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——— Abstract

While there already exist randomized subspace Newton methods that restrict the search direction to a random subspace

for a convex function, we propose a randomized subspace regularized Newton method for a non-convex function and more
generally we investigate thoroughly, for the first time, the local convergence rate of the randomized subspace Newton
method. In our proposed algorithm, we use a modified Hessian of the function restricted to some random subspace so
that, with high probability, the function value decreases at each iteration, even when the objective function is non-convex.
We show that our method has global convergence under appropriate assumptions and its convergence rate is the same as
that of the full regularized Newton method. Furthermore, we obtain a local linear convergence rate under some additional
assumptions, and prove that this rate is the best we can hope, in general, when using a random subspace. We furthermore
prove that if the Hessian, at the local optimum, is rank deficient then super-linear convergence holds.
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1 Introduction

While first-order optimization methods such as stochastic gradient descent methods are well studied for large-scale
machine learning optimization, second-order optimization methods have not received much attention due to the
high cost of computing second-order information until recently. However, in order to overcome relatively slow
convergence of first-order methods, there has been recent interest in second-order methods that aim to achieve
faster convergence speed by utilizing subsampled Hessian information and stochastic Hessian estimate (see e.g.,
[4, 44, 46] and references therein).

In this paper, we develop a Newton-type iterative method with random projections for the following
unconstrained optimization problem:

min fx), (1)
where f : R™ — R is a possibly non-convex twice differentiable function. In our method, at each iteration, we
restrict the function f to a random subspace and compute the next iterate by choosing a descent direction on
this random subspace.

There are some existing studies on developing second-order methods with random subspace techniques for
convex optimization problems (1). Let us now review randomized subspace Newton (RSN) existing work [18],
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2 Theoretical analysis of the randomized subspace regularized Newton method

while gradient-based randomized subspace algorithms are reviewed in Section 2.1. RSN computes the descent
direction di and the next iterate as

AN = —PI(PV2 f(zk)PY) T PV f (),

1
RSN
Thy1 = T + fdk )

where P, € R**" is a random matrix with s < n and L is some fixed constant. RSN is expected to be highly
computationally efficient with respect to the original Newton method, since it does not require computation of
the full Hessian inverse. RSN is also shown to achieve a global linear convergence for strongly convex f. We first
note that the second-order Taylor approximation around zy, restricted in the affine subspace {zy} + Range(P))
is expressed as

fxr + Plu) =~ f(zg) + Vf(zg) " Plu+ %uTPkVQf(xk)P,;ru,

and the direction d?SN is obtained as dkRSN = P,;r uj, where uj is the minimizer of the above subspace Taylor
approximation, i.e.,

1
u} = arg min <f(:ck) + Vf(zk) " Plu+ 2uTPkV2f(xk)P,;ru) :
ueRs

Hence, we can see that the next iterate of RSN is computed by using the Newton direction for the function
for  wr— flar+ Pl u). (2)

Other second-order subspace descent methods, such as cubically-regularized subspace Newton methods, [22],
have been studied in the literature. More precisely, the method in [22] can be seen as a stochastic extension of
the cubically-regularized Newton method [32] and also as a second-order enhancement of stochastic subspace
descent [28]. In [27], a random subspace version of the BEGS method is proposed. The authors prove local linear
convergence, if the function is assumed to be self-concordant. Apart in recent Shao’s Ph.D thesis [37] and the
associated papers [11, 12] which have been done parallelly to this paper, to the best of our knowledge, existing
second-order subspace methods have iteration complexity analysis only for convex optimization problems. The
thesis [37] and the paper [12] propose a random subspace adaptive regularized cubic method for unconstrained
non-convex optimization and show a global convergence property with sub-linear rate to a stationary point'. In
this paper we propose a new subspace method based on the regularized Newton method and discuss the local
convergence rate together with global iteration complexity.? Notice indeed that, to the best of our knowledge, the
local convergence of such methods never seems to have been thoroughly studied?; one would expect super-linear
convergence for second order methods and no papers discuss whether super-linear convergence holds or not for
second order methods. Indeed any iterative algorithm can be easily adapted to a random subspace method as
it suffices to apply it to the function restricted to the subspace: u + f(zy + P, u). We therefore believe that
it is important to investigate thoroughly whether the properties of such full-space algorithms are preserved
or not when adapted to the random subspace setting. If the objective function f is not convex, the Hessian
is not always positive semidefinite and di°N is not guaranteed to be a descent direction so that we need to
use a modified Hessian. Based on the regularized Newton method (RNM) for the unconstrained non-convex
optimization [39, 40], we propose the randomized subspace regularized Newton method (RS-RNM):

dp = =Pl (PN f(21) Pl + miLs) "' PeV f (),

Th1 = T + trdy,

where 7, is defined to ensure that search direction dj, is a descent direction and the step size tj, is chosen so that
it satisfies Armijo’s rule. As with RSN, this algorithm is expected to be computationally efficient since we use
projections onto lower-dimensional spaces. In this paper, we first show that RS-RNM has global convergence

1 The author also proves that if the Hessian matrix has low rank and scaled Gaussian sketching matrices are used, then the
Hessian at the stationary point is approximately positive semidefinite with high probability.

2 Just as the ordinary cubic method is superior to the Newton method in terms of iteration complexity, similar observation
seems to hold between the subspace cubic method [37] and ours.

3 Some papers, as we will see later, investigate when local linear convergence holds.



Terunari Fuji, Pierre-Louis Poirion & Akiko Takeda 3

under appropriate assumptions, more precisely, we have ||V f(z)|| < e after at most O(e~2) iterations with
some probability, which is the same as the global convergence rate shown in [39] for the full regularized Newton
method. We then prove that under additional assumptions, we can obtain a linear convergence rate locally. In
particular, one contribution of the paper is to propose, to the best of our knowledge, the weakest conditions until
now for local linear convergence. To do so we will extensively use the fact that the subspace is chosen at random.
From these conditions, we can derive a random-projection version of the Polyak—Lojasiewicz (PL) inequality (3),

VaeR", ||Vf(@)]? > colf(x) — f(z*)), 3)

which will be satisfied when the function is restricted to a random subspace. One other contribution of this paper
is to prove that, in general, linear convergence is the best rate we can hope for this method. Furthermore, we
also prove that if the Hessian at the local optima is rank deficient, then one can achieve super-linear convergence
using a subspace dimension s large enough.

Our randomized subspace method for nonconvex optimization problems is based on the regularized Newton
method in [39, 40]. While various other regularized Newton methods have been proposed in recent years, most
of them are for convex problems or non-smooth optimization problems. For example, [31] presents a globally
convergent proximal Newton-type method for non-smooth convex optimization and [8] develops coderivative-based
Newton methods combined with Wolfe line-search for non-smooth problems. Recently [45] proposes a generalized
regularization method that includes quadratic, cubic, and elastic net regularizations. Also [14] proposes, in the
convex case, a variant of the Newton method with quadratic regularization and proves better global rate. Recent
papers, [19, 47, 48], propose regularization methods for the non-convex case. However, although these methods
obtained better iterations complexity, the subroutines involved to compute are quite complex and not as simple
as in [39, 40]. By applying similar random subspace techniques to these methods, we may be able to develop
random subspace variants with state-of-the-art theoretical guarantees, but that is a topic for future work.

The rest of this paper is organized as follows. After reviewing gradient-based randomized subspace algorithms
and introducing properties of random projections in Section 2, we introduce our random subspace Newton
method for non-convex functions in Section 3. In Section 4, we prove global convergence properties for our
method. In Section 5, we investigate local linear convergence as well as local super-linear convergence. Finally,
in Section 6, we show some numerical examples to illustrate the theoretical properties derived in the paper.
In Section 7 we conclude the paper.

2| Preliminaries

» Notation. In this paper we call a matrix P € R**™ a random projection matrix or a random matrix when its
entries P;; are independently sampled from the normal distribution N(0,1/s). Let I,, be the identity matrix of
size n. We denote by g the gradient of the k-th iterate of the obtained sequence and by Hy it’s Hessian.

2.1 Related optimization algorithms using random subspace

As introduced in Section 1, random subspace techniques are used for second-order optimization methods with
the aim of reducing the size of Hessian matrix. Here we refer to other types of subspace methods focusing on
their convergence properties.

Cartis et al. [6] proposed a general random embedding framework for global optimization of a function f.
The framework projects the original problem onto a random subspace and solves the reduced subproblem in
each iteration:

min f(xy + Py u) subject to xy, + Py u € C.
u

These subproblems need to be solved to some required accuracy by using a deterministic global optimization
algorithm. This study is further expanded in [7] and [5], when f has low effective dimension.

There are also various subspace first-order methods based on coordinate descent methods (see e.g. [43]).
In [9] a randomized coordinate descent algorithm is introduced assuming some subspace decomposition which
is suited to the A-norm, where A is a given preconditioner. In [30], minimizing f(Az) + 2lz)|?, where f is
a strongly convex smooth function and Aisa high-dimensional matrix, is considered and a new randomized
optimization method that can be seen as a generalization of coordinate descent to random subspaces is proposed.
The paper [20] deals with a convex optimization problem min, f(x) + g(z), where f is convex and differentiable
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and ¢ is assumed to be convex, non-smooth and sparse inducing such as ||z|;. To solve the problem, they
propose a randomized proximal algorithm leveraging structure identification: the variable space is sampled
according to the structure of g. The approach in [38] is to optimize a smooth convex function by choosing, at
each iteration a random direction on the sphere. Recently, in some contexts such as iteration complexity analysis,
the assumption of strong convexity has been replaced by a weaker one, the PL inequality (3). Indeed, [29] has
introduced a new first-order random subspace and proved that if the non-convex function is differentiable with a
Lipschitz continuous first derivative and satisfies the PL inequality (3) then linear convergence rate is obtained
in expectation. Notice that in all these papers a local linear convergence rate is only obtained when assuming
that the objective function is, at least locally, strongly convex or satisfies the PL inequality.

From above, without (locally) strong convexity nor the PL inequality, it seems difficult to construct first-order
algorithms having (local) linear convergence rates. Indeed, the probabilistic direct-search method [34] in reduced
random spaces is applicable to both convex and non-convex problems but it obtains sub-linear convergence.

In this paper, we will prove that our algorithm achieves local linear convergence rates without locally strong
convexity nor the PL inequality assumption on the full space. This is due to randomized Hessian information
used in our algorithm. More precisely, our assumptions will allow us to prove that the function, restricted to a
random subspace, satisfies a condition similar to the PL inequality.

2.2 Properties of random projection

In this section, we recall basic properties of random projection matrices. One of the most important features of a
random projection defined by a random matrix is that it nearly preserves the norm of any given vector with
arbitrary high probability. The following lemma is known as a variant of the Johnson-Lindenstrauss lemma [25].

» Lemma 1 ([41, Lemma 5.3.2, Exercise 5.3.3]). Let P € R**" be a random matriz whose entries P;; are
independently drawn from N(0,1/s). Then for any x € R™ and ¢ € (0,1), we have

Prob[(1 — &) [|z[|* < [|Pz]* < (1 +¢) [|2]|*] > 1 — 2exp(—Coes),
where Cy is an absolute constant.

The next lemma shows that when P is a Gaussian matrix, we can obtain a bound on the norm of PPT.

» Lemma 2. For a s x n random matriz P whose entries are sampled from N(0,1/s), there exists a constant
C > 0 such that

|PPT (= IPTPl| = 1P <,

S

with probability at least 1 — 2e™%.
Proof. By [41, Theorem 4.6.1], there exists a constant C such that

< 20\/?
n

holds with probability at least 1 — 2e~°. Therefore, we have

HfPPT s
n

lPPT| < ||PPT - 21, <20\/ﬁ+”<20"+":(2c+1)”.
S S S S S S

+ HEIS
S

Setting C = 2C + 1 ends the proof. <

All the results of this paper are stated in a probabilistic way. In the proofs we will constantly use the following
fact:

For any two events Fy and E : Prob(E; N E3) > 1— ((1 —Prob(E4)) + (1 — Prob(E3))) . (4)

3 Randomized subspace regularized Newton method

In this section, we describe a randomized subspace regularized Newton method (RS-RNM) for the following
unconstrained minimization problem,

min f(z), ()

TER™
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Algorithm 1 Randomized subspace regularized Newton method (RS-RNM)
input: 7p e R", 0 <~y <1l,¢c1 > 1,0 >0,,8 € (0,1)

1: k<0

2: repeat

3: sample a random matrix: P, ~ D

4

compute the regularized sketched Hessian:
Mk = PkaP];r + ClAkIS + co ||gk||7 IS,

where Ay, = max(0, —Apin (P Hr P} ))
5: compute the search direction: dj = —P,cT M, 1Pkgk

apply the backtracking line search with Armijo’s rule by finding the smallest integer I, > 0 such that (8)
holds. Set t;, = ,Blk, Tht1 =Tk +tpdi and k <+— k41
7: until some stopping criteria is satisfied return the last iterate zy,

>

where f is a twice continuously differentiable function from R™ to R. In what follows, we denote the gradient
Vf(x1) and the Hessian V2 f(x},) as g and Hy, respectively.

The paper [39] develops a regularized Newton methods (RNM) that constructs a sequence of iterates with
the following update rule:

Thi1 = Tk — te(Hy + QAL+ b lgrl” 1)~ g,

where A} = max (0, —Amin (Hk)), ¢},¢5,7 are some positive parameter values and ¢ is the step-size chosen by
Armijo’s step size rule, and show that this algorithm achieves ||gx| < ¢ after at most O(¢72) iterations and it has
a super-linear rate of convergence in a neighborhood of a local optimal solution under appropriate conditions.

To increase the computational efficiency of this algorithm using random projections, based on the randomized
subspace Newton method [18], we propose the randomized subspace regularized Newton method (RS-RNM)
with Armijo’s rule, which is described in Algorithm 1 and outlined below. Since RS-RNM is a subspace version
of RNM, all discussions of global convergence guarantees made in Section 4 are based on the one in [39].

Let D denote the set of Gaussian matrices of size s X n whose entries are independently sampled from
N(0,1/s). With a Gaussian random matrix Py from D, the regularized sketched Hessian is defined by:

My, := PyH P} + i1, € RE%S, (6)
where 7y := c1Ag + c2 ||gk]|” and Ay := max(0, —)\min(PkaP,;r)). We then compute the search direction:
dy := —P;;I—Ml;lpkgk. (7)

The costly part of Newton-based methods, the inverse computation of a (approximate) Hessian matrix, is done
in the subspace of size s. We note that dj, defined by (7) is a descent direction for f at zy, i.e., g} dx < 0 if
gr # 0, since it turns out that Mj is positive definite from the definition of Ay, and therefore " P M, ' Pz > 0
holds for ¥V x due to Prxz # 0 with high probability.

The backtracking line search with Armijo’s rule finds the smallest integer i, > 0 such that

flar) = fan + B*di) > —ap™ gl dy. (8)
Starting with I, = 0, lj is increased by [j < I 4+ 1 until the condition (8) holds. The sufficient iteration number
to find such a step-size is discussed in convergence analysis later.

4 Global convergence properties

In Section 4.1, we discuss the global convergence of the RS-RNM under Assumption 3. We further prove the
global iteration complexity of the algorithm in Section 4.2 by considering further assumptions.

» Assumption 3. The level set of f at the initial point xy is bounded, i.e., Q := {x € R" : f(z) < f(xo)} is
bounded.
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By (8), we have that for any k € N, f(xx+1) < f(zp), implying all z; € Q. Since Q is a bounded set and f is
continuously differentiable, there exists U, > 0 such that

lgrll < Uy, ¥k = 0. 9)
Similarly, there exists L > 0 such that for all x € Q,

IV2f ()] < L. (10)
In particular, for all & > 0,

[Hel < L. (11)

Notice that by (10), Vf is L-Lipschitz continuous. We also define f* = inf,cq f(x).

4.1 Global convergence
We first show that the norm of dj can be bounded from above.

» Lemma 4. Suppose that ||d|| # 0. Then, dj defined by (7) satisfies

1—
n flgell "
S

ldl < C

Y

with probability at least 1 — 2e™%.

Proof. By Lemma 2 we have HPLET Pk” <C 2, holds with probability at least 1 —2e™*. Then, it follows from (7)
that
ldill = [|PF M Pege|
= || Pl (P Hi Py + 11 1s) ™" Prge|
< || P (PeHy Py + ni L)™' Py [lg |
BT Pl [ (PrHR BY i)™ | llgxl

_ 112 Pl g
Amin (P Hy Pl + e A s + co ||gi |7 L)

IN

(as |27 [ 1Pe]l = || P Pe))
1—y
<ol
S C2
We next show that, when ||gx| is at least e away from 0, ||dx|| is bounded above by some constant.

» Lemma 5. Suppose that Assumption 3 holds. Suppose also that there exists € > 0 such that ||gk|| > €. Then,
with probability at least 1 — 2e=*, dy, defined by (7) satisfies

1|l < r(e), (12)
where
Cn 1 1
r(e) == P max (Ug 7, 57_1> .
Proof. If v <1, it follows from Lemma 4 and (9) that
Cn U™
ldil < ——2—.
S C2

Meanwhile, if v > 1, it follows from Lemma 4 and ||gx| > ¢ that

C 1
lde]| < = ——.
S CoeTT

This completes the proof. <
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When ||gi|| > €, we have from Lemma 5 that

zp +7dp € Q+ B(0,r(¢)), V7el01].

By boundedness of Q + B(0,r(g)) and by using the fact that f is twice continuously differentiable, we deduce

that there exists Ug () > 0 such that
HVQf(x)H <Ug(e), VzeQ+ B(0,r(e)).

(13)

The following lemma indicates that a step size smaller than some constant satisfies Armijo’s rule when

lgkll = e.

» Lemma 6. Suppose that Assumption 3 holds. Suppose also that there exists € > 0 such that ||gr|| > €. Then,

S

with probability at least 1 —2e™%, a step size t}, > 0 such that
_ 227y
o< 72(1 a)cse*7s _
((1+ 01)%UH(€) + cUg ) Ug (e)Cn
satisfies Armijo’s rule, i.e.,
f(l‘k) - f(l‘k + t;dk) > —at;ggdk.

Proof. From Taylor’s theorem, there exists 7;, € (0,1) such that

1
flan +thde) = flzr) + thonde + §t§c2d};v2f($k + Ty tydy)dy.

Then, we have
flaw) = flan + thdy) + atigi dy

1
= (o = Dtygld — 51 ALV (i + i thdi)di

_ 1,9 _ _
= (1 - Q)tjgi Py M ' Prgr — it; gr Py M PV f (g + Tt dy) P M Prgi

> (1 — a)thAmin (M) || Pegie]
1

- ’t;cQAmaX(v2f($k + Tl/ct;cdk)))‘maX(Mlglkal;ergl) HPkaH2

2

_ 1,2 _ _
> (1= @)t Amin(M; ") [| Prgil|* — 5152 Ut (€) Amax (M PP My Y) || Pegel

where the first inequality derives from the fact that

g P M7 P2 f (g 4 Tt di) P My Prgre < Amax (M, " PeV2 f (g, + Tthdi) P M) || Prgil?
< Amax (V2 f(@r + Ththdi)) Amax (M " PPy M) || Proge|®.

(14)

By Lemma 2, we have that, with probability at least 1 —2e™%, “PkP,;r’| < C%” In addition, we have || Hg| < Ug(e)

from (13), which gives us ||PkaPkTH < %UH(E). For these reasons, we obtain evaluation of the values of

Amin (M 1) and Apax (M, ' Py PT M 1):

1
>\min Mil =N /i
( k ) )\max(Mk)
B 1
)\max(PkaP];r + ClAkIS + C2 Hng’yIs)
1
>

iy (e) + 12Uk () + 2 |lgrl”

)\max(Mk_lkal;er_l)

IN

[P P || A (M)
Cn 1

IN

IN

Cn 1
27

$ ¢ llgwll

S Amin(PeHRPT + c1 AT, + co || gi |7 1)
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so that we have

flar) = [l + tyde) + athgg di

(1—a)t), 2o 1,2Cn Un(e)

> — = 1 Prgrl™ — 5tk 57 || kgl
Uk (e) + 1 GUn(e) + ez l|gel” 27 s allgell™
1—a)t) 1 ,9CnUg(e
27z ( z Vi | Pegr])® — §t;<: —— (27) | Prgl?
U (e) + a1 LUn(e) + Uy s €3¢
(by (9) and ||gx|| =€)
CUg(e)n 2(1 — a)c3e?7s
- Lulny, 0ol — 4, ) 1Pl
ce"’s (L4 c1) 5t Un(e) 4 c2UJ )Un(e)Cn
>0,
which completes the proof. <

As a consequence of this lemma, it turns out that the step size t; used in RS-RNM can be bounded from
below by some constant.

» Corollary 7. Suppose that Assumption 3 holds. Suppose also that there exists € > 0 such that ||gx|| > €. Then,
with probability at least 1 — 2e™ %, the step size ty chosen in Line 6 of RS-RNM satisfies

tk 2 tmin(g)u (16)

where

tmin(é‘) = min (17 2(1 - 04)5055273 > .

(1+ 1) C2Ug () + U] )Up (£)Cn
Proof. If

2(1 — a)c3e¥'s

(14 1) €2Ux () + Uy )Ug (e)Cn

> 1,

we know that ¢, = 1 satisfies Armijo’s rule (8) from Lemma 6. If not, there exists I € {0,1,2,...} such that

2(1 — a)cde®'s

(14 e1)€2Uk(e) + Uy )Un (€)Cn

l 1 L
prtt < < g%,

and by Lemma 6, we have that the step size 3! satisfies Armijo’s rule (8). Then, from the definition of 3 in
Line 6 of RS-RNM, we have

2(1 — a)Bc3e's

th=p% > gttt = . gl > - —.
(1+c1)2Ug (e) + c2UJ )Up (e)Cn

This completes the proof. <

Using Corollary 7, we can show the global convergence of RS-RNM under Assumption 3.

» Theorem 8. Suppose that Assumption 3 holds. Let § € (0,1) and define §5 := 2 (exp(f%‘)s) + exp(—s)) and

o { f(xo) — f*
LA =8)(1—d.)p(e)e?

Oétmin(a)
25(1 + Cl)%UH(E) + QCQU; ’

J +1, where p(e) =

Then, with probability at least 1 — exp (—%(1 = 5s)m> there exists k € {0,1,...,m — 1} such that ||gx| < €.

Proof. We first notice that, by Lemma 1, applied with ¢ = 1/2, and Lemma 2, we have, using (4), that
| Prgill® > 3 llgxll* and |Px P, || < C% holds for all k € {0,1,...,m — 1} with the given probability.
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Suppose, for the sake of contradiction, that ||gx|| > € for all k € {0,1,...,m — 1}. From Armijo’s rule
(8), we can estimate how much the function value decreases in one iteration. We have that with probability
1-2 (exp(—%’s) + exp(—s)):

f(xr) = f(2rer) > —Oétkg;grdk
atrgr Pl M, Prge

IV

atk}\min(Mk_l) | Pegl®
Qtmin(€)
2(1+ 1) 2 Un(e) + 262 |l ge "
(by [ Pegll® > 2 llgxll®)
> p(e)e”. (by (9) and [|gx|| > ¢)

Y

2
gkl

Let us denote by A the event, only depending of Py, where the above inequality holds. Conditionally to the
complement of Aj, we have only that f(xr) — f(zr+1) > 0. Let us denote by T, € {0,1} the random variable
equal to 1 if and only if Ay holds. Notice that the random variables {T}} are mutually independent because Ty
depends only on Py. By the above remark we have that for all k: f(x1) — f(2rs1) > p(e)e®T}. Hence by adding
up all these inequalities from £k =0 to k = m — 1, we get

[

m—

F(20) = f(@m) = pe)? Y. T (17)

k=0

Since, for all k, E[T}] > 1 —2 (exp(—<s) + exp(—s)) := 1 — §,, we have by a Chernoff bound (see [41]), that for
all § € (0,1),

m—1 52
]P’(Z Ty > (1—5)(1—5s)m> >1—exp (—2(1—5s)m) . (18)
k=0

Notice that by definition of m, we have that

f(xo) — f*
(1—=0)(1 —d,)p(e)e?’

m >

Hence
(1=0)(1 = d5)p(e)e®m > f(wo) — f*. (19)
Thus, with probability at least 1 — exp (% (1~ 6,)m)
f(o) = f* = f(xo) — f(@m)

>(1-0)(1- 6S)mp(5)62
> f(l'()) - f*a

where the second inequality holds by (17) together with (18) and the strict inequality holds by (19). This is a
contradiction, hence there exists k € {0,1,...,m — 1} such that ||gx| < e. <

Because of the dependency of p(¢) on €, the above discussion can not lead to the iteration complexity analysis,
as we need to quantify the exact dependency of the iteration complexity bound with respect to . This will be
done, under a few additional assumptions, in the next subsection.

4.2 Global iteration complexity

We now estimate the global iteration complexity of the RS-RNM under Assumption 3 and the following
assumption.
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» Assumption 9.
Ly <1/2,
i. a<1/2,
iii. There exists Ly > 0 such that

[V2f(x) = V2 f(W)|| < L llz —yll.  Va,yeQ+B(0,m),

CU;_'*n'

C2S

where r1 1=

From the definition of r; in iii, Lemma 4 and (9), we have

Cn gl _ Cn U™

1]l <
S Co S C2

=T.

Note that unlike (12), the bound has no dependency on e. For this reason, we have
xp +7dp € Q+ B(0,r1), V7el0,1].

Moreover, since 2 + B(0,71) is bounded and f is twice continuously differentiable, there exists Uy > 0 such that
[V2f(2)|| < Un, VaeQ+B(0,r). (20)

Similar to the result of Lemma 6, we can show that a step size smaller than some constant satisfies Armijo’s
rule and therefore, ¢, can be bounded from below by some constant.

» Lemma 10. Suppose that Assumption 3 and Assumption 9 hold. Then, with probability at least 1 —2e™°, a
step size t). > 0 such that

2.2
C5S8
t;c S min 1, 722— 3
1-2v 9
C LHUg n

satisfies Armijo’s rule, i.e.,
f(x) — flog + thdy) > —athgl dy.
Proof. As (14) is obtained in the proof of Lemma 6, there exists 7, € (0, 1) such that
flar) = flax + tide) + atigi d
= (1 — Q)tygi Py M, ' Prgr — %tggggP,IM,;lkaQf(:ck + ity di ) Py M, Prgy,.
Since we have 1 —a > 1/2 > ¢}, /2 from Assumption 9.ii, we obtain

flan) = (@) + thdi) + otigp dy,

1,9 _ 1,9 _ _
> it}c g Pl M, ' Prgi — it; gL P M PV f (2, + Tty di) PY M, Prgy,

1
= 5%2921313(]‘41;1 — M PyH P M) Prgn,
1 _ _
- it;Qg{P,ij LPu(V2 f (xh + Tithdy) — Hi) PY M7t Pegy. (21)

We next evaluate the first and second terms respectively. Since we have
My = M P H P M = M — M (M — L) M
= nk(Mk_l)Q’ (22)

the first term can be bounded as follows:

1 _ _ _
gt;c?ggpl;r(Mk t- M, IPkaPI;er 1)Plcgk

1
S o P

1
stiea ol 1M Pege

Y
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Using Lemma 2 and Assumption 9.iii, we also obtain, with probability at least 1 — 2e~*, the bound of the second
term:

%tkngPkTM;lPk(Wf(xk + Ththdy) — Hy) Py M, ! Pygy,
1
< 62V fan + rithdi) — Hil| [|PPT | M P

Cs
§ TZLH#;) ||dk|| ||M];1Pkgk||2.

Thus, we have

1 Cn _ 2
faw) = flo +tidy) + athgldy > 51, ( losll” = =Lt |dk|) 1M, Pogi|
Cn, > 25 [lgx]” ) P
= —Lyt;,” ||d — | ||M P . 23
Lt ) (G2l — i) 0 | (29

Moreover, from (9), Lemma 4 and Assumption 9.i, we have

llgxll” C28 28
>
ldell = Cnllgil| 2" ~ CU; *'n’

so that we finally obtain

/ 1T Cn 12 6352 / -1 2
fzr) — fzg + tidy) + atyg, di > ?sLHtk lld|| W — 1y ||Mk PkaH
HUg n
> 0.
This completes the proof. <

» Corollary 11. Suppose that Assumption 3 and Assumption 9 hold. Then, with probability at least 1 — 2e~°, the
step size ty chosen in Line 6 of RS-RNM satisfies

tk 2 tminv (24)
where
2.2
tmin = min 1, ﬂﬂ% .
C LyU; 'n?
Proof. We get the conclusion in the same way as in the proof of Corollary 7 using Lemma 10. <

» Remark 12. Since (24) is equivalent to 3% > ., and moreover

lk § logtmin/log Ba

Corollary 11 tells us that the number of the backtracking steps is bounded above by some constant independent
of k.

Now, we can obtain the global iteration complexity of RS-RNM.

» Theorem 13. Suppose that Assumption 3 and Assumption 9 hold. Consider any § € (0,1). Let

_ | feo) =/ _
" \‘(1_6)(01_65)1752J +1, where p=

atmin

2C(1+ ¢1)2Ux + 2c2U7

and where §; = 2 (exp(—%os) —exp(—s)). Then, we have that

xo) — [* .
flzo) = f* > min llgell
mp k=0,1,...,m—1

holds with probability at least 1 — exp (,%(1 — 5s)m).
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Proof. Replacing Ug(e) and tpin() with Ug, in (20), and ty, respectively in the argument in the proof of
Theorem 8, we have

flan) = flaren) 2 pllgel® (k=0,1,...,m—1),
with the given probability. Therefore, by using the same notation as in the proof of Theorem 8, we obtain:
f(xo) = 7 = flxo) — flam)

m—1

= (f(zx) = f(zr11))

k=0

i

>p ) llgul* T
=0

m—1

m
k
. 2
T
> p (k_()ﬁg}};}ml g ) > T

k=0

> -a) = s l?).

k=01,...m

V

where the last inequality holds with probability 1 — exp (—%(1 — 5S)m) as shown in (18). This prove the

theorem. |

If we ignore the probability, Theorem 13 shows that we get ||gx|| < € after at most O(e~2) iterations. This
global complexity O(e72) is the same as that obtained in [39] for the regularized Newton method. Notice that,
by a cubic regularization, the R-ARC algorithm in [37] achieves O(¢3/2) to obtain a first order stationary point.

5 Local convergence

In this section, we investigate local convergence properties of the sequence {x} assuming that it converges to
a strict local minimizer Z. First we will show that the sequence converges locally linearly to the strict local
minimizer; then we will prove that, when f is strongly convex, we cannot aim at local super-linear convergence
using random subspace. Finally, we will prove that when the Hessian at T is rank deficient then we can attain
super-linear convergence for s < n large enough.

» Assumption 14. For all x,y
IV2f(z) = V2 f ()|l < Lullz -yl

holds in some neighborhood By of T.

5.1 Local linear convergence

In this subsection we will show that the sequence {f(xx) — f(Z)} converges locally linearly, i.e. there exists
k € (0,1) such that for k large enough,

farr) = F(@) < (1= 5)(f(zk) — f(Z)).

We will further prove that ~ can be expressed as x = O(m), where %(V2f(Z)) is the ratio of the largest
eigenvalue value over the smallest non-zero eigenvalue of V2 f(Z). Notice that, to the best of our knowledge, until
now, local linear convergence is always proved for subspace algorithms assuming that the function is locally
strongly convex or satisfies some PL-inequality (3). In this section we prove that under a Holderian error bound
condition, and an additional mild assumptions on the rank of the Hessian at the local minimizer, we can prove
local linear convergence. More precisely let us denote by r = rank(V?2f(Z)), which measures the number of
positive eigenvalues of V2 f(Z). We will first prove, under some assumption on the rank of the Hessian at Z and
on s, that for any z in the a neighborhood of Z, the function

fo:iur— f(x+PTu), where P is a random matrix sampled from D (25)

is strongly convex with high probability in a neighborhood of 0. Let us fix o € (0,1). We recall here that
P € R**" ig equal to % times a random Gaussian matrix. In this subsection, we make the following additional
assumptions:
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» Assumption 15.
i. There exists o € (0,1) such that r = rank(V2f(Z)) > on.
ii. There exist p € (0,3) and C such that in a neighborhood of T, f(xi) — f(Z) > C|lzr — Z||” holds.

» Assumption 16. We have that s < min (é, 4(1C§U)) n

From Assumption 15.i, V2f(Z) has r positive eigenvalues, i.e, A\;(Z) > ... \.(Z) > 0. By continuity of the
eigenvalues, there exists a neighborhood B of Z such that for any x € B, \.(x) > ATQ(QC)
that B C By, where By is defined in Assumption 14. Let us denote

. Here, we assume, w.l.o.g.

A= i . (26)

Assumption 15.ii is called a Hélderian growth condition or a Hélderian error bound condition [24]. The condition
is weaker than local strong convexity in the sense that it holds with p = 2 if f is locally strongly convex.

» Proposition 17. Assume that Assumption 15.1 and Assumption 16 hold. Let us consider fx defined by (25).
There exists a neighborhood B* C B such that for any x € B*,
Vsz(O) = EJXIS
~ 8s
holds with probability at least 1 — 6 exp(—s).

Proof. Let 2 € B be fixed and let P € R**" be a Gaussian matrix. Because of V2f,(0) = PV2f(z)PT, we
have uT V2, (0)u = (PTu) TV2f(z)(PTu) for any u € R®. Let V2f(z) = U(x)D(z)U(z)T be the eigenvalue
decomposition of V2f(xz). Since V2 f,(0) = (PU(z))D(xz)(PU(z))T and PU(x) has the same distribution as P,
we can assume here w.l.o.g. that PU(x) = P. Here

/\1 (.’L‘) 0 0
D(x) _ 0 )\2(30) 0 7
0 0 An ()

where \;(z) > -+ > A\, (x) and A\.(z) > X (since z € B). Let us decompose P ' such that

Pl
7= (i)

where P! € R™*% and P? € R™**, where n; and ny are chosen such that n; = and ny = n — r. Furthermore

let Dy (z) and Ds(x) be respectively the ny x ny and ny X ny diagonal matrix such that D(x) = (Dlo(m) Dzou) )
We have
(PTu)"D(z)(P"u) = (P*u)" Dy (z)(P'u) + (P?u) " Dy(z)(P?u). (27)

By Assumption 15.i, and by definition of B, we have that Dq(x) = \.(2)I, = M, = 0, and Da(z) = A\, (2) L.
Hence from (27), we have

(PTu) " D(x)(PTu) = A|[Pull* + A (2) [ P2ul|. (28)

Let omax(+) and omin(+) denote respectively the largest and the smallest singular value of a matrix. Using [41,
Theorem 4.6.1], there exists a constant C such that with probability at least 1 — 6 exp(—s):

Ve < omn(P) S omPT) 2
\)%_ngmin(Pl)Samax(Pl)S\/%“V‘C) (29)
\( % _C S Umin(PQ) S O'max(P2) S “ % +C
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More precisely, since all the three matrices P, P! and P? are Gaussian random matrices, we can apply [41,
Theorem 4.6.1] and deduce that each of the three inequalities above holds with probability 1 — 2 exp(—s). The
probability that all the three equations hold is derived using (4). Hence, with probability at least 1 — 6e*, for
any u € R?,

|wwwnﬂm<{;#f>mw

|w%w«/w< ;7f>mw

We have that n; > on and ny < (1 — o)n. Furthermore, we have by Assumption 16 that s < ;Zzn implies that

,/%—CZ?/% andsgi%;)nimpliesthat\/%M—FCSQ\/@.Hence
\/ 1 V2 4+C
- & Y2 _— < 24/(1—-0).
Vn /s 2\[ vn/s 1-9)

Therefore,

1

1P ull =5 Ve (n/s)|ul,

1P2ull <2¢/(1 = o)(n/s)]ul.
Hence, from (28), we have that

1 -

(PTu)"D(z)(PTu) >n/s (40)\ +4(1 — o) min(A, (), O)) [lu]|2.
We conclude the proposition by noticing that min(A,(z),0) tends to 0, hence the claim holds by considering a
neighborhood B* C B of # small enough. <

We deduce the following PL inequality for f; when z € B*.

» Proposition 18. Assume that Assumption 14, Assumption 15.1 and Assumption 16 hold, and let P € R¥*™
be a Gaussian matriz. There exist neighborhoods B C B* and By (a neighborhood of 0 € R®) such that for any
r € B,

Vf(0)T (PV2f(z)PT) IV f,(0) > f(z) — min f(z+ P u)

u€ By
holds with probability at least 1 — 6 exp(—s).

Proof. Let B C B* and let = € B. By the Taylor expansion of fz at 0, there exists T € [,z + P u] such that
1 ~
flx+PTu) = f(z) + (PVf(z)) u+ QUTPVQf(x)PTu.

Since, by Proposition 17, we have that PV2f(Z)P" = 0 for any = + P"u € B*, we deduce by Assumption 14
that for u small enough:

F@+ PTu) > f@) + (PV () Tu+ %uTPVQ F@)Pu. (30)

Let By be a neighborhood of 0 € R such that, (30) holds, and z + PTu € B* for any z € B. Let g(u) =
(PVf(x))"u+ ju" PV2f(z)P u. By the above inequality we have that

min f(o+PTu) > f(a) + min g(u). (3)

By Proposition 17 we know that for any u € R® such that x + PTu € B*, g is convex. Thus, the minimum is
attained at the point u* satisfying

Vg(u*) = PV f(z)+ %PVQf(x)PTu* = 0.
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Hence, since ||V f(z)|| tends to 0 as z tends to Z, we can ensure, by taking B small enough, that u* € By. Hence

min g(u) = =2(PVf(2)) (PV*f(z)PT) " PV f(2) + 34(Pvf($))T(PVQf(w)PT)_lpvf(ﬂﬂ)
= —(PVf(2)) (PV?f(x)P") "' PV f(2)
holds and (31) yields the desired inequality. <

Before proving local linear convergence, we prove the following technical proposition.

» Proposition 19. Assume that Assumption 14, Assumption 16, and Assumption 15 hold. There exists kg € N
such that if k > ko, we have with probability 1 — 6(exp(—s) + exp(—%s)):

Ao
Wmax (H) (/2 +C)

where Ao is the minimal non-zero eigenvalue of H := V2 f(T).

f(wr) = moin fo, (u) >

5 (f(zr) = f(2)),

Proof. Using a Taylor expansion around Z, we have that for all y € B ,

1

() = [(2) = 5y —2) " H(y - 7)| < L |ly — 3", (32)
where we define
H:=V*f(z). (33)

Also, for u € R? small enough, we have by setting y = x + PkTu in (32), that for k large enough such that
T + PJ u € B,

1 — 1 — —
|fn + P w) = £(7) = 5 (ax = 7) " H(ay = 7) = u' BHP u— (PoH (y, — 7)) "l (34)
< Lyllzx — 7+ B ulf

holds. Let g(u) = tu"PoHP,u + (PyH (2 — 7)) "u. By a reasoning similar to that of Proposition 17, g is
strongly convex with probability 1 — 6e™° and hence is minimized at

uw* = —(P.HP] ) ' P H(x), — T). (35)

Notice that as k tends to infinity ||u*|| tends to 0, hence for k large enough we have z + P, u* € B and u* € By,.
Plugging (35) in (34) yields

flzp + P,Iu*)
1 — 1 — — —
< f(z)+ §(xk —7)"H(zp — T) — i(xk —z)"HP, (P.HP, ) 'P.H(z), — Z) + Lz — T + P} u*|?,
from which we deduce

flak) = flae + Pl u”)

1 — 1
> flan) = f(7) = (@x = 7) " H(wy = 7) + 5wk = 7) "Wy = 7) = Lalloy = 7+ Bl
where 1 = HP (P,HP,) )~"'P,H. Using (32), we further obtain

(a1 — ) T I(w, — 7) — Lig (o — 7+ B [P + [l — ). (36)

N =

flar) = flan + Plu) >

We have (2 — %) H(zy, — 7) = (A" (2 — 7)) TH > (2 — 7)), where T := H/*PT (B,HP]) ' P.H"?

is an orthogonal projection matrix into Range(H ! 2P,;'— ) parallel to ker P, H 1/2. Hence

(ex —7) (zy, — 7) = |[TH" (24 — 7)|%-
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Since |2 H 2| 0H " (21, — 7)) > |PH " *TH " (x), — 7)|)?, we have

1
(xkff)TH(xkf:f)ZiﬂPkH VAOEY? (2 — 7))
||PkH %12
1
- —— | P - )
| PrH |2
1 _ _
> —— 5 |H(zk - )|
2||P.H 7|2
Ao
ZillH (2, — )|
2||PkH ?|12
Ao —1/2 _
=——— ||H (2 — 2)|?
2 mae (PoH Py )
>\O T 17 _
= N (B H(z, — 7). 37
sy ) H ) (37)

where the second inequality holds with probability at least 1 — 2exp(—— ) (by Lemma 1 with ¢ = 5), and

the third holds as )¢ is the smallest non-zero eigenvalue of H. The second equality holds as oyax(PeH 1/2) =

Amax (PrH 1 Pr). We have therefore proved that

(" (= ) TR (o~ 7)) 2 gxmfzgkﬂpw (2 — ) Hwy - 7). (38)
Hence, by (36), we have
flar) = flaw + Pl u®)
al (¢ — )" H(zy, — ) — Lu(|ar — 7+ P u* | + [lag — 7). (39)

Z - . =
A max (P H Py;)
From (35), we have that |z —Z + P u*|| = ||(I, — P, (PHP, ) ' P H)(xy, — Z)||. Hence
lz =& + B || < 1o — P (PHP )" Pl | [l — ). (40)
Since P, (PyHP,] )™' Py H is projection matrix (along Im(P,) parallel to Ker(PyH)), we have by [1] that
\L, — Y (REP) B = |P] (PEP]) B (41)
Furthermore, by Proposition 17, we have that with probability at least 1 — 6 exp(—s),
=T n -
P.HP, = ga)\ls.

Hence, we deduce from (41) that

. o PT 2 E
|I, — P} (P.HP, ) 'P.H| < 12 ENHE) (42)
30N
Therefore, we deduce by (39), (40) and (42) for $; > 0 suitably chosen, we have
Ao T _ 3
zr) — f(zr + Pl u ————— (2, — %) H(xp —Z) — Billze — 2|7 43
) =+ PI) 2 T o= 2) =) = By =31 (43)

By taking y = x in (32), we have that
1 T = = =13
o (@n =) H(wk = 7) 2 flzx) = f(@) - Lallz — 2"

Hence, by (43)

#
2\ max (PyH Py,)

Ao

T x
flar) = flan + Pu’) 2 2wax (P Pr)

(1w - 5@ - Lir + 1 )l ~ .
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By Assumption 15.ii,

Ao Ao 1 i3 _
— Plu*) > - — ——L =z — Z|P* - :
flon) = Jlans ) = <2Amax(PkHPk> (2Amax<PkHPk) " ﬁl) gl =7l ) ) = 1)
Since ||z — Z|| tends to 0 as k tends to infinity and p < 3, we have that for k large enough
. « Ao _
Plan) = min o+ PT) 2 ) = S+ P0) 2 B (7o) = J(0))

where the first inequality holds as, by (35), u* € By for k large enough. The probability bound in the statement
of the theorem is obtained by using (4): in the whole proof we only use Lemma 1 with ¢ = %, which holds with
probability at least 1 — 2 exp(—%’s), and the inequalities (29) which hold with probability at least 1 — 6 exp(—s).
We also factorize the expression, using that 1 — Qexp(—%‘)s) >1- Gexp(—%s). We end the proof by noticing
that Amax(PeH Pr) < Amax (H)0max (Px)?, hence by the first equation of (29)

Amax(PoH Pr) < Amax(H) (\/f + C> 2 : (44)

<
We are now ready to prove the main theorem of this section.

» Theorem 20. Assume that Assumption 14, Assumption 15 and Assumption 16 hold. There exist 0 < k < 1,
ko € N, such that if k > kg, then

Ao
I (H) (VE+C)*

holds with probability at least 1 — 6(exp(—s) + exp(—%‘)s)). Here a € (0,1) is a parameter of Algorithm 1.

flan) - £(7) < (1 - sall-a) ) (f(an) = (@)

Proof. We recall that we use a backtracking line search to find at each iteration k a step-size t; such that
flay + tedy) < flay) + atyVf(zx) T dy,

with dj = P,;ruk and the update rule t < St for 0 < o < 1 and 0 < 8 < 1. We recall that
up = —(PoHp Py + niLs) ™" Prge, (45)

where we recall that n, = ¢1Ag + c2 ||g|”. By a Taylor expansion of f around xzy, there exists @} € [zg, Tx11]
such that

t2
fzp +tuPlu) = f(xr) + te(Pegr) "ug + gkuszVQf(xZ)PJuk. (46)

Notice that V2 f is Lipschitz continuous (by Assumption 14). Furthermore, by Proposition 17, for k large enough,
P.H P/ is positive definite with probability at least 1 — 6 exp(—s) as the sequence {x)} converges to Z. Hence,
for k large enough

ul P2 f (i) B e < wyl PeHe Py wg + || B ugl | Hy — V2 f ()|

< g PoHLP ug + Ly || Py url|len — i || < 2uf PoHR Py ug
holds with probability at least 1 — 6(exp(—s) + exp(—%os)). By (46), we deduce that for k large enough:
t2
flan +tu Pl ug) < f(axn) + ti(Prgr) ug + 2§U;PkaP;;ruk
< f(an) + te(Pogn) Tur + thul (PoHe B + mids)u,
where the second inequality holds as 1 > 0. Let

pp = —gp di, = (Pegi) " (PeHy Py + miLs) ™ (Prgr)- (47)
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Since (Pygr) "ur = g, (P ug) = —u2, and by definition of uy, in (45), we can write

fan +tuPlu) < fan) = topd, + tiug (PoHR P + el )ur = f(ar) — topd + G- (48)
Hence, we have

f@rgn) < flan) — te (1 —th) pi

Thus the step-size t;, = 1 — « satisfies the exit condition, f(zx) — f(zx + trdy) > —atrgl dy, in the backtracking
line search as we have

(1—ty) =«
for such tg. Therefore, the backtracking line search stops with some t; > 1 — a, and we have
flars) < flan) — a(l = a)pi. (49)
Notice that since 7y tends to 0, we have that
ui = (Pogr) " (PeH P +miLs) ™ (Prgr) = %(Pkgk)T(PkHPJ)il(Pkgk)'

Hence, by Proposition 18, we have that when k is large enough,

Fann) = 1) < o) = 1@) = ga(i = a) (Fon) = mip Fo () (50)

holds with probability at least 1 — 6(exp(—s) + exp(f%’s)). By Proposition 19, we have that
o Ao _

o) = iy T > St 1) — 160
holds with probability at least 1 — 6(exp(—s) + exp(—<s)). Hence

fleen) ~ F@) < (1- 2ol —a) ) U - @), 61)

2 Dmax (H) (/5 +C)

which proves the theorem. <

» Remark 21. Notice that the rate we obtain corresponds to a high probability estimation of the local convergence

rate derived, when f is assumed to be strongly convex, in the stochastic subspace cubic Newton method [22].
Ao
Dmax (H) ({/Z+C)
of )\min(ﬁl/QP,;r (PkHP,;r)*lPkﬁl/g), as seen in (38) and (44). More specifically, this corresponds to a high
probability lower bound of the parameter ¢ = Amin[E(IT)] = Amin[E(H /P (P.HP] )~ P, H""?)] that appears

in the local convergence rate in Theorem 6.2 of [22].

This can be seen in the proof of Proposition 19, where the rate > corresponds to a lower bound

Let us define
1 A
k:=—a(l —a) 0 5 <L

2 Wmax(H) (/2 +C)

We have the following direct corollary:

» Corollary 22. Assume that Assumption 14, Assumption 15 and Assumption 16 hold. There exist kg € N such
that if k > ko, then, for any m € N,

f@rpm) = () < (1= r)"(f(xr) = £(T))
holds with probability at least 1 — 6m(exp(—s) + exp(—<s)).

Proof. This is a direct consequence of Theorem 20 where the success probability is obtained by union bound,
using (4). <
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Notice that one can also derive an expectation version of Theorem 20 as follows.

» Corollary 23. Assume that Assumption 14, Assumption 15 and Assumption 16 hold. There exist kg € N such
that if k > ko, then,

E[f(zks1) = f(@)] < A = p*R)E[f(zx) — f(T)],

where p := 1 — 6(exp(—s) + exp(—<Ls)). Here the expectation is taken with respect to the random variables
PO7P17P2;-~-aPk-

Proof. By (50) we have that
Fanin) = () < o) = @) = ga(1 = o) (Fon) - mip Fo ()

holds with probability p = 1 — 6(exp(—s) + exp(f%"s)). Let us denotes by £ the event, with respect to Py, on
which the above equation holds. Since f(xp4+1) — f(Z) < f(xr) — f(Z) holds with probability one, we can write
that

Fanan) = () < fax) = £@) = a1 - o) ( fan) = mip Fou () 1.

where 1¢ is the indicator function over €. Let us consider the following conditional expectation: E[- | Py, ..., Py_1].
We have that

E [f(ﬂ;‘k+1) — f(f) | Py,..., Pkfl]

< flon) = 1) - qat - a)E | (o) - mip o)) 1

-F)Oa"'v-PkI:| (52)

holds as f(zr) — f(Z) is measurable with respect to the sigma algebra generated by Py, ..., Py_1. Let us define
Ao

the event
— l‘k;} 5
max(H) (/2 +C)

on this sigma algebra, which holds by probability at least p =1 — 6(exp(—s) + exp(—%os)), by Proposition 19.
By conditioning the right-hand-side of (52) with respect to this event, we obtain that when k is large enough

o { ) = min o) > S/ (@0) — (@)

E[f(zks1) — f(Z) | Pos- .-, Pr—1]

< flzw) — f(Z) - %04(1 —a)E L)\ (H)A(O\/ﬁJrc)g (f (k) — f(ﬂf))lel P
< (f(aw) ~ f(@) (1 - jall-a) o (H)A((’ T C)2p2> .

Where the first inequality holds as in any case we have that f(xy) — min,ep, fmk (u) > 0. By taking the
expectation with respect to Py, ..., P;—1 we deduce the corollary. <

Let consider the following assumption.

» Assumption 24. There exists p > 0 such that for k large enough
IVf i)l = pller — 2. (53)
Notice that Assumption 24 is actually stronger than Assumption 15.ii.

» Lemma 25. We have, under Assumption 14 and Assumption 24, that for k large enough:

p _ = _
———=lz — 7| < |V H(z - T)]|

24/ Amax ()
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Proof. Using a Taylor expansion of t — V f(Z + t(xx — Z)) around 0, we have that
1 1
Vi(zy) = V(T + / V2f(@ +t(xy — ) (zp — Z)dt = / V2f(Z + t(xy — 7)) (zp — Z)dt. (54)
0 0

By Assumption 14, for any ¢ € [0, 1] we have |V2f(Z + t(zy — Z)) — H|| < tLy||zr — Z||. Hence we deduce that
IV @)l < I1H (zx = D)l + V2@ + tzy, — 7)) = Hlll|ax = 7| < | H(z, = D) + Lirf|ax — 7 (55)
Therefore, by (53), we deduce that

(55) _
plax = 7l = Lullow — Zl|* < IV (@)l = Lallew = 3l1° < [ H(z, - 7). (56)

Since ||z — Z|| tends to 0, we deduce that for k large enough:

Lllar =2 < | H(zx = D) < \ Ao (H) |V H 2 = )| «

Let us now define the semi-norm:
||x||2§ =z Hz. (57)

Notice that by Lemma 25, under Assumption 24, when k is large enough, || - ||z is a norm for z;, — T as we have
that ||z, — Z||z = 0 if and only if ||z, — Z| = 0.

» Proposition 26. Assume that Assumption 14, Assumption 16, Assumption 15.1i and Assumption 24 hold.
Then for k large enough:

R al ek — 2]
k - T > - — kE — T
T Do (H) (Z +C)° d

holds with probability at least 1 — 6(exp(—s) + exp(—<s)).

Proof.

VH(w1 —7) = VHzi — ) + VH(zy, - 7)
— VHPT(P.HLP] + nol,) " Pogs + VH(ay — 7)
= VEP] (PHP] +npl,) " PoHy(zg — 7) + VP (PeH P +niel,) " Pe(gr — Hy(ay — 7)) (58)
+ \/ﬁ(xk —7T)
:—A—f—B-l-\/E(SEk—E), (59)
where A := VHP] (P.H, P +nply) ' PoHy(zx — T) and B := VHP] (PoHi P, +m10) " Py(gr — Hi (1, — T)).

First let us bound B. In order to do so, we bound ||P,€T(PkaP,€T + nels) L Pg||. Notice that from PkaPkT =0,
7 > 0 and Proposition 17, we have

3 3 PT 2
\PT(PHLPT + ) Pl < | BT (Pot P ) 1y < 1k (60)

n

with probability at least 1 — 6 exp(—s). Therefore, by Lemma 2, we have

_ 8C
|1P (PeHe Py + niels) ' Pr|| < ~ (61)

By Taylor expansion at Z of Vf, as in (54), and by subtracting Hy(zr — T) to both sides, we obtain by
Assumption 14 that

lgr = Hi(zr — T)|| < /0 IV2f (@ + t(ar — 7)) = V2f(@)|ll|l2r — Z[dt = O([lo — 7). (62)
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Hence, by (61) and (62), there exists a constant 51 > 0 such that
B < |[VH|IP (PeHe Py +meLs) ™ Pulll(gr — Hi(z — 2))I| < Billaw — 7). (63)

Let us now bound A = \/ﬁ]-’];r (P;CHICP,;r +npls) "t Py Hy (73, — Z). Let us furthermore decompose A = Aj + A
such that

VHP/ (P.H.P] + ni.I,) ' PoHy(x), — 7)
= VHP/] (P.HP/] +n1,) 'PH(xy — %) + VHP, (PeH P, + miIs) ' Pe(Hy — H) (2, — 7). (64)

Notice that by Assumption 14, we have that ||(H — Hy)|| tends to 0. Therefore, we deduce from (61) and (63)
that

IV HP (PHy Py + L)~  PoHy, — (PHP] +nils) ™ PoH) (2, — T)|| = o(||xy, — 7).
Therefore by (58), (63) and (64), we deduce that
VH(rpy1 — %)= —-A+B+VH(x, —7)=—-A + VH(zp — %)+ o||zx — Z)).

Hence, by evaluating the norm of Ay as o(||xy — Z||), we deduce that with probability at least 1 — 6(exp(—s) +
Co
exp(—s))

IWH@ess =) < || (1o~ VAP (PHP] +md) " PV ) V(@r = 2) | + oo — 7).
We can write

(In ~VHPT(P,HP] + nkls)—lpkﬁ) VH @y - 7)

= (I = VEP(PHP]) " PVE) V(g - 7)

—VEP](PHP] + L)~ — (P.HP] )P H(ax — 7).

Hence, using the same reasoning as before, we obtain that

IWHe =D < ||(In = VAP (RHPD) ™ PVE) V(i - 2)| + olllox - 7). (65)
Notice that \/ﬁPkT (PkI?P,;r)*lPk\/ﬁ is an orthogonal projection, hence

H (In - \/EP,I(PkHP,j)—lpk\/ﬁ) VH(y — f)H2

= |V H(w, - 5)|? = VP (PHP) " PH (i — )|

Then similarly to the proof of Proposition 19 and similarly to (37), we have that with probability at least
1 — 6(exp(—s) + exp(—5s)),

IVHP, (P.HP )" PoH (x), — T)||* = (zx — 2) ' T(2), — Z),
and

VA @z, — 7)|?

VEHP(P.HEP)) 'P.H(z, - T)|? > —— 2
[ v (PrHP), )" PyH(zy, —Z)||° > _zAmax(PkHPT

where \g is the first non-zero eigenvalue of H. Therefore, we have that
H (In - \/I?PJ(P;CFPJ)*P,C\/I?) VHx - :T)H < \/1 -
Therefore, by (65), we have that

IVH (241 — )| < \/1 2 (k- D)+ ol — ).

7 IVH (i — 7).

2>\max(PkHP

2\ max (P H P, )

By Lemma 25, we have o(||z; — Z||) = o(||VH(z), — Z)||), hence we deduce that when k is large enough,
———||VH(zx — 7)
PkHPT IVH

IVH @i - 7)) < \/1 T

We complete the proof using (44). <
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5.2 Impossibility of local super-linear convergence in general

In this section we will prove that when f is strongly convex locally around the strict local minimizer Z, we
cannot aim, with high probability, at local super-linear convergence using random subspace. More precisely, the
goal of this section is to prove that there exists a constant ¢ > 0 such that when k is large enough, we have that
with probability 1 — 2exp(—%°) — 2exp(—s),

[ere1 = Z[ = cflzr — 2.
From that, we will easily deduce that there exists a constant ¢’ such that
f(@rs1) = f(@) = ¢ (f(ae) = f(7))

holds with high probability when k is large enough. This will prove that the results obtained in the previous
section are optimal when f is locally strongly-convex. Indeed, by local strong-convexity of f and Hessian Lipschitz
continuity (i.e. Assumption 14), there exists Iy > I3 > 0 such that for k large enough,

hlzk = Z|* < f(a) = (@) < bollo, — )%

This immediately proves the existence of the constant ¢’ described above. In this subsection we make the following
additional assumption.

» Assumption 27. We assume that
(C +2)%s < n,

where C is the constant that appears in (29).
We recall here that for all &:

Th1 = x — P (PeV2 f(zr) P ) + mids) ' PeV f (2),

where tj, is the step-size and 7, > 0 is a parameter that tends to 0 when & tends to infinity.
Let us fix k. Using a Taylor expansion of t — Vf(Z + t(xx+1 — Z)) around 0, as in (54), we have that

1 1
IV f @)l < / IV2 (@ + t(an — D) llznss — 2t < / Do (V£ (D)) 541 — |, (66)

where Apax () denotes the largest eigenvalue, and the second inequality holds for k large enough under Assump-
tion 14. Hence, for k large enough and under Assumption 14,

1
e — T > m”vﬂxkﬂ)u (67)

holds. Using a Taylor expansion of V f around zj, we have that
1
Vf(xge1) = Vf(l‘k) + / VQf(l‘k + t(l‘k+1 — xk))(xk_H — xy)dt.
0

Hence,

Vi(@es1) = V(zr) + V2 () (@her — zi) + /0 (V2 f(xr + t(zrer — zx) — V2 f (@) (Tos1 — z).

We deduce therefore that

1
IV f(zre )| = IV f2n) + V2 (2n) (@rs1 = 2a)]] —/0 (V2 f (@ + tarrs — 2x)) = V2 (2x)) (@rer = 2a)].

By Assumption 14, the Hessian is L gy-Lipschitz in By. Since x and zy + t(zr4+1 — xx) € By for k large enough,
we have that for ¢t <1,

1(V2f(zk + t(@pgr — 2x)) — V2 f (@0) (@rg1 — 20)) | < L[| apgn — x>

Hence (67) leads to

_ 2
lzk+1 — 7| > m (||9k + Hy(zrv1 — 1) || = Lal|lzr — 2kl ) . (68)
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» Proposition 28. Assume that Assumption 14 and Assumption 27 hold and that f is strongly convez locally
around T. There exists a constant B > 0 such that if k is large enough, then with probability at least 1 —
2exp(f%°s) — 2exp(—s), we have

gk + Hi(zr+1 — z) || = Bllwg+1 — |-
Proof. Recalling the updated rule xx4+1 = ) — tkP,;er_lpkgk in Algorithm 1, we have
gk + Hi(wxi1 — ai)|| = | (In — tk Hi B M Py gy,

where M}, is defined in (6). If k is large enough, H} is invertible by strong convexity of f. Notice that
(I, — tx Hy P M,  Py)gy|| = | Hy(H, ' — tx P, M, ' Py)g||. Hence since for any invertible matrix A we have

|Az| > %, we deduce that

_ 1 _ _
(I — te Hy Py M, Py)gil| > mH(Hk Y~ P M Py gl
k

Furthermore, we have
I(H,, ' — P My P gill” = | Hy ' gill® + 1t Py M Pegiel|? — 2(H,  gi, tie Py My, Prg). (69)

Let H;lgk = P,;'—zl + 29 be the orthogonal decomposition of H,;lgk on Im(P,;'—) parallel to Ker(Py). Since
Przo = 0, we have

(H, 'gi, tx Py My ' Pogy) = (P z1,t,.P] M, " Prgy).
Hence, by (69), we deduce that
I(Hy = te P My P)gil|® 2 |1 Hy gull? + [[te B My Pegicl|? = 20 B 21|66 Py My Prggll- (70)

Since Hk_lgk = P,;rzl + 29 with Przo = 0, we have that Pka_lg;C = PkPszl. Which implies (since PkP,;r is
invertible with probability 1) that z; = (PkP,;r)*lPnglgk. Hence

1P 21l = 1P (P )™ P gl < 1P (PePd) ™ | Py gl

By Lemma 1, we have that with probability at least 1 —2 exp(—%os) that | P H, 'gx|| < 2| H,, ' gx||. Furthermore,
by writing the singular value decomposition, USV' ", of P,|, we have that ||P,] (PP, )7 = U~V T =
FRNIASE Since omin (P ) > \/§ — C holds with probability at least 1 —2e~* (we only consider the first equation
of (29)), we deduce that

1P 2] < 1 gl

2
VEe
Hence, from (70) we have

I = te P My Po)gie|® (71)

> || Hy  gill” + |[te Py My, Pegill® — I H; gielll[tk Py My Prge|

4

JE-C

> <1 - 2) I g + (1 - 2) 6P M Prgi]”,
JE-¢ Vi-¢

where we used that 2ab < a? + b? in the last inequality, and that (1 R — > > 0 holds by Assumption 27.

Vi

Hence, from (71) we proved that

Ly 2
12 Vi-¢
1

2 2
T\ e )l e

I(In — txHe Py] M,  Pr)ge)?

) [tx Py M, Prggl|®
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That is
1— 2
n_¢
gk + Hi(xpe1 — zx)|| > H\(kaﬂ — x| (72)
k
Considering k large enough, as xj tends to Z, we can bound, using Assumption 14, HT1_1H > ﬁ, where we
— k

recall that H = V2 f(Z), which ends the proof. <

» Theorem 29. Assume that Assumption 14 and Assumption 27 hold and that f is locally strongly convex
around T. There exists a constant ¢ > 0 such that for k large enough,

[eh41 — ]| = cfjz — 7|
holds with probability at least 1 — 2exp(—%°s) — 2exp(—s).
Proof. From (68) and Proposition 28 we deduce that with probability at least 1 — 2exp(—c4—°s) — 2exp(—s),

when £ is large enough
L
2Amax (V2 f(Z))

Since 8 > 0, we have that for k large enough so as to yield Ly ||xg+1 — x| < 8/2,

[Tr+1 — 2| = (B = Lalzerr — zel) 2o — @l

oo — 2l > B H
TS (V@) 2
Hence
i —axsr — 2l (73)

_ j” >
A\ max (H)

Since f is assumed to be strongly convex, for all a € (0,1), as ggdk < 0. Hence we have that t; = 1Now we
notice that

@1 — zil| = til| Py My, Prgill > teomin (P ) IIM; ||| Prgel- (74)

Using Lemma 1 (with ¢ = 1/2) and the bound (29) on o, (P, ), we have that

_ n 1
o POIME Pl = 0 (12 =€) 134713 o (75)
Since x;, converges to Z and the Hessian is Lipschitz continuous, we have that Hj, converges to H. Therefore,
when k is large enough, we have |[M; || > 3|(P.HP )7 = %||J\7_1||, where M := P,HP,". Since
0 = M = Anax(H) Py P/,

we deduce by Lemma 2

1

1M > ————
2C A e (H)

Hence, by (73) to (76) we have that there exists a constant ko > 0 such that

|Zrt1 — ZI| > K2llgll-

By (54) we have that

1
gk = H(mk — f) + / (v%f(f + t(lL’k — f)) — H)(Sﬂk — .T)dt
0
Hence, since f is assumed to be locally strongly convex, by Assumption 14 we have that for & large enough:

)\min(ﬁ)

2 ok — 3l

lgrll =
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Using (23), we have

cas || grll”

5n 2
) — flon +thdy) + ath gl d, > —Lat.”|ld (
flxr) — f(ap + tidy) K9ndi = 5 =Lt ||l CLan de]

t%) ||M)¢_1Pkgk||2a

. . v . .
and since f is assume to be strongly convex, ””g;JlH is in the order of O(W

some constant for k large enough. Hence we have for k large enough that

), hence tj is bounded below by

1 —
k41 = 2l 2 5 w2 Amin (H) 2% — 2],

which concludes the proof. <
We have the following deterministic corollary:

» Corollary 30. Assume that Assumption 14 and Assumption 27 hold and that f is locally strongly convex
around T. Then for k large enough,

E(fzrr — ll) = eB(lzx — ),

where ¢ = (1 — 2exp(—c4—°5) —2exp(—s))c (c is the same constant as in Theorem 29), and where the expectation
is taken with respect to the random variables Py, ..., Pj.

Proof. The proof is very similar to the proof of Corollary 23. Let us consider the random variable
Ell|lzk+1 — Z|| | Po,--.,Pr—1]. Let € = {||lzx+1 — Z|| > ¢llzx — Z|| | zx} be an event with respect to the
random variable Pj. Using the fact that ||zp41 — Z|| > 0, we obtain that

Elllzxir — 2l | Po, ..., Pr-1]
=E [Hl’kJrl — f” | Po, .. .,Pkfl,g} P(g) +E [ka+1 - f” | Po, .. .,Pkfl,(ﬂ (]. - P(g))
> tllzx — 7|
Taking the expectation with respect to Fp, ..., Py—1 leads to the result. <

5.3 The rank deficient case

Previously we proved that when f is locally strongly convex, super-linear convergence cannot hold for RS-RNM.
Here we prove that when the Hessian H at the local optimum Z is rank deficient, then RS-RNM can achieve
super-linear convergence. In this whole subsection, we assume that Assumption 14 and Assumption 24 are
satisfied. We also denote by r (< n) the rank of H. Notice that, as a special case of 7 < n, one can consider
“functions with low dimensionality™ [42]. For such functions, there exists a projection matrix IT € R"*" with
rank(IT) < n such that

VeeR" f(z)=f(x). (77)

Such functions are frequently encountered in many applications. For example, the loss functions of neural
networks often have low rank Hessians [21, 36, 33]. This phenomenon is also prevalent in other areas such
as hyper-parameter optimization for neural networks [3], heuristic algorithms for combinatorial optimization
problems [23], complex engineering and physical simulation problems as in climate modeling [26], and policy
search [17].

We first prove the following lemma which is very similar to Lemma 25.

» Lemma 31. We have, under Assumption 1/ and Assumption 24, that for k large enough:
Pl (e
g llw =2l < [ H (@ = 2.

Furthermore,
||gk|| < 2)‘max(H)ka - .f”

4 They are also called objectives with “active subspaces” [10], or “multi-ridge” [16].
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Proof. As in the proof of Lemma 25, we have (56), i.e.,
plax — || — Lyllzy — 2l*<[|H (zx — )|
Since ||z — Z|| tends to 0, we deduce that for k large enough:
Ll — 2 < | Hz, - 7).
The other inequality is easy to deduce from (54), as in (66):
lgrll < 1H llex = Z|| + Lallzk — ZI* < 2Amax (H) |2x — 2], (78)
when k is large enough such that Ly |z — Z|| < Amax(H) holds. <

The next lemma is the key to prove super-linear convergence. Notice that since s > r, we have that with
probability one oin(P}) > 0.

» Lemma 32. Under Assumption 14 and Assumption 24. If s > r, we have that for k large enough, with
probability at least 1 — 2 exp(—s):

Umin(Pl)
P > p—mvk/ ,
| Pegrrill > pSAmaX(H) lgrsall

where P} € R¥*" is an s x r i.i.d. Gaussian matriz having the same distribution with Pj.

Proof. By (54) applied at k 4+ 1, we have that

1
Vf(xk_H) = [) VQf(f + t(il'k_H — f))($k+1 — :f) dt.

Hence,

1
Pegiss = Pull(@psr — @) + / Pu(V2 (T + t(anir — ) — H)(zpss — 7).
0

which leads to
1Pegriall > [|PoH (zrg1 — Z)I| = La|| Pelll|rra — Z)1*. (79)

Let UDU T = H be the diagonal decomposition of H. Since Z is a strict local minimizer, by Assumption 24,
for k large enough, U is an orthogonal matrix independent of Py, and hence, Py := P,U is an i.i.d. random
Gaussian matrix with the same distribution as Pj. Let yr41 = U (211 — ). We have that

H(zp41 — ) = UDygyr  and thus, PoH(zpp1 — ) = PpDyjir. (80)
Furthermore, since D has rank r < n, we can write Dyy11 = (Z"O+ ! ), where z;+1 € R”. We have therefore that
|PeH (241 — )| = || Pzl (81)

where P! € R®*" is a submatrix of ﬁk, ie., ﬁk = (P,:; P,?) Notice that from the definition of yi+1 and zg41,
we have, by orthogonality of U, that

(80) |\ 77 = P =
1241l = 1Dyl =" 1H (241 = D) 2 S llzwss = 2],
where the inequality follows from Lemma 31. Hence, from (79) and (81), we deduce that

Omin Pl
| Prgr+1ll > P%

Using that || Pyl is bounded, with probability at least 1 — 2 exp(—s), by Lemma 2, we deduce, as in the proof of
Lemma 31, that for k large enough:

kst = 2l = L | Pllllwr+1 — 2.

Omin(P}) 0@ omin(Py) el
P > p———— ||z -7l > —.
| Pegrsill > p 1 k41 | = »p 4 2 e (H)
That is:
Omin Pl
1Pegrarl] > pZmn i) oy «

SAmax(H)
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Similarly, we have the following lemma.

» Lemma 33. Let M € R™™" be any matriz. Under Assumption 14 and Assumption 2/, if k is large enough
and s > r, we have
Umin(Pkl)
2

Proof. The proof is very similar to the proof of Lemma 32. We have

[ Hp M| < || Py Hy M.

| PoHM]| > [P M| — | Pu(Hy — H)M]. (82)

Let UDUT = H be the diagonal decomposition of H. Similarly to the proof of Lemma 32, Py = P,U is an i.id.
random Gaussian matrix with the same distribution as Py. Using N ::y—rM7 we have that P,HM = P, DN.
Furthermore, since D has rank r < n, we can write DN = (fg ), where N € R"™*™. We have therefore that

|PHM| = PN, (83)
where P! € R®*" is a submatrix of Py, i.e., Py = (P! P?). Therefore

|PLHM || 2 owmin (PN = Omin (P DN || = owin (Pr) [ HM], (84)
where the last equality holds by orthogonality of U. We deduce therefore, from (82) and (84) that

|1Pe He M| 2 0wmin (P || HiM || = 0wmin (Po)|(H — Hi)M|| = ||Pe(Hy — H)M]|.
Since Hy tends to H, we have the desired result for k large enough. <
I

The next lemma, similar to Lemma 5.2 of [39], is needed to control nx = ¢1Ag + ¢2 ||gx||”, where Ay =

max (0, —Amin(PeHp P ).
» Lemma 34. Under Assumption 14, for k large enough, we have that with probability at least 1 — 2 exp(—s),
Ay < C?nLHka 3.
Proof. The result is obvious when Ay = 0. Let us consider the case Ay > 0. Let A\, = (A,gl), ce )\,(:)) be a vector
of eigenvalues of P, H P,;'— and we write the eigenvalue decomposition of P, H P,;r as follows:
P.HP, = U, diag(\)Up.
Notice that /\min(PkaPkT)IS — UkPkaPkTU,;r is singular. Furthermore,
Amin (P Hi Py )1 — diag(Ax)
is not singular as Apin(PrH, kPkT ) < 0 by assumption and diag(\g) is positive. We define
A = Omin(PeH P ) I — diag(A)) ™ Anin(PeHe P ) L — Un PlHR B UL,

which is therefore singular. Notice furthermore that since )\min(PkaP,;r ) <0,

1 1
Amin (P He PII, — diag(\e)) 7| < =, 85
|(Amin (PxHr Py, ) fag(A)) [l < e (PHAPT) Ay (85)

Hence we have
1 < “Is - Ak“
= |1Is — Amin(Pe Hy P ) I, — diag( M) ™ Amin (Pe Hy P ) I, — U P HR P Ul
= |11y — Amin(PeHy P ) I, — diag( M) ™  Amin (PeHy P ) I — diag(A) — Up Pi(Hy — H)P] U,
= | Amin (PeH P ) I — diag(Ay)) ' U Pe(Hy — H)P U ||

(85) 1 T —
< o llPe P [l Hr — H]|
k

Lemma 2 ] 5n
Ry} _z
A, s Lalee =l

where the first inequality is a well known inequality for a singular matrix and is proved in [39, Lemma 5.1]. <«
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Let us recall that

dy, = =B (PeH By + 1) ™" Pege,
and

My, = PyHLP, + 1.

» Lemma 35. Under Assumption 14 and Assumption 2/, if s > r, we have that for k large enough, we have
that with probability at least 1 — 2 exp(—s),

4 1 Cn
dy, §<2+> —|lxr — X||,
Il < gy (2% 53 ) {5 o =
where P,:; € R**" 4s an s X r i.i.d. Gaussian matrixz having the same distribution with Pj.

Proof. Notice first that by Taylor expansion of ¢t — V f(Z + t(xx — T)) and by Assumption 14, we have that
— _ LH =112
lge = V£(@) = Hi(zr = D) < =~ [low — 21" (86)
The definition of dj, leads to

ldi | = [P M. Prgell

Vf(x)=0 _ _ _ _
O PT M Py(g — V£ (F) — Hy(zk — 7) + Hy(wy — 7))

< IPllPIM;  lgw — V f(Z) = Hy(zx — 2)|| + 1B My P Hill||zy, — ||
(86) Ly _ _ _ _
< I PPIM e = 1% + 1P M PeH[|z — 7] (87)

Let us first bound the first term in the right-hand side of (87). When k is large enough, with probability at least
1 —2exp(—s), we have by Lemma 2

L Ly Ci 1
e D e -
2 2 S Amin(P)kI{k:P)k + ClAkIS + CQH\ng’yIS)
LHCTTL
= 2casllgrll”
(53) LHén
= 2eysp|lan — 7
Hence
Ly 2|1 —1 2 LuCn 12—y
SRR e = 2 < S e — . (58)

Next, we consider the second term || P, M, ' P, Hy||||zx, — || Notice that

| Py M, ' PeHy|| = | Hp P M, Pyl < || PoHy P M ||| Pl

2
a min(P 1’C )
where the inequality follows from Lemma 33. We have

|PeHe P M| = || PeH Py (PeH P+ micds) ™|
<N (PeHiBy| +nelo) " (PeHe P+ mids) M|+ mel | (PeHe Py + L) ™|
Mk
Amin (P Hp Pl + ni L)
<14 a1y + coflgwll”
T (a—DAx+eallgell”
1
¢ —1°

<1+

<2+
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Therefore,
IPT M Pl = ] < —s (24— ) IPellon — 71
B O'min(Plk’) 1
<2 (2 ) Ll
Ty — T
a O'min(Plk> c1 — 1 b
where the second inequality follows from Lemma 2. The results follows from (87) and (88) noticing that %
tends to 0, as v < 1, hence for k large enough
LyCn 12—y 1 Cn
— < 2 - <
2co5p7 lze = | = omin(PF) i c1—1 ”xk 7l

» Theorem 36. Under Assumption 14 and Assumption 2/, for k large enough and for any s > r, we have that
with probability at least 1 — 2 exp(—s)

CQF
)

[
)
mm(

|lzrsr — 7| < l|lzr — Z|

where I' is some constant depending on n and s, and where P} € R**" is an s x r i.i.d. Gaussian matriz having
the same distribution with Pj.

Proof. We have

_63)1
[Zrt1 — 7] < *H9k+1\|
8Amax (H)
= Prgri1
p O—mm(P]‘})H + H
sl ) 5 ghss — g1 — Helonrs — 2| + |Pegi + PeHalwars — 22)]) (59)
7pamm(P1) k\9gk+1 — Gk E(Tk+1 k kGk kd1k(Th+1 k) s

where the first inequality holds by (53), and the second holds by Lemma 32. By Lemma 35 and an equation
similar to (86) (where zy, is replaced by xxy; and Z is replaced by xy), we have that

2
4 1 Cn
P, — gp — Hi(vps1 — < Ly|P 2 = —Z|]?. 90
1Pk = 0= Bl =2l < Ll Pl | s (24 2 ) {5 | = (90)
From the updated rule x41 = ) — tkP];er_lPkgk in Algorithm 1, we see that zp41 — xp = —tk.PkTMk_lPkgk.

From now on, we will show that ¢t = 1 for k large enough. Indeed by (23), we have that

Cn cas g
flae) = flan + thde) + othgidi > 95 Lt} |dy (2|]|C(|i| - tk) |01 1Pk9k”

Hence, by Assumption 24 and Lemma 35, we deduce that there exists some constant C; such that

Ci

=

Cn 2 _ 2
flae) = [l + thdi) + othgg di > 55 ——Lut;” ||dx]| (ka ti) | M Prg|”
proving that we can take t), = 1 if ||z}, — Z|| is small enough.

Now notice that for k large enough, t; = 1, hence

|1Pegr + PoHy(zppr — zi)|| = [|(Is — PeHp Py (PeHy Py + mids) ™) Pegil|
< |Ine(PeHr Py + nils) ™' Prge||
< %Hpk (PeH By + miLs) ™ Prge|
Nk

=———7|d
mln(PT) H k”
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Using that ||nx]| < e1||Ax]| + c2 |lgr]|” and that ||gx|| = O(||zr — Z||) by Lemma 31, we deduce, by Lemmas 34
and 35, that there exists some constants «, 3, 8 > 0 such that with probability at least 1 — 2 exp(—s),

1 =112 _
mudkﬂ < m (01oz||331C —Z||* + eaf||zk — 5C||||gk||7)
= # colzy = Z|° + e[|z — 27
in(Py)

where we have used in the second inequality that ||gr| < O(||xx — Z||). Now by (89), (90) and the above, we
obtain the desired result. <

Notice that by using [35], we can furthermore bound W’ with high probability, by O(ﬁ)

Let us consider a function with low dimensionality, i.e. satisfying (77). Let us write Il = RT R, where
R € R**™ and let us define g : y € R® — f(RT). Hence, we have that g(Rz) = f(Ilz) = f(z). By denoting
Yk := Rzy € R® and assuming that the function g(y) is strongly convex, locally near g := RZT, it is easy to see
that Assumption 24 is satisfied for the sequence {y}, locally, i.e., there exists p > 0 such that for k large enough;

IVg(yr)ll = pllyx — 7l

holds. Hence, we can prove that there exists some constant L > such that the following inequality holds with
high probability.

lyss1 — 3l < Kllye — 7' .

By strong convexity of g(y), we know that there exists two constant l; > I3 > 0 such that

12(9(Wke1 = 9@))) < llyrr — 7l < La(g(yrs1 — 9(7)))-
Hence by following the same proof as in Corollary 23, we can obtain the following super-linear rate in expectation:

» Theorem 37. Assume that there exists a function g :y € R® — g(y) such that g(Rx) = f(x), for some matriz
R e R**™ (s < n). If the function g(y) is strongly convez, locally near RZ, then there exists a constant K' > 0,
such that if k is large enough:

E [f(r1) = f(@)] < KE[f(ar) = f@], (91)

6| Numerical illustration

In this section, we illustrate numerically the randomized subspace regularized Newton method (RS-RNM). All
results are obtained using Python scripts on a 12th Gen Intel(R) Core(TM) i9-12900HK 2.50 GHz with 64GB of
RAM. As a benchmark, we compare it against the gradient descent method (GD) and the regularized Newton
method (RNM) [39]. Here we do not aim to prove that our method is faster to the state-of-the-art methods but
rather to illustrate the theoretical results that have been proved in the previous sections.

6.1 Support vector regression

The methods are tested on a support vector regression problem formulated as minimizing sum of a loss function
and a regularizer:

Z i —aiw) + M w|?. (92)

Here, (z;,v;) € R" x {0,1} (: = 1,2,...,m) denote the training example and ¢ is the loss function. A is a
constant of the regularizer and is fixed to 0.01 in the numerical experiments below. We note that (92) is a type of
(generalized) linear model used in the numerical experiments of [18] and [22]. As the loss function ¢, we use the
following two functions known as robust loss functions: the Geman-McClure loss function (¢1) and the Cauchy
loss function (¢3) [2] defined as

2t2
244’

l5(t) = log <;t2 + 1) .

6(t) =
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Since both loss functions ¢; and ¢y are non-convex, the objective function (92) is non-convex.
The search directions at each iteration in GD and RNM are given by

deD = —Vf(UJk),
AN = (V2 f(wi) + ¢ NIy + ¢4 |V f(wi) |7 1)V f (wp),
( ;c = maX(O, *)‘min(vzf(wk)))

and the step sizes are all determined by Armijo backtracking line search (8) with the same parameters a and
for the sake of fairness. The parameters shown above and in Section 3 are fixed as follows:

cp=ci=2,co=chb=1,7v=7=05a=0.3,8=0.5,s € {100,200, 400}.

We test the methods on internet advertisements dataset from UCI repository [15] that is processed so that
the number of instances is 600(= m) and the number of data attributes is 1500(= n), and the results, until
the stop condition ||V f(wy)|| < 107 is satisfied, are shown in Figures 1 to 4. Our first observation is that
RS-RNM converges faster than GD. GD does not require the calculation of Hessian or its inverse, making the
time per iteration small. However, it usually needs a large number of iterations, resulting in slow convergence.
Next, we look at the comparison between RNM and RS-RNM. From Figures 1 and 3, we see that RNM has the
same or a larger decrease in the function value in one iteration than RS-RNM, and it takes fewer iterations to
converge. This is possibly due to the fact that RNM determines the search direction in full-dimensional space.
In particular, it should be mentioned that RNM converges rapidly from a certain point on, as it is shown that
RNM has a super-linear rate of convergence near a local optimal solution. However, as shown in Figures 2
and 4, since RNM takes a long time to get close to the local solution due to the heavy calculation of the full
regularized Hessian, RS-RNM results in faster convergence than RNM. We also confirm on Figure 3 that for
small dimensions s = 100, 200 a linear convergence rate seems to be achieved. However for s = 400 it seems that
the method converges super-linearly.

6.2 Low rank Rosenbrock function

To properly illustrate the superlinear convergence proved in the low rank setting (cf. Section 5.3), we conducted
numerical experiments on a low rank Rosenbrock function: f(z) = R(U"Uxz), where

n—1
R(z) =Y 100(ziy — 27)* + (z; — 1),
i=1

and U € R™™ is a matrix whose columns are orthogonal. If we denote by II € R”*™ the matrix U U, we see
that for all x € R, f(z) = f(Ilz), hence the Hessian of f is of rank r for all x € R™. The parameters in Section 3
are fixed as follows:

cp=ci =2, co=ch=1v=+"=05 a=0.3, 3=0.5, s {100,200,600}.



32 Theoretical analysis of the randomized subspace regularized Newton method

— GD

RNM
—— RS-RNM(s =100)
—— RS-RNM(s =200)
—— RS-RNM(s =400)

E -2 /§ —2
w0 5 | 210
> RNM >

10-3 —— RS-RNM(s =100) 1079 ¢

—— RS$-RNM(s =200)
10~ —— RS-RNM(s =400) 1074
10—5 L L . L . i _ 109 L 1 I . L L J
0 100 200 300 400 500 600 700 0 10 20 30 40 50 60 70
Iterations time(s)

Figure 3 Iterations versus Figure 4 Computation time ver-
IVf(w)]| (logi-scale) for Cauchy sus ||V f(w)|| (log,,-scale) for Cauchy
loss loss
0 0

— — |
.l; -5 e aD ; —5 [ o o P R S PTN eY PeTNY™ — GD
== Full RNM = W Full RNM
—— RS-RNM (s=100) —— RS-RNM (s=100)
—— RS-RNM (s=200) —— RS-RNM (5=200)
_1(] ‘ —— RS-RNM (s=600) 71[) RS-RNM (5=600)
\
0 100 200 300 400 0 2 50 75 100 15
iterations timels]

Figure 5 Iterations versus Figure 6 Computation time ver-
IV f(x)| (logyy-scale) for low rank sus ||V f(z)|| (log,y-scale) for low
Rosenbrock function rank Rosenbrock function

Figures 5 and 6 show experiments for n = 3000 and r = 500. We selected three values for s, two (s = 100, 200)
smaller than r and one (s = 600), larger than r. The results confirm the results of Section 5: when s > r we have
local superlinear convergence, otherwise the convergence is only linear locally.

6.3 Convolutional neural network

We tested our method on a micro Convolutional Neural Network (CNN) using the MNIST dataset in [13]. We
used the cross-entropy loss function m = 256 images. Our CNN is made of the following factors:

one convolutional layer (1 input channel, 1 output channel, kernel size 3),

a ReLU activation,

a max pooling layer (kernel size 2),

a fully connected layer mapping the flattened feature vector to 10 classes.
This setup is intended to demonstrate the differences between the three methods in a controlled, small-scale
scenario. This problem is formulated as

1 m
min — Z LM(w,z;),y:),
=1

weR™ M 4

where (z;,y;) denotes the MNIST dataset with z; € R™* and y; € {0,1}'° (m = 256), £ denotes the Cross
Entropy Loss function, and M denotes the CNN with n = 1710 parameters. The parameters in Section 3 are
fixed as follows:

cg=ci =2 co=ch=1v=+"=05, a=0.3, =05, s {100,200,500}.

The results are show in Figures 7 and 8. We notice that our method outperforms GD which is stuck at some
stationary point and RNM which is to slow to converge.
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6.4 Choice of s

In the special case where the Hessian truly has low-rank structure, setting s to this value can substantially speed
up convergence, provided the rank is not prohibitively large. However, in more general problems, especially
where the Hessian does not exhibit pronounced low-rank properties or its effective rank is unknown, preselecting
s is more challenging. One might try to start with some constant value of s and increasing it gradually since the
best s ultimately depends on problem-specific characteristics and computational resources.

7 Conclusions

Random projections have been applied to solve optimization problems in suitable lower-dimensional spaces
in various existing works. In this paper, we proposed the randomized subspace regularized Newton method
(RS-RNM) for a non-convex twice differentiable function in the expectation that a framework for the full-space
version [39, 40] could be used; indeed, we could prove the stochastic variant of the same order of iteration
complexity, i.e., the global complexity bound of the algorithm: the worst-case iteration number m that achieves
ming—o . m—1||Vf(zr)| < eis O(e72) when the objective function has Lipschitz Hessian. On the other hand,
although RS-RNM uses second-order information similar to the regularized Newton method having a super-linear
convergence, we proved that it is not possible, in general, to achieve local super-linear convergence and that
local linear convergence is the best rate we can hope for in general. We were however able to prove super-linear
convergence in the particular case where the Hessian is rank deficient at a local minimizer. In this paper we
choose to thoroughly investigate local convergence rate for the Newton-based method. One could possibly, in a
future work, extend these results to a state-of-the-art second order iterative method and compare the resulting
subspace method with other state-of-the-art algorithms, as [19, 47, 48].
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