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Abstract
Budgeted uncertainty sets have been established as a major influence on uncertainty modeling for robust optimization
problems. A drawback of such sets is that the budget constraint only restricts the global amount of cost increase that can
be distributed by an adversary. Local restrictions, while being important for many applications, cannot be modeled this
way.

We introduce a new variant of budgeted uncertainty sets, called locally budgeted uncertainty. In this setting, the
uncertain parameters are partitioned, such that a classic budgeted uncertainty set applies to each part of the partition,
called region.

In a theoretical analysis, we show that the robust counterpart of such problems for a constant number of regions
remains solvable in polynomial time, if the underlying nominal problem can be solved in polynomial time as well. If the
number of regions is unbounded, we show that the robust selection problem remains solvable in polynomial time, while
also providing hardness results for other combinatorial problems.

In computational experiments using both random and real-world data, we show that using locally budgeted
uncertainty sets can have considerable advantages over classic budgeted uncertainty sets.
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1 Introduction

We consider nominal combinatorial optimization problems of the form

min ccctxxx
s.t. xxx ∈ X ,

where X ⊆ {0, 1}n is the set of feasible solutions. For uncertain cost coefficients ccc ∈ U , robust optimization
approaches have been analyzed. To this end, one assumes that a set U of possible cost realizations is given by a
decision maker or derived from historical data. The set U is referred to as the uncertainty set. The (min-max)
robust counterpart is then to solve

min
xxx∈X

max
ccc∈U

ccctxxx.

Different possibilities to model the set U have been proposed. One straight-forward possibility is to use a discrete
set of scenarios U = {ccc1, . . . , cccN}, i.e., to list all possible outcomes explicitly. While this approach is flexible, it
usually results in NP-hard robust optimization problems, even if the nominal problem can be solved in polynomial
time (see [1, 19, 21] for overviews). Also, implicit descriptions of the uncertainty set can lead to exponential-sized
equivalent discrete uncertainty sets.
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2 Robust Combinatorial Optimization with Locally Budgeted Uncertainty

A popular alternative are budgeted uncertainty sets of the form

U =

ccc = ccc+ δδδ : δi ∈ [0, di] ∀ i ∈ [n],
∑
i∈[n]

δi ≤ Γ

 (1)

as first introduced in [5, 6]. Here we use the notation [n] = {1, . . . , n}. For every item i ∈ [n], we are given a
lower bound on the costs ci, as well as a possible maximum cost deviation di. Additionally, there is a budget
Γ on the total increase of costs over the lower bound. Advantages of this set include its intuitive description
for a decision maker, and that robust counterparts remain efficiently solvable for nominal problems that can
be solved efficiently, even though the budgeted uncertainty set has an exponential number of extreme points.
These benefits have lead to a substantial amount of research into robust optimization problems with budgeted
uncertainty sets, see, e.g., [3, 7, 10, 11, 18] and many more.

But there are also limitations to this approach, which has lead to the development of alternative uncertainty
sets. These include multi-band uncertainty [8], variable budgeted uncertainty [22], and knapsack uncertainty [23].

In the current literature, little attentions has been paid to avoiding the potential problem that the constraint∑
i∈[n] δi ≤ Γ denotes a global budget over all uncertain parameters. For various applications, multiple local

budgets are more desirable. As examples, consider multi-period problems, where every period has its own budget
limitation, routing problems, where separate budgets apply to geographic regions or types of roads, and portfolio
problems, where uncertainty budgets are restricted to asset classes or sectors. The only work we are aware of in
this setting is [17], where the uncertain demand for a vehicle routing problem is split into separate regions.

In this paper we introduce a new type of budgeted uncertainty set, where budgets apply locally to their
respective regions. These sets are of the form

U =

ccc = ccc+ δδδ : δi ∈ [0, di] ∀ i ∈ [n],
∑
i∈Pj

δi ≤ Γj ∀ j ∈ [K]

 ,

where P1 ∪ P2 ∪ . . . ∪ PK = [n] denotes a partition of the items. Each set Pj is called a region. In this approach,
every region has a separate budget constraint, which models the local uncertainty. Note that this definition of
uncertainty is a generalization of the classic definition (1), which can be recovered by using K = 1.

Our contributions are as follows. For min-max problems with locally budgeted uncertainty, we first derive a
compact formulation in Section 2.1. Based on this formulation, we then consider the case of a constant number
of regions in Section 2.2. We show that the robust problem remains solvable in polynomial time, if it is possible
to solve the nominal problem in polynomial time. For an unbounded number of regions, the selection problem
remains solvable in polynomial time, while this is not the case for the representative selection problem (see
Section 2.3). We conclude that also the spanning tree problem, the s-t-min-cut problem, and the shortest path
problem become NP-hard. Additionally, assuming the exponential time hypothesis (ETH), we can exclude the
possibility of parameterized algorithms with running time in O∗(2o(K)). For the min-knapsack problem, we
provide an FPTAS. In Section 3, we present three computational experiments using locally budgeted uncertainty
sets. In all experiments, we compare locally budgeted uncertainty to the classic budgeted uncertainty approach.
While the first two experiments use randomly generated data, the third experiment is based on real-world data
for robust shortest path problems. Section 4 concludes the paper and points out further questions.

2 Theoretical Results

2.1 A Compact Formulation

Let some solution xxx ∈ X be fixed. Its objective value is then determined by solving the adversarial problem

max
ccc∈U

ccctxxx,
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that is, by choosing a scenario ccc that maximizes the costs of xxx. Using the definition of locally budgeted uncertainty,
this is equivalent to solving the following linear program:

max
∑
i∈[n]

(ci + δi)xi (2)

s.t.
∑
i∈Pj

δi ≤ Γj ∀ j ∈ [K] (3)

δi ≤ di ∀ i ∈ [n] (4)
δi ≥ 0 ∀ i ∈ [n]. (5)

By strong duality, we can dualize this linear program to find another linear program with the same optimal
objective value. Furthermore, any feasible solution to the dual problem gives an upper bound to the objective
value of the primal problem. Using the dual, we hence find the following compact problem formulation for the
min-max problem with locally budgeted uncertainty:

min
∑
j∈[K]

Γjπj +
∑
i∈Pj

diρi +
∑
i∈Pj

cixi

 (6)

s.t. πj + ρi ≥ xi ∀ j ∈ [K], i ∈ Pj (7)
πj ≥ 0 ∀ j ∈ [K] (8)
ρi ≥ 0 ∀ i ∈ [n] (9)
xxx ∈ X . (10)

Recall that X represents the set of feasible solutions for the underlying combinatorial problem. Variables πj are
the duals of Constraints (3), and variables ρi are the duals of Constraints (4).

2.2 Constant Number of Regions
We first consider the case that the number of regions K is a constant value. Note that, in an optimal solution,
we can assume that ρi = [xi − πj ]+, where [y]+ = max{0, y} denotes the positive part of y.

I Lemma 1. There is an optimal solution to Problem (6–10), where πj ∈ {0, 1} for all j ∈ [K].

Proof. Let us assume that xxx ∈ X is fixed. Let X = {i ∈ [n] : xi = 1} denote the set of items taken by solution xxx.
The problem then decomposes to:

min
πππ≥000

∑
j∈[K]

Γjπj +
∑
i∈Pj

di[xi − πj ]+ +
∑
i∈Pj

cixi

 (11)

=
∑
i∈[n]

cixi +
∑
j∈[K]

min
πj≥0

Γjπj +
∑
i∈Pj

di[xi − πj ]+

 (12)

=
∑
i∈X

ci +
∑
j∈[K]

min
πj∈[0,1]

Γjπj +
∑

i∈Pj∩X
di(1− πj)

 . (13)

Note that Equation (13) holds as increasing any variable πj beyond 1 can never be optimal for Γj > 0. If Γj = 0,
then setting πj = 1 gives the same value as in (12). We can conclude that there is an optimal solution with
πj ∈ {0, 1} for all j ∈ [K]. J

We can conclude the following result (compare also to [23, Theorem 3]).

I Theorem 2. The robust problem with locally budgeted uncertainty (6–10) can be decomposed into 2K subproblems
of nominal type. In particular, if K is a constant and the nominal problem can be solved in polynomial time,
Problem (6–10) can be solved in polynomial time as well.

Proof. By Lemma 1, we can assume every variable πj to be either 0 or 1. We guess these values. There are K
variables πj , and thus 2K combinations are possible. For fixed πππ = (π1, . . . , πK), denote by Π ⊆ [K] the set of
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indices j where πj = 1. The problem then becomes

min
xxx∈X

∑
j∈[K]

Γjπj +
∑
i∈Pj

di[xi − πj ]+ +
∑
i∈Pj

cixi


=
∑
j∈Π

Γj + min
xxx∈X

∑
j∈Π

∑
i∈Pj

cixi +
∑

j∈[K]\Π

∑
i∈Pj

(ci + di)xi

 .

This is a problem of nominal type, and the claim follows. J

2.3 Unbounded Number of Regions
We now consider the case that the number of regions K is not a constant, but part of the problem input.

2.3.1 Hardness Results
We first consider the representative selection problem, where

X =
{
xxx ∈ {0, 1}n :

∑
i∈T`

xi = p` ∀ ` ∈ [L]
}

for a partition T1 ∪ T2 ∪ . . . ∪ TL = [n] and integers p` for all ` ∈ [L] (see, e.g., [12, 16]).

I Theorem 3. The robust representative selection problem with locally budgeted uncertainty and arbitrary K is
APX-hard, even if |T`| = 2, p` = 1 for all ` ∈ [L], and |Pj | ≤ 3 for all j ∈ [K].

Proof. We provide an objective-preserving reduction from an instance of the vertex cover problem, which is
APX-hard, even on 3-regular graphs [2, 14].
Given: Graph G = (V,E) 3-regular, k ∈ N
Question: Does there exist a vertex cover of size less or equal to k, i.e. a set S ⊆ V such that for all e = {u, v} ∈ E
it holds that u ∈ S or v ∈ S, and |S| ≤ k?
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indices 𝑗 where 𝜋𝑗 = 1. The problem then becomes

min
𝑥𝑥𝑥∈𝒳

∑︁

𝑗∈[𝐾]

⎛
⎝Γ𝑗𝜋𝑗 +

∑︁

𝑖∈𝑃𝑗

𝑑𝑖[𝑥𝑖 − 𝜋𝑗 ]+ +
∑︁

𝑖∈𝑃𝑗

𝑐𝑖𝑥𝑖

⎞
⎠

=
∑︁

𝑗∈Π
Γ𝑗 + min

𝑥𝑥𝑥∈𝒳

⎛
⎝∑︁

𝑗∈Π

∑︁

𝑖∈𝑃𝑗

𝑐𝑖𝑥𝑖 +
∑︁

𝑗∈[𝐾]∖Π

∑︁

𝑖∈𝑃𝑗

(𝑐𝑖 + 𝑑𝑖)𝑥𝑖

⎞
⎠ .

This is a problem of nominal type, and the claim follows. �

2.3 Unbounded Number of Regions
We now consider the case that the number of regions 𝐾 is not a constant, but part of the problem input.

2.3.1 Hardness Results
We first consider the representative selection problem, where

𝒳 =
{︃

𝑥𝑥𝑥 ∈ {0, 1}𝑛 :
∑︁

𝑖∈𝑇ℓ

𝑥𝑖 = 𝑝ℓ ∀ℓ ∈ [𝐿]
}︃

for a partition 𝑇1 ∪ 𝑇2 ∪ . . . ∪ 𝑇𝐿 = [𝑛] and integers 𝑝ℓ for all ℓ ∈ [𝐿] (see, e.g., [?, ?]).

� Theorem 3. The robust representative selection problem with locally budgeted uncertainty and arbitrary 𝐾 is
APX-hard, even if |𝑇ℓ| = 2, 𝑝ℓ = 1 for all ℓ ∈ [𝐿], and |𝑃𝑗 | ≤ 3 for all 𝑗 ∈ [𝐾].

Proof. We provide an objective-preserving reduction from an instance of the vertex cover problem, which is
APX-hard, even on 3-regular graphs [?, ?].
Given: Graph 𝐺 = (𝑉, 𝐸) 3-regular, 𝑘 ∈ N
Question: Does there exist a vertex cover of size less or equal to 𝑘, i.e. a set 𝑆 ⊆ 𝑉 such that for all 𝑒 = {𝑢, 𝑣} ∈ 𝐸

it holds that 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆, and |𝑆| ≤ 𝑘?
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Figure 1 Illustration of the reduction from vertex cover. The big circled vertices correspond to a minimum size vertex
cover of the graph. Below we show the instance of the robust representative selection problem corresponding to this graph.
Each column corresponds to a partition 𝑇𝑒 from which one of the two elements must be selected. The colors correspond
to the regions 𝑃𝑣 of the instance. The bold elements are an optimal solution corresponding to the shown vertex cover of
the graph. Note that only elements in four regions (green, blue, yellow, pink), corresponding to the vertices 1,3,5,6 that
are selected.

Given such an instance, we construct an instance of the robust representative selection problem with locally
budgeted uncertainty fulfilling the restrictions stated in the theorem. In Figure ?? we illustrate the reduction via

Figure 1 Illustration of the reduction from vertex cover. The big circled vertices correspond to
a minimum size vertex cover of the graph. Below we show the instance of the robust representative
selection problem corresponding to this graph. Each column corresponds to a partition Te from which
one of the two elements must be selected. The colors correspond to the regions Pv of the instance. The
bold elements are an optimal solution corresponding to the shown vertex cover of the graph. Note that
only elements in four regions (green, blue, yellow, pink), corresponding to the vertices 1,3,5,6 that are
selected.
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Given such an instance, we construct an instance of the robust representative selection problem with locally
budgeted uncertainty fulfilling the restrictions stated in the theorem. In Figure 1 we illustrate the reduction via
an example for a concrete vertex cover instance. Let L = |E| and n = 2|E|. For each e = {u, v} ∈ E let ue, ve
be the two elements of [n] in Te, which we associate with the two vertices u and v. Note that for every vertex
v ∈ V there exist degree of v many elements that are associated with this vertex, one corresponding to every
edge incident to v.

For our partition into regions of the locally budgeted uncertainty set, we use exactly those sets of elements
that correspond to the same vertices in V , i.e. we define a region Pv = {ve : e ∈ E, v incident to e} for every
v ∈ V . Note that these sets also form a partition of [n], and we have K = |V |. We further set ΓΓΓ = 111, ccc = 000 and
ddd = 111.

We show that there is a vertex cover of size at most k if and only if the constructed instance of the robust
representative selection problem with locally budgeted uncertainty has a solution with objective value at most k.
To see this we first prove the following claim.
B Claim 4. Given a feasible solution xxx of our instance of the robust representative selection problem, the robust
objective value is equal to the number of regions Pv in which at least one element is selected, i.e. equal to

|{v ∈ V : ∃ i ∈ Pv with xi = 1}|.

Proof of Claim. First observe that this value can be realized by the adversary by selecting for each region Pv
with an element i ∈ Pv such that xi = 1 an arbitrary such element i and set δi = 1. It is easy to see that this is
a feasible solution for the adversary and the claimed objective value is reached.

To show that the adversary cannot achieve a larger value, we observe that for any i ∈ [n] with xi = 0, we
can assume that δi = 0 in an optimal solution. Hence, by the definition of U we have that |{v ∈ V : ∃ i ∈
Pv with xi = 1}| is an upper bound on the objective value of the adversary. C

Now given a vertex cover S of size k, we construct a solution xxx by selecting in each Te the element corresponding
to the vertex in the vertex cover. If both vertices incident to e are in S we choose one of the two elements
arbitrarily. Since |S| = k, we select elements from at most k different regions Pv. Hence, by our claim the
objective value of the robust representative selection problem is less or equal to k.

Given a solution xxx to the robust representative selection problem with objective value k, we know by our
claim that the elements selected by xxx are contained in exactly k different regions Pv1 , . . . , Pvk

. We define S to be
the set corresponding to exactly those k different vertices, i.e. S = {v1, . . . , vk}. Since for each Te, e ∈ E one
element is selected by xxx, also for every edge e at least one incident vertex is contained in S, hence S is a vertex
cover of size k. J

I Corollary 5. The robust problem with locally budgeted uncertainty with arbitrary K is APX-hard for the
shortest path problem on series-parallel graphs, for the minimum spanning tree problem, and for the s-t-min-cut
problem, even if for the regions it holds that |Pj | ≤ 3 for all j ∈ [K].

Proof. The result for the shortest path and minimum spanning tree problem follows directly from Theorem 3.
To see this, given an instance of the representative selection problem with |T`| = 2 and p` = 1 for all ` ∈ [L],
we construct the graph G with vertex set V = {0, 1, . . . , L} and edge set E consisting of parallel edges e1

` , e
2
`

connecting vertex ` − 1 with vertex ` for all ` ∈ [L]. Here e1
` , e

2
` are in one-to-one correspondence with the

two elements in T`. It is now easy to see that both spanning trees and paths from nodes 0 to L in G are in
one-to-one correspondence with feasible solutions to the original representative selection problem. Using the
same locally budgeted uncertainty set as for the representative selection problem, we find that objective values
of corresponding solutions remain equal.

To obtain the result for the s-t-min-cut problem, observe that the special instance of the representative
selection problem is equivalent to the s-t-cut problem in a graph G where for each part ` ∈ [L] of size 2 we add
a special vertex v` in addition to s and t and the path from s via v` to t. Then s-t-cuts correspond to selecting
one of the two edges from each of these paths. J

Note that the above reduction does not exclude the possibility of a parameterized algorithm with running
time O∗(2o(K)), even if we assume the exponential time hypothesis (ETH), since the number of regions K in the
reduction cannot be bounded by the solution size k of the vertex cover. In the following we give a direct linear
parameterized reduction from 3-SAT to robust representative selection with locally budgeted uncertainty, which
shows that the running time of our FPT meta-algorithm obtained in Theorem 2 is essentially tight under ETH.
The proofs of the following theorems can be found in Appendix A.
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I Theorem 6. Assuming ETH, there is no O∗(2o(K)) time algorithm for the robust representative selection
problem with locally budgeted uncertainty, even if |T`| ≤ 3 and p` = 1 for all ` ∈ [L].

This result is slightly weaker than Theorem 3 in the sense that we cannot assume |T`| = 2 but only |T`| ≤ 3.
The existence of a O∗(2o(K)) time algorithm for this case is an open problem.

I Theorem 7. Let k = max`∈[L] |T`| and ∆ = maxj∈[K] |Pj |. Then the robust representative selection problem
with locally budgeted uncertainty and arbitrary K inherits inapproximability results from the set cover problem
with maximum cardinality of subsets ∆, and maximum number k of subsets containing any element of the ground
set.

Note that the inapproximability of set cover under parameters ∆ and k is well-researched (see, e.g., [24]). If
k = θ(log ∆), both problems become hard to approximate within Ω(log ∆/(log log ∆)2).

2.3.2 A Polynomial Time Algorithm for the Selection Problem
While the results from the previous section indicate that the robust counterpart of even simple combinatorial
problems becomes hard, we now show that this is not the case for the selection problem, where X = {xxx ∈
{0, 1}n :

∑
i∈[n] xi = p} for some integer p.

To this end, we use a dynamic program over how many items are taken from every region. Let nj = |Pj |
be the number of items in region j ∈ [K]. If the number of items pj taken from region Pj is fixed, the robust
problem can be decomposed:

min
xxx∈X

max
ccc∈U

ccctxxx =
∑
j∈[K]

min
xxx∈Xj

max
ccc∈Uj

ccctxxx =:
∑
j∈[K]

fj(pj),

where Xj = {xxx ∈ {0, 1}nj :
∑
i∈Pj

xi = pj} and Uj = {ccc ∈ Rnj : ci = ci+δi, δi ∈ [0, di] ∀ i ∈ Pj ,
∑
i∈Pj

δi ≤ Γj}.
For every j ∈ [K] and every pj ∈ {0, 1, . . . , nj}, the value fj(pj) is the solution of a robust selection problem

with continuous budgeted uncertainty set. In Theorem 8 we explain how the whole table of these values can be
precomputed efficiently.

The robust selection problem with locally budgeted uncertainty thus becomes

min
∑
j∈[K]

fj(pj) (14)

s.t.
∑
j∈[K]

pj = p (15)

pj ∈ N0 ∀ j ∈ [K], (16)

where we use fj(pj) =∞ if pj > nj

I Theorem 8. The robust selection problem with locally budgeted uncertainty with arbitrary number of regions
K can be solved in O(n logn+ pn) time, hence in polynomial time.

Proof. First we explain how to compute the complete table of values fj(pj) for all values j = 1, . . . ,K and
pj = 0, . . . , p. Note that for fixed j and pj computing fj(pj) is equivalent to solving the robust selection problem
with continuous budgeted uncertainty. Observe that this problem is equivalent to solving

min
xxx∈Xj

(
ccctxxx+ min{dddtxxx,Γj}

)
,

corresponding to the two cases of πj = 0 and πj = 1 in formulation (6–10). The optimal solution to this problem
can be determined by solving the two instances of the selection problem for parameter pj with costs ccc and (ccc+ddd)
and taking the solution giving the smaller objective value. Hence, for fixed j, all values of fj can be calculated by
sorting the items in Pj once with respect to costs ccc, and once with respect to costs ccc+ ddd. In total, this requires
time O(

∑
j∈[K] nj lognj) = O(

∑
j∈[K] nj logn) = O(n logn).

We now give a dynamic program solving problems of type (14–16) in general form, based on a given table for
the values of values fj(pj). This then directly implies our result for the robust selection problem. Let T (K ′, p′)
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be defined as

T (K ′, p′) := min
∑
j∈[K′]

fj(pj)

s.t.
∑
j∈[K′]

pj = p′

pj ∈ N0 ∀ j ∈ [K ′].

Then problem (14–16) is equivalent to computing T (K, p). It holds that T (1, p′) = f1(p′) for all p′ = 0, 1, . . . , p.
It also holds that

T (K ′, p′) = min
{
T (K ′ − 1, p′ − pK′) + fK′(pK′) : pK′ = 0, 1, . . . ,min{p′, nK′}

}
.

Hence, calculating entry T (K ′, p′) can be done in O(nK′) time, if all preceding entries have already been calculated.
In total, this means that T (K, p) can be calculated in O(

∑
j∈[K]

∑
p′∈[p] nj) = O(

∑
j∈[K] pnj) = O(pn) time.

Hence in total the running time of our algorithm is O(n logn+ pn). J

2.3.3 The Knapsack Problem
We now extend the ideas from Section 2.3.2 to the min-knapsack problem, where

X =

xxx ∈ {0, 1}n :
∑
i∈[n]

wixi ≥W

 .

Let us assume all item weights to be integer. As before with fj(pj), we define gj(Wj) as the optimum objective
value on region j ∈ [K] if items with a total weight at least Wj are packed. For a given region j and budget Wj ,
we can calculate gj(Wj) in O(nWj) using a standard dynamic program for knapsack twice (once for each cost
function ccctxxx+ Γj and (ccc+ ddd)txxx). As the dynamic program gives all values for all weights simultaneously, we can
calculate all values gj(0), . . . , gj(W ) in two runs of the algorithm, which results in a time complexity of O(nW ).

The robust min-knapsack problem with locally budgeted uncertainty then becomes

min
∑
j∈[K]

gj(Wj) (17)

s.t.
∑
j∈[K]

Wj = W (18)

Wj ∈ N0 ∀ j ∈ [K]. (19)

I Theorem 9. The robust min-knapsack problem with locally budgeted uncertainty can be solved in O(Wn+W 2K)
time. It is therefore weakly NP-hard, as already the nominal knapsack problem is NP-hard.

Proof. We use a similar dynamic program as in Section 2.3.2. Let T (K ′,W ′) be the optimal objective value of
problem (17–19) using only the first K ′ regions and a budget of at most W ′. In every iteration of the dynamic
program, we calculate

T (K ′,W ′) = min{T (K ′ − 1,W ′ −WK′) + gK′(WK′) : WK′ = 0, . . . ,W ′}.

To calculate one such value, we hence need O(W ) steps, which results in an overall time complexity of O(W 2K).
In combination with the time required to precompute the values gj(Wj), the claim follows. J

If we replace the lower bound on the total weight with an upper bound in the definition of X and the
objective is to maximize profits

∑
i∈[n] pixi with a profit vector ppp affected by locally budgeted uncertainty (note

that deviations are downwards in this case), we obtain the classic max-knapsack problem. It is straightforward
to see that the dynamic program stated above also solves this variant, since for exact computation max-knapsack
and min-knapsack are equivalent.

This is not the case if we consider approximation algorithms (see e.g. [20]). Already for the classic budgeted
uncertainty (K = 1) the robust max-knapsack problem cannot be approximated, unless P = NP . This can be
seen as follows. Given an arbitrary instance (ppp′,www′,W ′) of the max-knapsack problem and let P ∈ N, we construct
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an instance of the robust max-knapsack problem by setting ppp = ddd = ppp′, www = www′, W = W ′ and Γ = P − 1. Then
the original max-knapsack problem has a solution with profit ≥ P iff the robust variant has a solution with
objective value > 0.

For the robust min-knapsack problem, on the other hand, we obtain an FPTAS even for an arbitrary number
of regions K part of the input. This is explained in the following.

The first ingredient is an FPTAS for the classic min-knapsack problem with parametric weight bound W ,
i.e. an algorithm computing a table g̃(W̃ ) for polynomially many values W̃ such that for each W there exists a
W̃ ≥W with a corresponding solution such that g̃(W̃ ) is an (1 + ε) approximation to the optimal solution. Note
that this table g̃ can be extended into a function g̃(W ) for arbitrary values W by setting g̃(W ) = g̃(W̃ ) for the
smallest existing weight W̃ such that W̃ ≥W .

Such an FPTAS can be obtained by modifying the ideas in [13] for the multi-objective min-knapsack problem.
The main idea is to partition the cost space into u+2 intervals {0}, {1}, (1, (1+ε)1/n], . . . , ((1+ε)(u−1)/n, (1+ε)u/n]
with u = dn log1+ε UBe for an upper bound UB. Then we run a classic dynamic programming scheme that
finds the maximum weight W (v) for each possible cost value v, but instead of considering all integer costs v
we consider only the set Ṽ consisting of the upper endpoints of these intervals as possible cost values and let
W̃ (v) be the corresponding dynamic programming function. Using similar arguments as in [13] we obtain that
for every possible entry W (v) there exists a ṽ ∈ Ṽ such that W̃ (ṽ) ≥W (v) and ṽ ≤ (1 + ε)v.

Using the table W̃ (v) we can compute g̃(W ) efficiently. Given W , let v = g(W ) = g(W (v)). It follows that
W (v) ≥ W . For W (v) there exists a W̃ (ṽ) ≥ W (v) such that ṽ ≤ (1 + ε)v. We assign g̃(W ) := ṽ. Then it
holds that

g̃(W ) ≤ g̃(W̃ (ṽ)) = ṽ ≤ (1 + ε)v = (1 + ε)g(W ).

In summary we obtain the following lemma.

I Lemma 10. There exists an FPTAS for the parametric min-knapsack problem with a weight table W̃ of
polynomial size, i.e. an algorithm computing a table g̃(W̃ ) for polynomially many values W̃ such that for each
W there exists a W̃ ≥W with a corresponding solution such that g̃(W̃ ) ≤ (1 + ε)g(W ).

The second ingredient is a known FPTAS for the min-multiple choice knapsack problem [15]. The basis idea
is that each region j ∈ [K] is seen as an item, and for each item there are polynomially many variants of which
one must be chosen, depending on how much weight we wish to invest into the region.

We are now able to prove the following result.

I Theorem 11. There exists an FPTAS for the robust min-knapsack problem with locally budgeted uncertainty
and arbitrary number of regions K.

Proof. Let g̃cccj(W ) and g̃cccj(W ) be the functions obtained by running the parametric FPTAS for the weight-
parametric min-knapsack instances gcccj(W ) and gcccj(W ) given by region j with cost functions ccc and ccc = ccc + ddd,
giving (1 + ε1)-approximations for arbitrary chosen ε1 > 0. Based on those instances we define functions
gj(W ) = min{gcccj(W ), gcccj(W ) + Γj} and g̃j(W ) = min{g̃cccj(W ), g̃cccj(W ) + Γj}. Note that

g̃j(W ) ≤ min{(1 + ε1)gcccj(W ), (1 + ε1)gcccj(W ) + Γj} ≤ (1 + ε1) min{gcccj(W ), gcccj(W ) + Γj} = (1 + ε1)gj(W ).

Then the robust min-knapsack problem is equivalent to

min
∑
j∈[K]

gj(Wj) (20)

s.t.
∑
j∈[K]

Wj ≥W (21)

Wj ≥ 0 ∀ j ∈ [K]. (22)

If we replace gj by its approximation g̃j , this is an instance of min-multiple choice knapsack for which an FPTAS
exists [15]. More precisely, from the FPTAS there are polynomially many values W̃ 1

j , . . . , W̃
r(j)
j for each j ∈ [K]
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that define the weight table, including the zero weight. The problem we consider is thus

min
∑
j∈[K]

∑
i∈[r(j)]

g̃j(W̃ i
j)xji (23)

s.t.
∑

i∈[r(j)]

xji = 1 ∀ j ∈ [K] (24)

∑
j∈[K]

∑
i∈[r(j)]

W̃ i
jxji ≥W (25)

xji ∈ {0, 1} ∀ j ∈ [K], i ∈ [r(j)]. (26)

Let xxx∗ be an optimal solution to this problem, and let W̃ ∗j =
∑
i∈[r(j)] W̃

i
jx
∗
ji be the corresponding optimal

choice of weights per region j. Let W̃ j for j ∈ [K] be the solution obtained by running the FPTAS to obtain a
(1 + ε2) approximation for this instance of the min-multiple choice knapsack problem and ALG =

∑
j∈[K] gj(W̃ j)

the corresponding objective value. Let W ∗j for j ∈ [K] be the optimal solution for the original problem (20–22).
Then, by combining the approximation guarantees, we get

ALG =
∑
j∈[K]

gj(W̃ j) ≤
∑
j∈[K]

g̃j(W̃ j) ≤ (1 + ε2)
∑
j∈[K]

g̃j(W̃ ∗j )

≤ (1 + ε2)
∑
j∈[K]

g̃j(W ∗j ) ≤ (1 + ε2)
∑
j∈[K]

(1 + ε1)gj(W ∗j )

= (1 + ε1)(1 + ε2)OPT,

where OPT is the objective value of an optimal solution to our instance of the robust min-knapsack problem. J

2.4 A Variant Based on Different Types of Budgeted Uncertainty Sets
Different types of classic budgeted uncertainty sets have been considered in the literature. Instead of the definition
used in this paper, where

U =

ccc = ccc+ δδδ : δi ∈ [0, di] ∀ i ∈ [n],
∑
i∈[n]

δi ≤ Γ

 ,

it is possible to consider the variant

U =

ccc : ci = ci + dizi, zi ∈ [0, 1] ∀ i ∈ [n],
∑
i∈[n]

zi ≤ Γ

 ,

which results in the following variant of locally budgeted uncertainty sets

U =

ccc : ci = ci + dizi, zi ∈ [0, 1] ∀ i ∈ [n],
∑
i∈Pj

zi ≤ Γj ∀ j ∈ [K]

 .

Using the same techniques as applied in Section 2.1 we obtain the following compact MIP formulation for this
variant of the problem:

min
∑
j∈[K]

Γjπj +
∑
i∈Pj

ρi +
∑
i∈Pj

cixi

 (27)

s.t. πj + ρi ≥ dixi ∀ j ∈ [K], i ∈ Pj (28)
πj ≥ 0 ∀ j ∈ [K] (29)
ρi ≥ 0 ∀ i ∈ [n] (30)
xxx ∈ X . (31)

Based on this formulation, the theoretical results obtained can be extended to this case. In Theorem 2, this
means we need to solve O(nK) instead of O(2K) subproblems. The hardness results from Section 2.3.1 hold as
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well, as we used di = 1 in the uncertainty sets we constructed for the reductions, in which case both variants
of uncertainty coincide. The algorithms presented in Sections 2.3.2 and 2.3.3 can be adapted as well, as they
are based on decomposing the robust problem into subproblems that remain tractable (instead of solving two
subproblems, we now need to solve O(n) of them).

3 Experiments

3.1 Overview
We first present an experiment related to computation times when solving robust problems with locally
budgeted uncertainty. We then present three more experiments to quantify differences between ”classic” budgeted
uncertainty sets and the locally budgeted uncertainty sets proposed in this paper. Experiments 1 to 3 use
randomly generated data for the uncertain selection problem, while Experiment 4 is based on real-world data. In
Experiment 2, we assume that the uncertainty set is locally budgeted, and consider the benefit of using this
information instead of using a classic budgeted set. In the next experiment, the actual regions are not known to
the imagined decision maker. Instead, only sampled scenarios are provided. We analyze the differences between
solutions based on classic and locally budgeted uncertainty sets fitted to the data. Finally, in Experiment 4,
we consider the differences between solutions based on classic and locally budgeted uncertainty sets fitted to
real-world data for shortest path problems, where nothing is known about the underlying distribution.

3.2 Experiment 1
3.2.1 Setup
We compare the computation times when solving robust selection problems using a general MIP solver for the
mixed-integer programming formulation (6–10) with the polynomial-time dynamic program from Section 2.3.2.
Recall that formulation (6–10) has 2n+K variables and n+ 1 constraints, while the dynamic program takes
O(n logn+ pn) time.

We create 100 instances for each n ∈ {28, 29 . . . , 215}. Each instance with n items is solved for each
K ∈ {20, 21, . . . , 2log (n)−1}. Item costs ci and di are chosen independently and uniformly from {10, 11, . . . , 49}.
We further set p = n/2 and Γj = 10|Pj |, where regions are of equal size, i.e., |Pj | = n/K.

Instances are solved using the dynamic program (DP), which has been implemented in C++, and by the
mixed-integer programming formulation (IP), for which CPLEX version 12.8. was used. In formulation (6–10) we
forced variables πj to be binary, as the use of continuous variables resulted in significantly higher computation
times for K = 20.

Experiments were conducted on a virtual server with Intel Xeon Gold 5220 CPU running at 2.20GHz. Of ten
available threads, every solution process was allowed to use only one.

3.2.2 Results
We present average computation times over the 100 instances of each type in Figure 2.

In Figure 2a, each line represents a fixed value of n for varying values of K. As can be expected, the largest
problems (n = 215) have the highest computation times. The solid lines indicate computation times when using
IP, while the dashed lines give the computation times when using DP. Note that higher values of n mean that
also K can be increased to a higher value, which gives lines of different lengths.

It can be seen that computation times increase in K for DP, which may be surprising from our O(n logn+pn)
complexity estimate, which does not contain K. But K has an impact on the size of the entry table T (K ′, p′),
which becomes dominated by O(np) in our estimate. Furthermore, a larger value of K tends to decrease the
computation times for IP, with the hardest problems being those that have K = 20. This means that solving
robust problems with locally budgeted uncertainty is even easier than solving the classic budgeted uncertainty
variant when using IP for the selection instances considered here. This trend does not continue for large values
of K, as can be seen, e.g., for n = 215 in the top right of the plot. Overall, computation times using DP are
several orders of magnitude smaller for smaller values of n or K than when using IP, and also remain smaller for
larger values of n or K.

In Figure 2b, we show the same computation times, but with n on the horizontal axis. Now every line
corresponds to a choice of K, where we omit values for K > 27 for better legibility. Note that computation
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Figure 2 Experiment 1: Computation times.

times for DP are almost linear in the log-log-plot, which indicates monomial growth (in our choice p = n/2, the
runtime complexity becomes O(n2)). All lines are almost parallel, which means that they have a similar power
term. Only for K = 20 we can observe a different slope. In this case, the complexity of DP becomes O(n logn), as
we only need to sort items twice. Furthermore, it is possible to observe the same trend from Figure 2a regarding
K, where larger values of K mean that DP tends to increase and IP tends to decrease. The asymptotic trend
of IP in n cannot be reliably estimated from Figure 2b, but explorative experiments indicate that it does not
remain linear in n, and computation times of DP remain below those of IP.

3.3 Experiment 2
3.3.1 Setup
In this experiment, we focus on randomly generated selection problems. We fix n = 30. Given the number of
regions K, we distribute items into the K regions as uniformly as possible. For every item, we generate ci and di
independently and uniformly from {10, . . . , 49}. We set Γj = 10|Pj | and use K = 2, 3, 4, 5. We generate 10,000
instances using the same random seed for each K (i.e., cost coefficients of these instances are the same for
each K). We consider all values p = 1, . . . , 29.

Each instance is solved exactly, using the compact formulation for locally budgeted uncertainty. Additionally,
we solve each instance using the classic budgeted uncertainty approach, by ignoring the partition into regions
and using Γ =

∑
j∈[K] Γj = 10n. We measure the robust objective value of both solutions with respect to the

locally budgeted uncertainty set.
By this setup, we already know that the approach using the locally budgeted uncertainty set must lead to

better objective values, as it takes into account the actual uncertainty set that is used to evaluate a solution.
The question we answer here is how much we lose by ignoring such local information. As discussed in Section 1,
local uncertainty naturally arises in some practical applications. Our experiment simulates the effect of using
classic budgeted uncertainty in this case.

3.3.2 Results
In Figure 3 we show the ratio of average objective values between the solution found by the model using classic
budgeted uncertainty, and by the model using locally budgeted uncertainty, for different values of p. The higher
the ratio, the higher are the additional costs that arise by ignoring the locally budgeted uncertainty structure.
The data in Figure 3 is not distorted by outliers.

Note that for small (p = 1) and large (p = 29) values of p, the ratio is close to one. Hence, the local information
does not matter in this setting. The best choice is to buy the one item i where ci + di is smallest (or to avoid the
one item where this value is largest, respectively). For values of p between these two extremes, solutions differ.
The region of values for p where there is a difference between solutions based on classic and locally budgeted
uncertainty increases with K. For K = 2 and p = 11, the average cost difference is 15.6%, while this increases to
17.9% for K = 5 and p = 10.
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Figure 3 Experiment 2: Ratio of average objective values of solutions based on classic and locally
and budgeted uncertainty.

3.4 Experiment 3

3.4.1 Setup
In the previous experiment we considered the effect if the decision maker knows the parameters of a locally
budgeted uncertainty set, but chooses to ignore these and use a classic budgeted uncertainty instead. In practice,
an uncertainty set is usually not given, but needs to be derived from data.

Hence in this second experiment, we build locally budgeted uncertainty sets in the same way as before, but
then sample N scenarios from the set. To create a sample scenario ccck with k ∈ [N ], we choose a random value γj
from {0, . . . ,Γj} uniformly and distribute min{γj ,

∑
i∈Pj

di} many unit cost increases to all items i ∈ Pj . We do
so iteratively, i.e., we first begin with ccck = ccc, and then repeatedly choose an item from Pj where cki ≤ ci + di − 1
at random, and increase this item’s costs by one.

Having constructed N scenarios, we then fit suitable classic and locally budgeted uncertainty sets. The focus
of this experiment is to derive the regions from the data. We therefore assume that ci and di are given for each
item.

To estimate the underlying partition into regions, we can assume that in a sufficiently large sample N , two
items from different regions are not correlated. As each budget constraint applies locally, correlation can only be
found within regions. Based on this idea, we calculate the correlation matrix using the available sample data.
We then consider two items to be connected, if the absolute value of correlation is above a certain threshold (in
this experiment, we used 0.3). Each connected component then forms its own region. Note that this way, the
number of regions K̃ we use is not prescribed, but estimated from the data.

The classic budgeted uncertainty set uses Γ̃ = maxk∈[N ]

(∑
i∈[n] c

k
i − ci

)
as an estimate for the uncertainty

budget. For each region, we estimate Γ̃j in the same way.
We use n = 30, p = 10, K = 2, . . . , 5 and vary the sample size N from 10 to 10,000. As before, for each

parameter combination, we construct and solve 10,000 instances.

3.4.2 Results
Our results are summarized in Figure 4. On the horizontal axis, we denote the sample size N (note the logarithmic
scale). On the vertical axis, we show average objective values with respect to the original, unknown locally
budgeted uncertainty set.

The solid lines indicate the objective value of the solutions based on fitted classic budgeted uncertainty sets,
while the dashed lines represent locally budgeted uncertainty sets. The dotted lines indicate the optimal objective
value, if the actual uncertainty set were known.
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Figure 4 Experiment 3: Average objective values of solutions based on locally and classic budgeted
uncertainty.

First note that the larger the number of regions K, the smaller become objective values overall. For the
classic budgeted uncertainty set, the decrease in objective value with increasing sample size N is small, the line
is mostly horizontal. This is different for the locally budgeted uncertainty set, where a significant decrease can
be observed after the sample size reaches a certain threshold. This begins at around N = 30, and is completed
at approximately N = 110. We find that even if the locally budgeted uncertainty set is not given explicitly, it is
possible to take significant advantage of this model by identifying the corresponding structure in the data.

3.5 Experiment 4

3.5.1 Setup
While the previous experiments used artificial data that is based on an underlying locally budgeted uncertainty
set, we now consider real-world data, where no such underlying structure is known. The data we use was first
introduced in [9]. It consists of a graph modeling the city of Chicago with 538 nodes and 1308 edges, and 4363
snapshots of traffic speed for each edge over 46 days. Figure 5 shows the structure of the graph.

The data is prepared in the same way as in [9]. We use each traffic speed snapshot as a scenario. Of the 4363
scenarios, we use 75% for training our models, and 25% for evaluation. We sample 200 random s-t pairs and
calculate a shortest path for each pair using each of our models.

The classic budgeted model is trained on the data in the same way as in Experiment 2 (see Section 3.4.1),
where ci and di are estimated from the data. To model locally budgeted uncertainty sets, we create regions by
using edge sequences between any two crossings in one direction. In Figure 5, we show three such regions in red
as an illustration. In total, this results in 546 regions.

We control the degree of conservatism of our two approaches by multiplying the estimated Γ̃ value (or Γ̃j
values, respectively) with a budget factor f . We use all values of f from 0 to 0.5 in step size 0.002.

For each value of f and each model, we solve the 200 shortest path problems and evaluate the path choices
in-sample and out-of-sample. We then calculate the average of the average path length and the worst-case path
length over the two scenario sets.

3.5.2 Results
We show our in-sample results in Figure 6a and the out-of-sample results in Figure 6b. On the horizontal axis is
the average travel time (in minutes), and the vertical axis is the average worst-case travel time. The results of
both models are shown as a line, starting with f = 0 in the top left, and moving to the right with increasing
value of f .

Note that for f = 0, the classic and the locally budgeted approach result in the same solution, that is, they
only optimize for best-case travel times. In an ideal trade-off between average and worst-case travel time, we
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Figure 6 Experiment 4: Average versus average worst-case objective value for different budget factors.

would expect the lines to reach from the top left corner (low average time, high worst-case time) to the bottom
right corner (high average time, low worst-case time).

In Figure 6a we can see that for the classic approach, no such trade-off can be reached. With increasing
budget factor, we increase the average travel time, but do not decrease the worst-case travel times. From the
perspective of Pareto optimality, most of the budget factors result in dominated solutions. The locally budgeted
uncertainty set, on the other hand, gives a trade-off with increasing budget factor and considerably outperforms
the solutions found by the locally budgeted uncertainty set. In the out-of-sample results (Figure 6b), the classic
approach performs even worse, with the curve leading upwards to the top right. The locally budgeted solutions
retain a trade-off between average and worst-case time.

Overall, we see that it is possible to model the discrete real-world scenarios more accurately using the locally
budgeted uncertainty approach, while with the classic budgeted approach, it is not possible to capture the
underlying data.
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4 Conclusions and Further Research

In this paper we studied a generalization of budgeted uncertainty sets, where there is a separate uncertainty
budget for different regions of items. We showed that for a constant number of regions K, the robust counterpart
remains polynomially solvable if the nominal problem is solvable in polynomial time. For unbounded values of K,
we show that the robust selection problem can still be solved in polynomial time, while this is not the case for
the representative selection problem, even if only one item is chosen from each partition. This extends to other
combinatorial problems that include the representative selection problem as a special case. Table 1 gives an
overview to these results. In addition, we show that no parameterized algorithms with running time in O∗(2o(K))
exist. To the best of our knowledge, robust optimization problems have not been considered from the perspective
of fixed parameter tractability so far. We also presented an FPTAS for the robust min-knapsack problem (the
max-knapsack problem is not approximable even for classic budgeted uncertainty).

Table 1 Overview of complexity results from this paper.

Problem K = O(1) K = O(n)
Unconstrained P P

Selection P P
Min/Max-Knapsack weakly NPH weakly NPH

Representative Selection P strongly NPH
Spanning Tree P strongly NPH

s-t-min-cut P strongly NPH
Shortest Path P strongly NPH

In computational experiments we showed that solving robust selection problems with locally budgeted
uncertainty is even easier than with classic budgeted uncertainty when using the standard MIP formulation. The
dynamic program introduced in this paper outperforms the MIP solver, especially for small numbers of regions,
where the dynamic program becomes faster by multiple orders of magnitude. In experiments concerning the
quality of solutions, we found that the added flexibility in the modeling of uncertainty allows for better-performing
solutions both on random and on real-world data sets.

Furthermore, the locally budgeted uncertainty set proposed in this paper can be seen in the light of data-driven
robust optimization (see, e.g., [4, 9]), where the aim is to find the most suitable uncertainty set to describe given
data. Using local budgets extends the capabilities of classic budgeted uncertainty models, and thus gives more
degrees of freedom to describe the data.

From a theoretical perspective, further investigations into the parameterized running time of our meta-
algorithm obtained in Theorem 2 are of interest. Note that a minor modification of the proof of Theorem 6
implies that no O∗((

√
2− ε)K) algorithm for the robust representative selection problem with locally budgeted

uncertainty exists, unless the strong exponential time hypothesis (SETH) fails. We conjecture that there are
combinatorial optimization problems for which the constant 2 can be improved. Whether this can be done in a
meta-algorithm or only for specific combinatorial optimization problems is another interesting open problem.

Also for the second variant of locally budgeted uncertainty as mentioned in Section 2.4, interesting open
questions remain. It is not known whether a fixed-parameter tractable algorithm exists for this case, as the
decomposition proposed here results in O(nK) many subproblems. Also, it is unknown if this slight change in
the definition of the uncertainty set leads to W[1]-hardness for the problems which were previously NP-hard in
Table 1. It is also possible to study further variants based on this model, for instance by dropping the condition
that the regions Pj must form a partition. Our positive results cannot be directly translated into this setting,
since now there are arbitrary dependencies between the regions and our methods strongly rely on the fact that
the uncertainty of one region is independent of the uncertainty of another.

A Additional Proofs

Proof of Theorem 6. We reduce from an instance of the well known 3-SAT problem.
Given: A formula ϕ in 3-CNF with variables x1, . . . , xñ and m̃ clauses, i.e.

ϕ = (l1,1 ∨ l1,2 ∨ l1,3) ∧ · · · ∧ (lm̃,1 ∨ lm̃,2 ∨ lm̃,3), where the l are literals of the variables xxx.
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ϕ = (x̄1 ∨ x2 ∨ x̄4) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x1 ∨ x̄2 ∨ x3)
x1 = 0, x2 = 0, x3 = 1, x4 = 1
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2
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2
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3
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3
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Figure 7 Illustration of the reduction from 3-SAT. Above there is an example of a 3-SAT formula
with a feasible assignment. Below we show the instance of the robust representative selection problem
corresponding to this instance. Each column corresponds to a partition from which one of the two
elements must be selected. The colors correspond to the regions of the instance. The bold elements are
an optimal solution corresponding to the shown variable assignment. Note that elements in exactly 4
regions (red, yellow, blue, brown), corresponding to the shown feasible variable assignment, are selected.

Question: Is there an assignment for xxx such that ϕ is true?
The exponential time hypothesis (ETH) implies that there does not exist an algorithm to decide 3-SAT with

running time 2o(n), and is widely believed [25]. We define an instance of our robust problem on the element set
[2ñ+ 3m̃] in the following way. In Figure 7 we illustrate the reduction via an example for a 3-SAT instance. The
partition of [2ñ + 3m̃] for the representative selection problem consists of ñ + m̃ parts, one for each variable
and clause. For each i ∈ [ñ] the set Ti consists of two elements, an element eTi and an element eFi . These parts
are the variable gadgets and selecting eTi or eFi corresponds to setting xi to true or false respectively. For each
clause we create a part consisting of exactly three elements, i.e. for each j ∈ [m̃] the set Tñ+j consists of the
elements e1

j , e2
j and e3

j .
Using the locally budgeted uncertainty set and cost structure we will enforce that eij can only be selected

without inducing additional cost, if the selection in the variable gadget corresponding to the variable of literal
lj,i corresponds to lj,i being true. To this aim, we define the partition for the locally budgeted uncertainty
set consisting of K = 2ñ regions PTi and PFi for each i ∈ [ñ]. Formally, for each i ∈ [ñ] we set PTi :=
{eTi } ∪ {e`j : lj,` is true if xi is true} and PFi := {eFi } ∪ {e`j : lj,` is true if xi is false}. Selecting an element inside
region PTi or PFi corresponds to setting the variable xi to true or false respectively. We set ΓTi = ΓFi = 1 for
all i ∈ [ñ] and the costs to ccc = 000 and ddd = 111. In a similar way as in the proof of Theorem 3, one can prove the
following claim.
B Claim 12. Given a feasible solution xxx of our instance of the robust representative selection problem, the
robust objective value is equal to the number of regions in which at least one element is selected by xxx.

Based on this, we show that ϕ is feasible, if and only if the objective value of our instance is ñ.
Given a feasible assignment for ϕ we select in each variable gadget the corresponding element. Then, since ϕ

is true, for each clause j ∈ [m̃] there is at least one literal lj,i which is true. We select the corresponding element
eij in Tñ+j . Observe that this selection selects elements from exactly ñ regions. For each i ∈ [ñ] if xi is true only
elements from PTi and none from PFi are selected and if xi is false only elements from PFi and none from PTi
are selected. Hence, by our claim the objective value of this selection is ñ.

For the other direction first observe that the objective value of our instance cannot be smaller than ñ, since in
every variable gadget one element must be chosen and each element evi has its exclusive region P vi . Now assume
that there is a selection with robust objective value ñ. Then by our claim for every i ∈ [ñ] in exactly one of the
two regions PTi and PFi an element of Ti is selected. Hence, the truth assignment to xi induced by the selection
in the variable gadget satisfies all the clauses, since otherwise in one of the clause gadgets we would have to
select an element inside an additional region. J

Proof of Theorem 7. We use an objective-preserving reduction from the set cover problem.
Given: A ground set V with |V | = ñ, and a set of subsets Vs ⊆ V , s ∈ S with |S| = m̃.
Question: Does there exist a set cover of size less or equal to k, i.e., a set C ⊆ S with |C| ≤ k such that
∪s∈CVs = V ?

We set L = ñ and K = m̃. For each v ∈ V and each s ∈ S with v ∈ Vs, we add an element (v, s) to set Tv.
Each such element (v, s) belongs to a region Ps. We set Γs = 1 for all s ∈ S and the costs to ccc = 000 and ddd = 111.
Finally, we set pv = 1 for all sets Tv.
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As an example, let us assume we have ñ = 4, m̃ = 3, and V1 = {1, 2}, V2 = {2, 3}, V3 = {3, 4}. Then Table 2
illustrates the construction.

By choosing one item from each set Tv, we determine by which set Vs we intend to cover it. It can be easily
seen that a set cover of size k exists if and only if the robust representative selection problem with locally
budgeted uncertainty has an objective value at most k. Hence, the reduction is cost-preserving, and the claim
follows. J

Table 2 Example construction for the proof of Theorem 7.

V1 V2 V3

1 x T1

2 x x T2

3 x x T3

4 x T4

P1 P2 P3
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