(x), which ends the proof. ◀

▶ Theorem 29. Assume that Assumption 14 and Assumption 27 hold and that f is locally strongly convex
around x. There exists a constant c > 0 such that for k large enough,

∥xk+1 − x∥ ≥ c∥xk − x∥

holds with probability at least 1− 2 exp(−C0
4 s)− 2 exp(−s).

Proof. From (68) and Proposition 28 we deduce that with probability at least 1 − 2 exp(−C0
4 s) − 2 exp(−s),

when k is large enough

∥xk+1 − x∥ ≥ 1
2λmax(∇2f(x)) (β − LH∥xk+1 − xk∥) ∥xk+1 − xk∥.

Since β > 0, we have that for k large enough so as to yield LH∥xk+1 − xk∥ ≤ β/2,

∥xk+1 − x∥ ≥ 1
2λmax(∇2f(x))

β

2 ∥xk+1 − xk∥.

Hence

∥xk+1 − x∥ ≥ β

4λmax(H)
∥xk+1 − xk∥. (73)

Since f is assumed to be strongly convex, for all α ∈ (0, 1), as gT
k dk ≤ 0. Hence we have that tk = 1Now we

notice that

∥xk+1 − xk∥ = tk∥P ⊤
k M−1

k Pkgk∥ ≥ tkσmin(P ⊤
k )∥M−1

k ∥∥Pkgk∥. (74)

Using Lemma 1 (with ε = 1/2) and the bound (29) on σmin(P ⊤
k ), we have that

tkσmin(P ⊤
k )∥M−1

k ∥∥Pkgk∥ ≥ tk

(√
n

s
− C

)
∥M−1

k ∥
1
2∥gk∥. (75)

Since xk converges to x and the Hessian is Lipschitz continuous, we have that Hk converges to H. Therefore,
when k is large enough, we have ∥M−1

k ∥ ≥
1
2∥(PkHP ⊤

k )−1∥ = 1
2∥M

−1∥, where M := PkHP ⊤
k . Since

0 ≺M ⪯ λmax(H)PkP ⊤
k ,

we deduce by Lemma 2

∥M−1
k ∥ ≥

1
2Cλmax(H) n

s

. (76)

Hence, by (73) to (76) we have that there exists a constant κ2 > 0 such that

∥xk+1 − x∥ ≥ κ2∥gk∥.

By (54) we have that

gk = H(xk − x) +
∫ 1

0
(∇2f(x + t(xk − x))−H)(xk − x)dt.

Hence, since f is assumed to be locally strongly convex, by Assumption 14 we have that for k large enough:

∥gk∥ ≥
λmin(H)

2 ∥xk − x∥.



Terunari Fuji, Pierre-Louis Poirion & Akiko Takeda 25

Using (23), we have

f(xk)− f(xk + t′
kdk) + αt′

kgT
k dk ≥

Cn
2s

LHt′
k

2 ∥dk∥
(

c2s ∥gk∥γ

CLHn ∥dk∥
− t′

k

)∥∥M−1
k Pkgk

∥∥2
,

and since f is assume to be strongly convex, ∥gk∥γ

∥dk∥ is in the order of O( 1
∥gk∥1−γ ), hence tk is bounded below by

some constant for k large enough. Hence we have for k large enough that

∥xk+1 − x∥ ≥ 1
2κ2λmin(H)∥xk − x∥,

which concludes the proof. ◀

We have the following deterministic corollary:

▶ Corollary 30. Assume that Assumption 14 and Assumption 27 hold and that f is locally strongly convex
around x. Then for k large enough,

E(∥xk+1 − x∥) ≥ cE(∥xk − x∥),

where c = (1− 2 exp(−C0
4 s)− 2 exp(−s))c (c is the same constant as in Theorem 29), and where the expectation

is taken with respect to the random variables P0, . . . , Pk.

Proof. The proof is very similar to the proof of Corollary 23. Let us consider the random variable
E[∥xk+1 − x∥ | P0, . . . , Pk−1]. Let E = {∥xk+1 − x∥ ≥ c∥xk − x∥ | xk} be an event with respect to the
random variable Pk. Using the fact that ∥xk+1 − x∥ ≥ 0, we obtain that

E [∥xk+1 − x∥ | P0, . . . , Pk−1]

= E [∥xk+1 − x∥ | P0, . . . , Pk−1, E ] P (E) + E
[
∥xk+1 − x∥

∣∣ P0, . . . , Pk−1, E
]

(1− P (E))
≥ c∥xk − x∥

Taking the expectation with respect to P0, . . . , Pk−1 leads to the result. ◀

5.3 The rank deficient case
Previously we proved that when f is locally strongly convex, super-linear convergence cannot hold for RS-RNM.
Here we prove that when the Hessian H at the local optimum x is rank deficient, then RS-RNM can achieve
super-linear convergence. In this whole subsection, we assume that Assumption 14 and Assumption 24 are
satisfied. We also denote by r (< n) the rank of H. Notice that, as a special case of r < n, one can consider
“functions with low dimensionality”4 [42]. For such functions, there exists a projection matrix Π ∈ Rn×n with
rank(Π) < n such that

∀ x ∈ Rn, f(x) = f(Πx). (77)

Such functions are frequently encountered in many applications. For example, the loss functions of neural
networks often have low rank Hessians [21, 36, 33]. This phenomenon is also prevalent in other areas such
as hyper-parameter optimization for neural networks [3], heuristic algorithms for combinatorial optimization
problems [23], complex engineering and physical simulation problems as in climate modeling [26], and policy
search [17].

We first prove the following lemma which is very similar to Lemma 25.

▶ Lemma 31. We have, under Assumption 14 and Assumption 24, that for k large enough:

ρ

2∥xk − x∥ ≤ ∥H(xk − x)∥.

Furthermore,

∥gk∥ ≤ 2λmax(H)∥xk − x∥.

4 They are also called objectives with “active subspaces” [10], or “multi-ridge” [16].
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Proof. As in the proof of Lemma 25, we have (56), i.e.,

ρ∥xk − x∥ − LH∥xk − x∥2≤∥H(xk − x)∥.

Since ∥xk − x∥ tends to 0, we deduce that for k large enough:
ρ

2∥xk − x∥ ≤ ∥H(xk − x)∥.

The other inequality is easy to deduce from (54), as in (66):

∥gk∥ ≤ ∥H∥∥xk − x∥+ LH∥xk − x∥2 ≤ 2λmax(H)∥xk − x∥, (78)

when k is large enough such that LH∥xk − x∥ ≤ λmax(H) holds. ◀

The next lemma is the key to prove super-linear convergence. Notice that since s ≥ r, we have that with
probability one σmin(P 1

k ) > 0.

▶ Lemma 32. Under Assumption 14 and Assumption 24. If s ≥ r, we have that for k large enough, with
probability at least 1− 2 exp(−s):

∥Pkgk+1∥ ≥ ρ
σmin(P 1

k )
8λmax(H)

∥gk+1∥,

where P 1
k ∈ Rs×r is an s× r i.i.d. Gaussian matrix having the same distribution with Pk.

Proof. By (54) applied at k + 1, we have that

∇f(xk+1) =
∫ 1

0
∇2f(x + t(xk+1 − x))(xk+1 − x)dt.

Hence,

Pkgk+1 = PkH(xk+1 − x) +
∫ 1

0
Pk(∇2f(x + t(xk+1 − x))−H)(xk+1 − x),

which leads to

∥Pkgk+1∥ ≥ ∥PkH(xk+1 − x)∥ − LH∥Pk∥∥xk+1 − x∥2. (79)

Let UDU⊤ = H be the diagonal decomposition of H. Since x is a strict local minimizer, by Assumption 24,
for k large enough, U is an orthogonal matrix independent of Pk, and hence, P̃ k := PkU is an i.i.d. random
Gaussian matrix with the same distribution as Pk. Let yk+1 = U⊤(xk+1 − x). We have that

H(xk+1 − x) = UDyk+1 and thus, PkH(xk+1 − x) = P̃ kDyk+1. (80)

Furthermore, since D has rank r < n, we can write Dyk+1 =
( zk+1

0
)
, where zk+1 ∈ Rr. We have therefore that

∥PkH(xk+1 − x)∥ = ∥P 1
k zk+1∥, (81)

where P 1
k ∈ Rs×r is a submatrix of P̃ k, i.e., P̃ k =

(
P 1

k P 2
k

)
. Notice that from the definition of yk+1 and zk+1,

we have, by orthogonality of U , that

∥zk+1∥ = ∥Dyk+1∥
(80)= ∥H(xk+1 − x)∥ ≥ ρ

2∥xk+1 − x∥,

where the inequality follows from Lemma 31. Hence, from (79) and (81), we deduce that

∥Pkgk+1∥ ≥ ρ
σmin(P 1

k )
2 ∥xk+1 − x∥ − LH∥Pk∥∥xk+1 − x∥2.

Using that ∥Pk∥ is bounded, with probability at least 1− 2 exp(−s), by Lemma 2, we deduce, as in the proof of
Lemma 31, that for k large enough:

∥Pkgk+1∥ ≥ ρ
σmin(P 1

k )
4 ∥xk+1 − x∥

(78)
≥ ρ

σmin(P 1
k )

4
∥gk+1∥

2λmax(H)
.

That is:

∥Pkgk+1∥ ≥ ρ
σmin(P 1

k )
8λmax(H)

∥gk+1∥. ◀
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Similarly, we have the following lemma.

▶ Lemma 33. Let M ∈ Rn×n be any matrix. Under Assumption 14 and Assumption 24, if k is large enough
and s ≥ r, we have

σmin(P 1
k )

2 ∥HkM∥ ≤ ∥PkHkM∥.

Proof. The proof is very similar to the proof of Lemma 32. We have

∥PkHkM∥ ≥ ∥PkHM∥ − ∥Pk(Hk −H)M∥. (82)

Let UDU⊤ = H be the diagonal decomposition of H. Similarly to the proof of Lemma 32, P̃ k := PkU is an i.i.d.
random Gaussian matrix with the same distribution as Pk. Using N := U⊤M , we have that PkHM = P̃ kDN .
Furthermore, since D has rank r < n, we can write DN =

(
Ñ
0
)
, where Ñ ∈ Rr×n. We have therefore that

∥PkHM∥ = ∥P 1
k Ñ∥, (83)

where P 1
k ∈ Rs×r is a submatrix of P̃ k, i.e., P̃ k =

(
P 1

k P 2
k

)
. Therefore

∥PkHM∥ ≥ σmin(P 1
k )∥Ñ∥ = σmin(P 1

k )∥DN∥ = σmin(P 1
k )∥HM∥, (84)

where the last equality holds by orthogonality of U . We deduce therefore, from (82) and (84) that

∥PkHkM∥ ≥ σmin(P 1
k )∥HkM∥ − σmin(P 1

k )∥(H −Hk)M∥ − ∥Pk(Hk −H)M∥.

Since Hk tends to H, we have the desired result for k large enough. ◀

The next lemma, similar to Lemma 5.2 of [39], is needed to control ηk = c1Λk + c2 ∥gk∥γ , where Λk =
max(0,−λmin(PkHkP ⊤

k )).

▶ Lemma 34. Under Assumption 14, for k large enough, we have that with probability at least 1− 2 exp(−s),

Λk ≤
Cn
s

LH∥xk − x∥.

Proof. The result is obvious when Λk = 0. Let us consider the case Λk > 0. Let λk = (λ(1)
k , . . . , λ

(s)
k ) be a vector

of eigenvalues of PkHP ⊤
k and we write the eigenvalue decomposition of PkHP ⊤

k as follows:

PkHP ⊤
k = U⊤

k diag(λk)Uk.

Notice that λmin(PkHkP ⊤
k )Is − UkPkHkP ⊤

k U⊤
k is singular. Furthermore,

λmin(PkHkP ⊤
k )Is − diag(λk)

is not singular as λmin(PkHkP ⊤
k ) < 0 by assumption and diag(λk) is positive. We define

Ak = (λmin(PkHkP ⊤
k )Is − diag(λk))−1(λmin(PkHkP ⊤

k )Is − UkPkHkP ⊤
k U⊤

k ),

which is therefore singular. Notice furthermore that since λmin(PkHkP ⊤
k ) < 0,

∥(λmin(PkHkP ⊤
k )Is − diag(λk))−1∥ ≤ 1

−λmin(PkHkP ⊤
k )

= 1
Λk

. (85)

Hence we have

1 ≤ ∥Is −Ak∥

= ∥Is − (λmin(PkHkP ⊤
k )Is − diag(λk))−1(λmin(PkHkP ⊤

k )Is − UkPkHkP ⊤
k U⊤

k )∥

= ∥Is − (λmin(PkHkP ⊤
k )Is − diag(λk))−1(λmin(PkHkP ⊤

k )Is − diag(λk)− UkPk(Hk −H)P ⊤
k U⊤

k )∥

= ∥(λmin(PkHkP ⊤
k )Is − diag(λk))−1UkPk(Hk −H)P ⊤

k U⊤
k ∥

(85)
≤ 1

Λk
∥PkP ⊤

k ∥∥Hk −H∥

Lemma 2
≤ 1

Λk

Cn
s

LH∥xk − x∥,

where the first inequality is a well known inequality for a singular matrix and is proved in [39, Lemma 5.1]. ◀
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Let us recall that

dk = −P ⊤
k (PkHkP ⊤

k + ηkIs)−1Pkgk,

and

Mk = PkHkP ⊤
k + ηkIs.

▶ Lemma 35. Under Assumption 14 and Assumption 24, if s ≥ r, we have that for k large enough, we have
that with probability at least 1− 2 exp(−s),

∥dk∥ ≤
4

σmin(P k
1 )

(
2 + 1

c1 − 1

)√
Cn
s
∥xk − x∥,

where P 1
k ∈ Rs×r is an s× r i.i.d. Gaussian matrix having the same distribution with Pk.

Proof. Notice first that by Taylor expansion of t 7→ ∇f(x + t(xk − x)) and by Assumption 14, we have that

∥gk −∇f(x)−Hk(xk − x)∥ ≤ LH

2 ∥xk − x∥2. (86)

The definition of dk leads to

∥dk∥ = ∥P ⊤
k M−1

k Pkgk∥
∇f(x)=0= ∥P ⊤

k M−1
k Pk(gk −∇f(x)−Hk(xk − x) + Hk(xk − x))∥

≤ ∥Pk∥2∥M−1
k ∥∥gk −∇f(x)−Hk(xk − x)∥+ ∥P ⊤

k M−1
k PkHk∥∥xk − x∥

(86)
≤ LH

2 ∥Pk∥2∥M−1
k ∥∥xk − x∥2 + ∥P ⊤

k M−1
k PkHk∥∥xk − x∥. (87)

Let us first bound the first term in the right-hand side of (87). When k is large enough, with probability at least
1− 2 exp(−s), we have by Lemma 2

LH

2 ∥Pk∥2∥M−1
k ∥ ≤

LH

2 ·
Cn
s
· 1

λmin(PkHkP ⊤
k + c1ΛkIs + c2∥gk∥γIs)

≤ LHCn
2c2s∥gk∥γ

(53)
≤ LHCn

2c2sργ∥xk − x∥γ
.

Hence

LH

2 ∥Pk∥2∥M−1
k ∥∥xk − x∥2 ≤ LHCn

2c2sργ
∥xk − x∥2−γ . (88)

Next, we consider the second term ∥P ⊤
k M−1

k PkHk∥∥xk − x∥. Notice that

∥P ⊤
k M−1

k PkHk∥ = ∥HkP ⊤
k M−1

k Pk∥ ≤
2

σmin(P k
1 )
∥PkHkP ⊤

k M−1
k ∥∥Pk∥,

where the inequality follows from Lemma 33. We have

∥PkHkP ⊤
k M−1

k ∥ = ∥PkHkP ⊤
k (PkHkP ⊤

k + ηkIs)−1∥

≤ ∥(PkHkP ⊤
k + ηkIs)⊤(PkHkP ⊤

k + ηkIs)−1∥+ ηk∥(PkHkP ⊤
k + ηkIs)−1∥

≤ 1 + ηk

λmin(PkHkP ⊤
k + ηkIs)

≤ 1 + c1Λk + c2∥gk∥γ

(c1 − 1)Λk + c2∥gk∥γ

≤ 2 + 1
c1 − 1 .
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Therefore,

∥P ⊤
k M−1

k PkHk∥∥xk − x∥ ≤ 2
σmin(P k

1 )

(
2 + 1

c1 − 1

)
∥Pk∥∥xk − x∥

≤ 2
σmin(P k

1 )

(
2 + 1

c1 − 1

)√
Cn
s
∥xk − x∥,

where the second inequality follows from Lemma 2. The results follows from (87) and (88) noticing that ∥xk−x∥2−γ

∥xk−x∥
tends to 0, as γ < 1, hence for k large enough

LHCn
2c2sργ

∥xk − x∥2−γ ≤ 2
σmin(P k

1 )

(
2 + 1

c1 − 1

)√
Cn
s
∥xk − x∥. ◀

▶ Theorem 36. Under Assumption 14 and Assumption 24, for k large enough and for any s ≥ r, we have that
with probability at least 1− 2 exp(−s)

∥xk+1 − x∥ ≤ c2Γ
σ2

min(P 1
k )∥xk − x∥1+γ ,

where Γ is some constant depending on n and s, and where P 1
k ∈ Rs×r is an s× r i.i.d. Gaussian matrix having

the same distribution with Pk.

Proof. We have

∥xk+1 − x∥
(53)
≤ 1

ρ
∥gk+1∥

≤ 8λmax(H)
ρ2σmin(P 1

k )∥Pkgk+1∥

≤ 8λmax(H)
ρ2σmin(P 1

k ) (∥Pk(gk+1 − gk −Hk(xk+1 − xk))∥+ ∥Pkgk + PkHk(xk+1 − xk)∥) , (89)

where the first inequality holds by (53), and the second holds by Lemma 32. By Lemma 35 and an equation
similar to (86) (where xk is replaced by xk+1 and x is replaced by xk), we have that

∥Pk(gk+1 − gk −Hk(xk+1 − xk))∥ ≤ LH∥Pk∥

 4
σmin(P k

1 )

(
2 + 1

c1 − 1

)√
Cn
s

2

∥xk − x∥2. (90)

From the updated rule xk+1 = xk − tkP T
k M−1

k Pkgk in Algorithm 1, we see that xk+1 − xk = −tkP T
k M−1

k Pkgk.
From now on, we will show that tk = 1 for k large enough. Indeed by (23), we have that

f(xk)− f(xk + t′
kdk) + αt′

kgT
k dk ≥

Cn
2s

LHt′
k

2 ∥dk∥
(

c2s ∥gk∥γ

CLHn ∥dk∥
− t′

k

)∥∥M−1
k Pkgk

∥∥2
.

Hence, by Assumption 24 and Lemma 35, we deduce that there exists some constant C1 such that

f(xk)− f(xk + t′
kdk) + αt′

kgT
k dk ≥

Cn
2s

LHt′
k

2 ∥dk∥
(

C1

∥xk − x∥1−γ
− t′

k

)∥∥M−1
k Pkgk

∥∥2
,

proving that we can take t′
k = 1 if ∥xk − x∥ is small enough.

Now notice that for k large enough, tk = 1, hence

∥Pkgk + PkHk(xk+1 − xk)∥ = ∥(Is − PkHkP ⊤
k (PkHkP ⊤

k + ηkIs)−1)Pkgk∥

≤ ∥ηk(PkHkP ⊤
k + ηkIs)−1Pkgk∥

≤ ηk

σmin(P ⊤
k )
∥P ⊤

k (PkHkP ⊤
k + ηkIs)−1Pkgk∥

= ηk

σmin(P ⊤
k )
∥dk∥.
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Using that ∥ηk∥ ≤ c1∥Λk∥+ c2 ∥gk∥γ and that ∥gk∥ = O(∥xk − x∥) by Lemma 31, we deduce, by Lemmas 34
and 35, that there exists some constants α, β, β′ > 0 such that with probability at least 1− 2 exp(−s),

ηk

σmin(P ⊤
k )
∥dk∥ ≤

1
σ2

min(P ⊤
k )
(
c1α∥xk − x∥2 + c2β∥xk − x∥∥gk∥γ

)
≤ 1

σ2
min(P ⊤

k )
(
c1α∥xk − x∥2 + c2β′∥xk − x∥1+γ

)
,

where we have used in the second inequality that ∥gk∥ ≤ O(∥xk − x∥). Now by (89), (90) and the above, we
obtain the desired result. ◀

Notice that by using [35], we can furthermore bound 1
σmin(P 1

k
) , with high probability, by O( 1√

s−
√

r−1 ).
Let us consider a function with low dimensionality, i.e. satisfying (77). Let us write Π = R⊤R, where

R ∈ Rs×n and let us define g : y ∈ Rs 7→ f(R⊤). Hence, we have that g(Rx) = f(Πx) = f(x). By denoting
yk := Rxk ∈ Rs and assuming that the function g(y) is strongly convex, locally near y := Rx, it is easy to see
that Assumption 24 is satisfied for the sequence {yk}, locally, i.e., there exists ρ > 0 such that for k large enough;

∥∇g(yk)∥ ≥ ρ∥yk − y∥

holds. Hence, we can prove that there exists some constant K > such that the following inequality holds with
high probability.

∥yk+1 − y∥ ≤ K∥yk − y∥1+γ .

By strong convexity of g(y), we know that there exists two constant l1 > l2 > 0 such that

l2(g(yk+1 − g(y))) ≤ ∥yk+1 − y∥ ≤ l1(g(yk+1 − g(y))).

Hence by following the same proof as in Corollary 23, we can obtain the following super-linear rate in expectation:

▶ Theorem 37. Assume that there exists a function g : y ∈ Rs 7→ g(y) such that g(Rx) = f(x), for some matrix
R ∈ Rs×n (s < n). If the function g(y) is strongly convex, locally near Rx, then there exists a constant K′ > 0,
such that if k is large enough:

E [f(xk+1)− f(x)] ≤ K′E [f(xk)− f(x)]1+γ
, (91)

6 Numerical illustration

In this section, we illustrate numerically the randomized subspace regularized Newton method (RS-RNM). All
results are obtained using Python scripts on a 12th Gen Intel(R) Core(TM) i9-12900HK 2.50 GHz with 64GB of
RAM. As a benchmark, we compare it against the gradient descent method (GD) and the regularized Newton
method (RNM) [39]. Here we do not aim to prove that our method is faster to the state-of-the-art methods but
rather to illustrate the theoretical results that have been proved in the previous sections.

6.1 Support vector regression
The methods are tested on a support vector regression problem formulated as minimizing sum of a loss function
and a regularizer:

f(w) = 1
m

m∑
i=1

ℓ(yi − xT
i w) + λ ∥w∥2

. (92)

Here, (xi, yi) ∈ Rn × {0, 1} (i = 1, 2, . . . , m) denote the training example and ℓ is the loss function. λ is a
constant of the regularizer and is fixed to 0.01 in the numerical experiments below. We note that (92) is a type of
(generalized) linear model used in the numerical experiments of [18] and [22]. As the loss function ℓ, we use the
following two functions known as robust loss functions: the Geman–McClure loss function (ℓ1) and the Cauchy
loss function (ℓ2) [2] defined as

ℓ1(t) = 2t2

t2 + 4 ,

ℓ2(t) = log
(

1
2 t2 + 1

)
.
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Figure 1 Iterations versus
∥∇f(w)∥ (log10-scale) for Geman–
McClure loss

Figure 2 Computation time
versus ∥∇f(w)∥ (log10-scale) for
Geman–McClure loss

Since both loss functions ℓ1 and ℓ2 are non-convex, the objective function (92) is non-convex.
The search directions at each iteration in GD and RNM are given by

dGD
k = −∇f(wk),

dRNM
k = −(∇2f(wk) + c′

1Λ′
kIn + c′

2 ∥∇f(wk)∥γ′
In)∇f(wk),

(Λ′
k = max(0,−λmin(∇2f(wk)))

and the step sizes are all determined by Armijo backtracking line search (8) with the same parameters α and β

for the sake of fairness. The parameters shown above and in Section 3 are fixed as follows:

c1 = c′
1 = 2, c2 = c′

2 = 1, γ = γ′ = 0.5, α = 0.3, β = 0.5, s ∈ {100, 200, 400}.

We test the methods on internet advertisements dataset from UCI repository [15] that is processed so that
the number of instances is 600(= m) and the number of data attributes is 1500(= n), and the results, until
the stop condition ∥∇f(wk)∥ < 10−4 is satisfied, are shown in Figures 1 to 4. Our first observation is that
RS-RNM converges faster than GD. GD does not require the calculation of Hessian or its inverse, making the
time per iteration small. However, it usually needs a large number of iterations, resulting in slow convergence.
Next, we look at the comparison between RNM and RS-RNM. From Figures 1 and 3, we see that RNM has the
same or a larger decrease in the function value in one iteration than RS-RNM, and it takes fewer iterations to
converge. This is possibly due to the fact that RNM determines the search direction in full-dimensional space.
In particular, it should be mentioned that RNM converges rapidly from a certain point on, as it is shown that
RNM has a super-linear rate of convergence near a local optimal solution. However, as shown in Figures 2
and 4, since RNM takes a long time to get close to the local solution due to the heavy calculation of the full
regularized Hessian, RS-RNM results in faster convergence than RNM. We also confirm on Figure 3 that for
small dimensions s = 100, 200 a linear convergence rate seems to be achieved. However for s = 400 it seems that
the method converges super-linearly.

6.2 Low rank Rosenbrock function
To properly illustrate the superlinear convergence proved in the low rank setting (cf. Section 5.3), we conducted
numerical experiments on a low rank Rosenbrock function: f(x) = R(U⊤Ux), where

R(x) =
n−1∑
i=1

100(xi+1 − x2
i )2 + (xi − 1)2,

and U ∈ Rr×n is a matrix whose columns are orthogonal. If we denote by Π ∈ Rn×n the matrix U⊤U , we see
that for all x ∈ Rn, f(x) = f(Πx), hence the Hessian of f is of rank r for all x ∈ Rn. The parameters in Section 3
are fixed as follows:

c1 = c′
1 = 2, c2 = c′

2 = 1, γ = γ′ = 0.5, α = 0.3, β = 0.5, s ∈ {100, 200, 600}.
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Figure 3 Iterations versus
∥∇f(w)∥ (log10-scale) for Cauchy
loss

Figure 4 Computation time ver-
sus ∥∇f(w)∥ (log10-scale) for Cauchy
loss

Figure 5 Iterations versus
∥∇f(x)∥ (log10-scale) for low rank
Rosenbrock function

Figure 6 Computation time ver-
sus ∥∇f(x)∥ (log10-scale) for low
rank Rosenbrock function

Figures 5 and 6 show experiments for n = 3000 and r = 500. We selected three values for s, two (s = 100, 200)
smaller than r and one (s = 600), larger than r. The results confirm the results of Section 5: when s > r we have
local superlinear convergence, otherwise the convergence is only linear locally.

6.3 Convolutional neural network
We tested our method on a micro Convolutional Neural Network (CNN) using the MNIST dataset in [13]. We
used the cross-entropy loss function m = 256 images. Our CNN is made of the following factors:

one convolutional layer (1 input channel, 1 output channel, kernel size 3),
a ReLU activation,
a max pooling layer (kernel size 2),
a fully connected layer mapping the flattened feature vector to 10 classes.

This setup is intended to demonstrate the differences between the three methods in a controlled, small-scale
scenario. This problem is formulated as

min
w∈Rn

1
m

m∑
i=1
L(M(w, xi), yi),

where (xi, yi) denotes the MNIST dataset with xi ∈ R784 and yi ∈ {0, 1}10 (m = 256), L denotes the Cross
Entropy Loss function, and M denotes the CNN with n = 1710 parameters. The parameters in Section 3 are
fixed as follows:

c1 = c′
1 = 2, c2 = c′

2 = 1, γ = γ′ = 0.5, α = 0.3, β = 0.5, s ∈ {100, 200, 500}.

The results are show in Figures 7 and 8. We notice that our method outperforms GD which is stuck at some
stationary point and RNM which is to slow to converge.
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Figure 7 Iterations versus
∥∇f(w)∥ (log10-scale) for CNN with
the MNIST dataset

Figure 8 Computation time ver-
sus ∥∇f(w)∥ (log10-scale) for CNN
with the MNIST dataset

6.4 Choice of s

In the special case where the Hessian truly has low-rank structure, setting s to this value can substantially speed
up convergence, provided the rank is not prohibitively large. However, in more general problems, especially
where the Hessian does not exhibit pronounced low-rank properties or its effective rank is unknown, preselecting
s is more challenging. One might try to start with some constant value of s and increasing it gradually since the
best s ultimately depends on problem-specific characteristics and computational resources.

7 Conclusions

Random projections have been applied to solve optimization problems in suitable lower-dimensional spaces
in various existing works. In this paper, we proposed the randomized subspace regularized Newton method
(RS-RNM) for a non-convex twice differentiable function in the expectation that a framework for the full-space
version [39, 40] could be used; indeed, we could prove the stochastic variant of the same order of iteration
complexity, i.e., the global complexity bound of the algorithm: the worst-case iteration number m that achieves
mink=0,...,m−1 ∥∇f(xk)∥ ≤ ε is O(ε−2) when the objective function has Lipschitz Hessian. On the other hand,
although RS-RNM uses second-order information similar to the regularized Newton method having a super-linear
convergence, we proved that it is not possible, in general, to achieve local super-linear convergence and that
local linear convergence is the best rate we can hope for in general. We were however able to prove super-linear
convergence in the particular case where the Hessian is rank deficient at a local minimizer. In this paper we
choose to thoroughly investigate local convergence rate for the Newton-based method. One could possibly, in a
future work, extend these results to a state-of-the-art second order iterative method and compare the resulting
subspace method with other state-of-the-art algorithms, as [19, 47, 48].
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