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Abstract
The geometry conjecture, which was posed nearly a quarter of a century ago, states that the fixed point set of the
composition of projectors onto nonempty closed convex sets in Hilbert space is actually equal to the intersection of
certain translations of the underlying sets.

In this paper, we provide a complete resolution of the geometry conjecture. Our proof relies on monotone operator
theory. We revisit previously known results and provide various illustrative examples. Comments on the numerical
computation of the quantities involved are also presented.
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1 Introduction

1.1 Fixed points of compositions of projectors
Throughout,

X is a real Hilbert space (1)

and

C1, . . . , Cm are nonempty closed convex subsets of X, (2)
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2 The difference vectors for convex sets and a resolution of the geometry conjecture

with projectors PC1 , . . . , PCm
which we also write more simply as P1, . . . , Pm, and with m ∈ {2, 3, . . .}. We define

the fixed point sets of the cyclic compositions by

Fm := Fix(Pm · · ·P1), Fm−1 := Fix(Pm−1 · · ·P1Pm), . . . , F1 := Fix(P1Pm · · ·P2). (3)

Compositions of projectors are often employed in projection methods. This is a vast area which we will not
summarize here; however, we refer the reader to [16] as a starting point as well as the very recent paper [18].

1.2 The geometry conjecture, difference vectors, and cycles
The geometry conjecture, formulated first in 1997 (see [8, Conjecture 5.1.6]), states that there exists a list of
vectors v1, . . . , vm in X such that

v1 + v2 + · · ·+ vm = 0 (4)

and

Fm = Cm ∩ (Cm−1 + vm−1) ∩ · · · ∩ (C1 + v1 + · · ·+ vm−1), (5)

and analogously for Fm−1, . . . , F1. These vectors form the tuple (v1, . . . , vm) of difference vectors and they are
sometimes also referred to as displacement vectors or gap vectors.

This conjecture is known to be true when m = 2 or C1 ∩ C2 ∩ · · · ∩ Cm 6= ∅; see [8, Subsection 5.1]. The
following is known when all sets Fi are nonempty: let f1 ∈ F1, and set f2 := P2f1, f3 := P3f2, . . . , fm := Pmfm−1;
we shall refer to the tuple (f1, . . . , fm) as a cycle. (Cycles are of interest even when C1, . . . , Cm are all hyperplanes,
see [14, Chapter 8] and [15, Chapter 50].) Setting

v1 = f2 − f1, v2 = f3 − f2, . . . , vm−1 = fm − fm−1, vm = f1 − fm, (6)

which turns out to be independent of the cycle chosen, makes (4) true and yields “one half” of (5), namely:
Fm ⊆ Cm∩(Cm−1 +vm−1)∩· · ·∩(C1 +v1 + · · ·+vm−1) and analogously for Fm−1, . . . , F1 (see [8, Theorem 5.1.2]).
However, this description is not fully satisfying — it is only implicit in the sense it was not known what the
difference vectors are when the fixed point sets Fi are empty. The sole exception to this mystery was the case
when m = 2 which allowed for the explicit description of the two difference vectors by

PC2−C1
(0), PC1−C2

(0); (7)

see [7, Lemmas 2.1 and 2.3]. Note that this description is not based on the fixed point sets F1, F2. In this
particular case, these fixed point sets have the beautiful description (see [17, Theorem 2])

F1 =
{
x ∈ C1

∣∣ dC2(x) = inf ‖C1 − C2‖
}
, F2 =

{
x ∈ C2

∣∣ dC1(x) = inf ‖C1 − C2‖
}

; (8)

moreover, the cycles (f1, f2) are precisely the minimizers of the bivariate function

X ×X → R : (x1, x2) 7→ ‖x1 − x2‖+ ιC1(x1) + ιC2(x2), (9)

where dS and ιS denote the distance and indicator function of a subset S of X, respectively. (See [6, 7, 8, 17] for
much more on the case when m = 2.) A referee also pointed out that when m = 2 and F1 = F2 = ∅ one cannot
expect uniqueness of the difference vectors as one may simply separate the sets even further.

The case when m ≥ 3 is very interesting: The negative result of Baillon, Combettes, and Cominetti (see [4,
Theorem 2.3]) states that when X is at least two-dimensional, then there is no function ϕ such that the cycles
are precisely the minimizers of the function ϕ(x1, . . . , xm) + ιC1(x1) + · · ·+ ιCm

(xm). (When m = 2, we can pick
ϕ(x1, x2) = ‖x1 − x2‖ or even the differentiable function ϕ(x1, x2) = 1

2‖x1 − x2‖2. For results on underrelaxed
projectors, see also [5, 19].) Even when cycles exist, the “meaning” of the distance vector was not understood.

1.3 Aim and outline of this paper
The aim of this paper is to settle the geometry conjecture in the affirmative. The resolution depends on key
results from monotone operator theory and yields a formula for the difference vectors.
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The remainder of this paper is organized as follows. In Section 2, we reformulate cycles and difference vectors
in a product space using Attouch–Théra duality. The proof of the geometry conjecture is then presented in
Section 3 (see Theorem 9). The cases m = 2,m = 3 are investigated in Section 4 and 5. Numerical considerations
are presented in Section 6 and 7. The paper concludes with a summary and perspectives for future work in
Section 8.

Notation is largely from [10] to which we also refer for background material on projections, convex analysis,
and monotone operator theory. For valuable references on monotone operator theory see, e.g., [12, 13, 23, 24].

2 The displacement of the circular right shift operator

2.1 Product space and Attouch–Théra duality
From now on, we will also work in the product space

X := Xm (10)

in which we set

C := C1 × · · · × Cm and ∆ :=
{

(x, . . . , x) ∈ X
∣∣ x ∈ X}. (11)

It is well known that the projectors onto these sets are given by

PC(x1, . . . , xm) =
(
P1x1, . . . , Pmxm

)
(12)

and

P∆(x1, . . . , xm) = 1
m

( m∑
i=1

xi, . . . ,

m∑
i=1

xi

)
(13)

respectively (see, e.g., [10, Proposition 29.4 and Proposition 26.4(iii)]). Next, we define the circular right-shift
operator

R : X→ X : (x1, x2, . . . , xm) 7→ (xm, x1, x2, . . . , xm−1). (14)

Recall (see Section 1.2) that z = (z1, . . . , zm) ∈ X is a cycle if z1 = P1zm, z2 = P2z1, . . . , zm = Pmzm−1, which
can be elegantly reformulated in X as the fixed point equation

z = PC(Rz). (15)

Denote the (possibly empty) set of all cycles by

Z := Fix(PCR). (16)

In passing, we note that if Qi : (x1, . . . , xm) → xi, then Fi = Qi(Z). Because PC = (Id +NC)−1, where NC
denotes the normal cone operator of C, it follows that (15) is equivalent to Rz ∈ (Id +NC)(z) and to

0 ∈ NC(z) + (Id−R)(z). (17)

We view this last inclusion sum problem as primal (Attouch–Théra) problem for the pair (NC, Id−R). (See [3]
and [9] for more on Attouch–Théra duality.) In view of the linearity of R, the Attouch–Théra dual problem
simplifies to

0 ∈ N−1
C (y) + (Id−R)−1(y). (18)

If z is any cycle; equivalently, a solution to the primal problem (17), then a direct computation (or [9, Proposi-
tion 2.4(iii)]) shows that NC(z) ∩ −(Id−R)(z) is a nonempty subset of dual solutions. Even better, both NC
and Id−R are paramonotone in the sense of Iusem [21] by, e.g., [10, Example 22.4(i) and Example 22.9]. It thus
follows from [9, Theorem 5.3] that

(∀ z ∈ Z) Rz− z is the unique solution of (18) (19)

and that

if y solves (18), then Z = N−1
C (y) ∩ −(Id−R)−1(y) 6= ∅. (20)
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2.2 (Id−R)−1 and the skew operator T
Recall the definition of the circular right shift operator R (see (14)). By [1, Proposition 2.4], we have

P∆ = 1
m

m−1∑
k=0

Rk. (21)

Now define

T = 1
2m

m−1∑
k=1

(m− 2k)Rk, (22)

which is a skew (hence maximally monotone) linear operator on X, i.e.,

T∗ = −T (23)

with

ran T ⊆∆⊥ (24)

(see [1, Proposition 3.2(ii)&(iii)]). Then [1, Theorem 3.3] states that

(Id−R)−1 = 1
2 Id +N∆⊥ + T. (25)

This form of (Id−R)−1 makes it clear that this operator is strongly monotone with constant 1
2 which implies

that

the dual problem (18) has at most one solution (26)

which is consistent with (19). (A feature of Attouch–Théra duality is that either both primal and dual have
solutions or they both don’t. It is possible that there is no cycle and hence no dual solution; see Section 5.2.2.)

We now collect some useful identities.

I Proposition 1. We have P∆R = RP∆ = P∆ and hence P∆⊥R = R − P∆.

Proof. Recalling (21), we observe that P∆R = RP∆. Furthermore,

RP∆ = 1
m

m−1∑
k=0

Rk+1 = 1
m

m∑
k=1

Rk = 1
m

m−1∑
k=0

Rk = P∆ (27)

because Rm = R0 = Id. It follows that P∆⊥R = (Id−P∆)R = R − P∆. J

For the remainder of this section, let us abbreviate

Q := 1
m

m−1∑
k=1

kRk. (28)

Clearly, Q commutes with R, and hence also with P∆ by (21).

I Proposition 2. 2QP∆ = (m− 1)P∆.

Proof. Using Proposition 1, we see that

QP∆ = 1
m

m−1∑
k=1

kRkP∆ = 1
m

m−1∑
k=1

kP∆ = 1
m

(m− 1)m
2 P∆ = m− 1

2 P∆ (29)

as claimed. J

I Proposition 3. −Q(Id−R) = P∆⊥ .
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Proof. Using (28) and (21), we obtain

−mQ(Id−R) = (R − Id)(mQ) = (R − Id)
m−1∑
k=1

kRk (30a)

=
m−1∑
k=1

kRk+1 −
m−1∑
k=1

kRk =
m∑
k=2

(k − 1)Rk −
m−1∑
k=1

kRk (30b)

= (m− 1)Rm +
(
m−1∑
k=2

(
(k − 1)− k

)
Rk

)
−R (30c)

= (m− 1) Id−
(
m−1∑
k=2

Rk

)
−R (30d)

= m Id−
m−1∑
k=0

Rk = m Id−mP∆ = mP∆⊥ , (30e)

which completes the proof. J

We are now ready for the main result of this section which will play a key role in subsequent sections.

I Theorem 4. We have

1
2 Id +T = m

2 P∆ −Q (31)

and( 1
2 Id +T

)−1 = Id−R + 2P∆. (32)

Proof. Using (22), (21), and (28), we have

T = 1
2m

m−1∑
k=1

(m− 2k)Rk = 1
2

m−1∑
k=1

Rk − 1
m

m−1∑
k=1

kRk = 1
2

(
− Id +mP∆

)
−Q (33)

which gives (31).
Next, using (31), Proposition 1, Proposition 2, and Proposition 3, we obtain( 1

2 Id +T
)(

Id−R + 2P∆) =
(
m
2 P∆ −Q

)(
Id−R + 2P∆) (34a)

= m
2
(
P∆ − P∆R

)
+mP∆ −Q(Id−R)− 2QP∆ (34b)

= mP∆ + P∆⊥ − (m− 1)P∆ = P∆ + P∆⊥ (34c)
= Id . (34d)

This verifies (32) and thus completes the proof. J

I Corollary 5. We have( 1
2 Id +T

)−1|∆⊥ = (Id−R)|∆⊥ , (35)

Proof. From (32), we have
( 1

2 Id +T
)−1|∆⊥ = (Id−R + 2P∆)|∆⊥ = (Id−R)|∆⊥ . J

3 The proof of the geometry conjecture

Armed with (25), write the operator from the dual problem (18) as

N−1
C + (Id−R)−1 = N−1

C + 1
2 Id +N∆⊥ + T. (36)

This operator is in general not maximally monotone. On the other hand, N−1
C + N∆⊥ = N−1

C + N−1
∆ =

∂σC + ∂σ∆ ⊆ ∂σC+∆, where σS denotes the support function of a subset S of X. Altogether, instead of working
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with (36), which has no solution if there are no cycles, we propose to work with the enlarged dual problem
featuring the maximally and strongly monotone operator

1
2 Id +T + ∂σC+∆. (37)

Using, e.g., [10, Proposition 22.11(ii)], the corresponding inclusion problem always has a unique zero, which we
denote by y ∈ X:

0 ∈ 1
2y + Ty + ∂σC+∆(y). (38)

(In fact, y is the resolvent of the maximally monotone operator 2T+2∂σC+∆, evaluated at 0.) Note that, using [10,
Proposition 6.49 and Example 11.2] y ∈ dom ∂σC+∆ ⊆ dom σC+∆ = dom(σC + σ∆) = dom σC ∩ dom σ∆ ⊆
(rec C)	 ∩ (rec ∆)	; thus,

y ∈ (rec C)	 ∩∆⊥. (39)

Now define

e := − 1
2y−Ty ∈∆⊥, (40)

where e ∈∆⊥ because y ∈∆⊥ (see (39)) and ran T ⊆∆⊥ (see (24)). Note that −e = ( 1
2 Id +T)y. Hence (35)

yields

y = (Id−R)(−e) = Re− e. (41)

Note that (38) is equivalent to e ∈ ∂σC+∆(y) = ∂ι∗C+∆(y), and hence also to

y ∈ NC+∆(e), (42)

where the superscript “∗” denotes Fenchel conjugation. We pause here to record the following result which
provides a certificate for y:

I Proposition 6 (a characterization of y). The unique solution to (38) is the unique vector y satisfying the
following:

y ∈∆⊥, − 1
2y−Ty ∈ C + ∆, and (∀ c ∈ C) 〈c,y〉 ≤ −1

2‖y‖
2. (43)

Proof. As seen, y solves (38) if and only if (42) holds with e defined in (40). The latter condition is equivalent
to e = − 1

2y−Ty ∈ C + ∆ and (∀ (c,d) ∈ C×∆) 〈y, c + d + 1
2y + Ty〉 ≤ 0. Because y ∈∆⊥ (see (39)) and

T is skew (see (23)), the last condition is indeed equivalent to (43). J

Combining (40) and (42), we deduce that

e ∈∆⊥ ∩C + ∆. (44)

(This last intersection ∆⊥ ∩C + ∆ need not be a singleton as we can see by studying the case when C1 = C2 =
· · · = Cm = X and hence C = X, in which case the intersection is ∆⊥.)

I Theorem 7. With y and e as defined in (38) and (40) respectively, the set of cycles is given by

Z = N−1
C (y) ∩ (e + ∆) (45a)

= e +
(
∆ ∩ (C− e)

)
. (45b)

Proof. First, C ⊆ C + ∆ because 0 ∈∆. Hence (∀ c ∈ C) 〈y, c− e〉 ≤ 0 by (42). It follows that

σC(y) ≤ 〈y, e〉 = − 1
2‖y‖

2, (46)

where the equality follows from (23) and (40).
Next, y might even solve the original dual (18) in which case Z is given by (20). Whether or not this is the

case, we always have, using (25), (40), and (39),

N−1
C (y) ∩ −(Id−R)−1(y) = N−1

C (y) ∩
(
− 1

2y−Ty−N∆⊥(y)
)

(47a)
= N−1

C (y) ∩ (e + ∆). (47b)
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Altogether, this yields (45a).
Now let x ∈ X and set d := x− e. Then, using (45a), (39), and (46), we have the equivalences

x ∈ Z⇔ x ∈ N−1
C (y) ∩ (e + ∆) (48a)

⇔ y ∈ NC(x) and x− e ∈∆ (48b)
⇔ y ∈ NC(d + e) and d ∈∆ (48c)
⇔ d ∈∆, d + e ∈ C, and (∀ c ∈ C) 〈y, c− (d + e)〉 ≤ 0 (48d)
⇔ d ∈∆, d + e ∈ C, and (∀ c ∈ C) 〈y, c− e〉 ≤ 0 (48e)
⇔ d ∈∆ ∩ (C− e) and σC(y) ≤ 〈y, e〉 (48f)
⇔ x− e ∈∆ ∩ (C− e), (48g)

and this gives (45b). J

I Corollary 8. The following hold:
1. (orthogonal decomposition of Z) P∆⊥(Z) ⊆ {e} and P∆(Z) = ∆ ∩ (C− e).
2. Z 6= ∅⇔ e ∈ C + ∆.
3. If e ∈ C + ∆, say e = c + d, where c ∈ C and d ∈∆, then c ∈ Z.
4. If z ∈ Z, then e = P∆⊥z ∈ (C + ∆) ∩∆⊥.

Proof. 1. Recall that e ∈ ∆⊥ by (40). Clearly, ∆ ∩ (C − e) ⊆ ∆. Using (45b), we obtain an orthogonal
decomposition of Z, with ∆⊥ component P∆⊥(Z) ⊆ {e} and P∆(Z) = ∆ ∩ (C− e).

2. Indeed, using (45b), we have Z 6= ∅ ⇔ ∆ ∩ (C− e) 6= ∅ ⇔ (∃ c ∈ C) c− e ∈∆ ⇔ e ∈ C + ∆.

3. Indeed, c− e = −d ∈ (∆ ∩ (C− e)) and so c ∈ e + (∆ ∩ (C− e)) = Z using (45b).

4. Using 1 and (40), we obtain e = P∆⊥z = z− P∆z ∈ (Z−∆) ∩∆⊥ ⊆ (C + ∆) ∩∆⊥. J

At long last, we define

v := R∗e− e ∈∆⊥, (49)

where v ∈∆⊥ because ran(Id−R∗) = ran(Id−R) = ∆⊥ by [11, Theorem 2.2(iv)]. Also (41) yields

v = R∗e− e = −R∗(Re− e) = −R∗y, (50)

which in turn gives

y = −Rv. (51)

Because R∗ is the circular left shift, (49) and (51) yield

v = (e2 − e1, e3 − e2, . . . , em − em−1, e1 − em), where e = (e1, . . . , em) (52a)
= (−y2,−y3, . . . ,−ym,−y1), where y = (y1, . . . , ym). (52b)

We are now ready for our main result.

I Theorem 9 (The geometry conjecture is true). The vector v defined in (49) (see also (52)) is the sought-after
difference vector (see Section 1.2).

Proof. We must verify (5).
First, let zm ∈ Fm. Then zm is the mth component of some cycle z. Obviously, z ∈ C. By (45b), there exists

x ∈ X such that

z1 = e1 + x, z2 = e2 + x, . . . , zm−1 = em−1 + x, zm = em + x. (53)

Hence

zm ∈ Cm (54a)
zm = em + x = (em−1 + x) + (em − em−1) = zm−1 + vm−1 ∈ Cm−1 + vm−1 (54b)
zm = (em−2 + x) + (em−1 − em−2) + (em − em−1) ∈ Cm−2 + vm−2 + vm−1 (54c)

... (54d)
zm ∈ C1 + v1 + v2 + · · ·+ vm−1. (54e)
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We deduce that

Fm ⊆ Cm ∩ (Cm−1 + vm−1) ∩ · · · ∩ (C1 + v1 + · · ·+ vm−1). (55)

We now tackle the converse inclusion. Let

cm ∈ Cm ∩ (Cm−1 + vm−1) ∩ · · · ∩ (C1 + v1 + · · ·+ vm−1). (56)

So there exist c1 ∈ C1, . . . , cm ∈ Cm such that

cm = cm−1 + vm−1 (57a)
= cm−2 + vm−2 + vm−1 (57b)
... (57c)
= c2 + v2 + · · ·+ vm−1 (57d)
= c1 + v1 + v2 + · · ·+ vm−1. (57e)

It follows that cm−1 = cm−2 + vm−2, . . ., c2 = c1 + v1, and c1 = cm + vm (because cm = c1 + v1 + v2 + · · · vm−1 =
c1−vm). Setting c := (c1, . . . , cm), we rewrite this as c = Rc+Rv. Using (49), c = Rc+R(R∗e−e) = Rc+e−Re.
Hence (Id−R)(c− e) = 0 and thus c− e ∈ ker(Id−R) = ∆. It follows that c− e ∈∆ ∩ (C− e) and now (45b)
yields

c = e + (c− e) ∈ e +
(
∆ ∩ (C− e)

)
= Z. (58)

Therefore,

cm ∈ Fm (59)

which completes the proof of the geometry conjecture! J

4 The case when m = 2

Throughout this section, we assume that m = 2.

4.1 Revisiting known results
It is instructive to revisit this case even if we know the answer already; moreover, we will discover a new formula
for the difference vector v. By (14) and (22), R∗ = R and T = 0. Hence (38) turns into 0 ∈ 1

2y + ∂σC+∆(y) ⇔
0 ∈ 1

2y +N−1
C+∆

(y) ⇔ − 1
2y ∈ N−1

C+∆
(y) ⇔ y ∈ NC+∆(− 1

2y) ⇔ 1
2y ∈ (Id +NC+∆)(− 1

2y) ⇔ − 1
2y = PC+∆( 1

2y)
⇔ [− 1

2y ∈ C + ∆ and (∀ (c,d) ∈ C×∆) 〈c + d− (− 1
2y), 1

2y− (− 1
2y)〉 ≤ 0] ⇔ [y ∈ 2(∆−C) and (∀ (c,d) ∈

C×∆) 〈2(d− c)− y), 0− y〉 ≤ 0] ⇔

y = P2(∆−C)(0). (60)

By (40),

e = − 1
2y− 0y = − 1

2P2(∆−C)(0) = P−(∆−C)(0) = PC+∆(0). (61)

Finally, by (49),

v = −R∗y = −Ry. (62)

We now express these quantities also in the underlying space X. We claim that

y ?=
(
PC2−C1

(0), PC1−C2
(0)
)
=
(
PC2−C1

(0),−PC2−C1
(0)
)
. (63)

Set y := PC2−C1
(0). Then y ← c2,n − c1,n, where (c1,n, c2,n)n∈N is a sequence in C1 × C2. Now for every n ∈ N,

c2,n − c1,n = 2( 1
2 (c1,n + c2,n)− c1,n) and c1,n − c2,n = 2( 1

2 (c1,n + c2,n)− c2,n), so(
c2,n − c1,n, c1,n − c2,n

)
∈ 2(∆−C) (64)
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which implies (y,−y) ∈ 2(∆−C). Next, let us take (c,d) ∈ C×∆, say c = (c1, c2) ∈ C1 × C2 and d = (x, x)
for some x ∈ X. Then

〈2(d− c)− (y,−y),0− (y,−y)〉 = 〈2(x− c1, x− c2)− (y,−y), (−y, y)〉 (65a)
= 〈(2x− 2c1 − y, 2x− 2c2 + y), (−y, y)〉 (65b)
= 〈2x− 2c1 − y,−y〉+ 〈2x− 2c2 + y, y〉 (65c)
= 〈2c2 − 2c1 − 2y,−y〉 (65d)
= 2 〈(c2 − c1)− y, 0− y〉 (65e)
≤ 0 (65f)

by definition of y. We have verified

y =
(
PC2−C1

(0), PC1−C2
(0)
)
. (66)

It follows (by (61) and (66)) that

e = − 1
2y = − 1

2
(
PC2−C1

(0), PC1−C2
(0)
)

= 1
2
(
PC1−C2

(0), PC2−C1
(0)
)

(67)

and (by (62) and (66))

v = −Ry = −
(
PC1−C2

(0), PC2−C1
(0)
)

=
(
PC2−C1

(0), PC1−C2
(0)
)

= y. (68)

Hence

v1 = PC2−C1
(0) and v2 = PC1−C2

(0) = −v1 (69)

and this is completely consistent with the known theory exposed in Section 1.2 (see (7))! Along our journey, we
have thus discovered a new identity for v by combining (60) with (68) which we record in the following result.

I Proposition 10. v =
(
PC2−C1

(0), PC1−C2
(0)
)

= P2∆−C(0) = 2P∆−C(0).

4.2 Two lines
It is instructive to consider two general lines in X, given by

C1 = c1 + Ru1, C2 = c2 + Ru2, where c1 ⊥ u1, c2 ⊥ u2, and ‖u1‖ = ‖u2‖ = 1 (70)

because we will obtain descriptions of Z, v, y, and e. We start by noting that for every i ∈ {1, 2},

(∀ x ∈ X) Pi(x) = ci + 〈ui, x〉ui. (71)

Let z = (z1, z2) ∈ C1 × C2. Then z1 = c1 + ρ1u1 and z2 = c2 + ρ2u2 for some ρ1, ρ2 in R. Now assume that z is
actually a cycle. Then z2 = P2P1z2, i.e.,

c2 + ρ2u2 = z2 (72a)
= P2P1z2 (72b)
= c2 + 〈u2, P1z2〉u2 (72c)
= c2 + 〈u2, c1 + 〈u1, z2〉u1〉u2 (72d)
= c2 +

(
〈u2, c1〉+ 〈u1, z2〉 〈u2, u1〉

)
u2 (72e)

= c2 +
(
〈u2, c1〉+ 〈u1, c2 + ρ2u2〉 〈u2, u1〉

)
u2 (72f)

= c2 +
(
〈u2, c1〉+ 〈u1, c2〉 〈u2, u1〉+ ρ2 〈u1, u2〉 〈u2, u1〉

)
u2; (72g)

equivalently,

ρ2
(
1− 〈u1, u2〉2

)
= 〈c1, u2〉+ 〈u1, u2〉 〈u1, c2〉 . (73)

The theory bifurcates from here as we will see in the following subsections.
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4.2.1 The lines are parallel
Let’s first assume that the two lines C1, C2 are parallel; equivalently, 〈u1, u2〉2 = 1. Without loss of generality,
u2 = u1 =: u. Then every ρ2 in R solves (73). It then follows that the set of cycles is

Z = (c1, c2) + R(u, u). (74)

Moreover, using (6), (68), and (67), we obtain

v = (c2 − c1, c1 − c2) = y and e = 1
2 (c1 − c2, c2 − c1). (75)

4.2.2 The lines are not parallel
Now we assume that C1, C2 are not parallel. Then 〈u1, u2〉2 < 1 and solving (73) for ρ2 yields

ρ2 := 〈u2, c1〉+ 〈u1, u2〉 〈u1, c2〉
1− 〈u1, u2〉2

(76)

and analogously

ρ1 := 〈u1, c2〉+ 〈u1, u2〉 〈u2, c1〉
1− 〈u1, u2〉2

. (77)

Hence the set of cycles Z has only one element, namely

z = (z1, z2) = (c1 + ρ1u1, c2 + ρ2u2); (78)

and v = (z2 − z1, z1 − z2) = y and e = − 1
2v which we don’t expand as the expressions don’t simplify.

5 The case when m = 3

Throughout this section, we assume that m = 3. Then the matrix representations for T (see (22)) is

T = 1
6

0 0 1
1 0 0
0 1 0

− 1
6

0 1 0
0 0 1
1 0 0

 = 1
6

 0 −1 1
1 0 −1
−1 1 0

 (79)

and thus

− 1
2 Id−T = 1

6

−3 1 −1
−1 −3 1

1 −1 −3

 . (80)

Thanks to (80), Proposition 6, (40), and (52), we obtain the following result:

I Theorem 11. Let y = (y1, y2, y3) ∈ X = X3. Then y is the unique solution of (38) if and only if all of the
following hold:

y1 + y2 + y3 = 0, (81)

there exist sequences (c1,n)n∈N in C1, (c2,n)n∈N in C2, (c3,n)n∈N in C3, and (xn)n∈N in X such that

c1,n + xn → 1
6
(
− 3y1 + y2 − y3

)
, (82a)

c2,n + xn → 1
6
(
− y1 − 3y2 + y3

)
, (82b)

c3,n + xn → 1
6
(
y1 − y2 − 3y3

)
, (82c)

and (∀ (c1, c2, c3) ∈ C1 × C2 × C3)

〈y1, c1〉+ 〈y2, c2〉+ 〈y3, c3〉 ≤ −1
2
(
‖y1‖2 + ‖y2‖2 + ‖y3‖2

)
. (83)

If y = (y1, y2, y3) satisfies all these conditions, then

e = (e1, e2, e3) = 1
6
(
− 3y1 + y2 − y3,−y1 − 3y2 + y3, y1 − y3 − 3y3

)
(84)

and

v = −(y2, y3, y1) (85)

are the vectors from (40) and (49), respectively.
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Note that if v = (v1, v2, v3), then we can obtain y through (51):

y = −Rv = −(v3, v1, v2). (86)

Moreover, if desired, we can find e by combining (40) and (79).

5.1 Three lines
Let us consider three lines, which can be treated similar to two lines (see Section 4.2). (For brevity, we will omit
full details on the somewhat tedious algebraic manipulations.) We assume that

C1 = c1 + Ru1, C2 = c2 + Ru2, C3 = c3 + Ru3, (87)

where

c1 ⊥ u1, c2 ⊥ u2, c3 ⊥ u3 and ‖u1‖ = ‖u2‖ = ‖u3‖ = 1. (88)

5.1.1 All three lines are parallel
Let’s first assume that all lines are parallel; equivalently, 〈u3, u2〉 〈u2, u1〉 〈u1, u3〉 = 1. Without loss of generality,
u := u1 = u2 = u3. Then the set of cycles is

Z = (c1, c2, c3) + R(u, u, u) (89)

and thus the difference vector is

v = (c2 − c1, c3 − c2, c1 − c3). (90)

In Figure 1, we visualize this case for three lines in R3.

5.1.2 Not all three lines are parallel
The case when not all lines are parallel corresponds to 〈u3, u2〉 〈u2, u1〉 〈u1, u3〉 < 1. Then the set of cycles Z
consists is a singleton containing

z = (z1, z2, z3) = (c1 + ρ1u1, c2 + ρ2u2, c3 + ρ3u3), (91)

where

ρ1 := 〈u1, c3〉+ 〈u1, u3〉 〈u3, c2〉+ 〈u1, u3〉 〈u3, u2〉 〈u2, c1〉
1− 〈u3, u2〉 〈u2, u1〉 〈u1, u3〉

, (92a)

ρ2 := 〈u2, c1〉+ 〈u2, u1〉 〈u1, c3〉+ 〈u2, u1〉 〈u1, u3〉 〈u3, c2〉
1− 〈u3, u2〉 〈u2, u1〉 〈u1, u3〉

, (92b)

ρ3 := 〈u3, c2〉+ 〈u3, u2〉 〈u2, c1〉+ 〈u3, u2〉 〈u2, u1〉 〈u1, c3〉
1− 〈u3, u2〉 〈u2, u1〉 〈u1, u3〉

, (92c)

and

v = (z2 − z1, z3 − z2, z1 − z3). (93)

In Figure 2, we visualize this case for three lines in R3.

5.2 An example featuring the epigraph of the exponential function
In this section, we specialize further to

X = R2. (94)

Inspired by [20, Section 3], we will present three sets in the Euclidean plane and consider two different orderings.
The sets are the epigraph of the exponential function,

epi(exp) =
{

(ξ, η) ∈ R2 ∣∣ exp(ξ) ≤ η
}

= gra(exp) + ({0} × R), (95)
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Figure 1 Visualization of the cycles and the difference vectors for three parallel lines in R3. See
Section 5.1.1 for details.

along with the two horizontal lines

R× {0} and R× {1}. (96)

In the following we describe two orderings, one leading to the presence of cycles, the other to their absence.
The case when there are cycles is depicted in Figure 3.

5.2.1 An ordering with cycles
In this section, we assume that

C1 = R× {0}, C2 = R× {1}, C3 = epi(exp). (97)

Now set

y = (y1, y2, y3) =
(
(0, 1), (0,−1), (0, 0)

)
. (98)

We claim that (98) satisfies the characterization provided by Theorem 11.
Clearly, y1 + y2 + y3 = (0 + 0 + 0, 1− 1 + 0) = (0, 0) and so (81) holds.
Next, set c1,n ≡ (0, 0) ∈ C1, c2,n ≡ (0, 1) ∈ C2, c3,n ≡ (0, 1) = (0, exp(0)) ∈ C3, and xn ≡ (0,− 2

3 ) ∈ X. Then

c1,n + xn ≡ (0,− 2
3 ) = 1

6
(
− 3(0, 1) + (0,−1)− (0, 0)

)
= 1

6
(
− 3y1 + y2 − y3

)
, (99a)

c2,n + xn ≡ (0, 1
3 ) = 1

6
(
− (0, 1)− 3(0,−1) + (0, 0)

)
= 1

6
(
− y1 − 3y2 + y3

)
, (99b)

c3,n + xn ≡ (0, 1
3 ) = 1

6
(
(0, 1)− (0,−1)− 3(0, 0)

)
= 1

6
(
y1 − y2 − 3y3

)
, (99c)

and thus (82) holds.
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Figure 2 Visualization of the cycle and the difference vectors for three lines in R3 that are not
parallel. See Section 5.1.2 for details.

Now let c1 = (γ1, 0) ∈ C1, c2 = (γ2, 1) ∈ C2, and c3 = (γ3, exp(γ3) + δ3) ∈ C3, where {γ1, γ2, γ3} ⊆ R, and
δ3 ∈ R+. Then

〈y1, c1〉+ 〈y2, c2〉+ 〈y3, c3〉 = 〈(0, 1), (γ1, 0)〉+ 〈(0,−1), (γ2, 1)〉+ 〈(0, 0), (γ3, exp(γ3) + δ3)〉 (100a)
= −1 (100b)
= − 1

2
(
1 + 1 + 0

)
(100c)

= − 1
2
(
‖(0, 1)‖2 + ‖(0,−1)‖2 + ‖(0, 0)‖2

)
(100d)

= − 1
2
(
‖y1‖2 + ‖y2‖2 + ‖y3‖2

)
. (100e)

and thus (83) holds (even with equality).
Next, using (84) and (85), we obtain

e = (e1, e2, e3) =
(
(0,− 2

3 ), (0, 1
3 ), (0, 1

3 )
)

(101a)
v = (v1, v2, v3) =

(
(0, 1), (0, 0), (0,−1)

)
. (101b)

The vector v allows us to find the fixed point sets F1, F2, F3 (see (3)) via Theorem 9. For instance,

F3 = C3 ∩ (C2 + v2) ∩ (C1 + v1 + v2) (102)
= epi(exp) ∩ (R× {1}+ (0, 0)) ∩ (R× {0}+ (0, 1)) (103)
= epi(exp) ∩ (R× {1}) ∩ (R× {1}) (104)
= R− × {1}, (105)

which can also be seen geometrically.
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Figure 3 Visualization of the case of two lines and the epigraph of the exponential function where
there are cycles. See Section 5.2 for details.

5.2.2 An ordering without cycles

In this section, we assume that

C1 = R× {1}, C2 = R× {0}, C3 = epi(exp), (106)

which is nearly the same set up as in the last, the crucial difference is that C1 and C2 were interchanged! Now set

y = (y1, y2, y3) =
(
(0,−1), (0, 1), (0, 0)

)
. (107)

We claim that (107) satisfies the characterization provided by Theorem 11.
Clearly, y1 + y2 + y3 = (0 + 0 + 0,−1 + 1 + 0) = (0, 0) and so (81) holds.
Next, set (∀ n ∈ N) c1,n = (−n, 1) ∈ C1, c2,n = (−n, 0) ∈ C2, c3,n = (−n, exp(−n) ∈ C3, and xn = (n,− 1

3 ) ∈
X. Then

c1,n + xn ≡ (0, 2
3 ) = 1

6
(
− 3(0,−1) + (0, 1)− (0, 0)

)
= 1

6
(
− 3y1 + y2 − y3

)
, (108a)

c2,n + xn ≡ (0,− 1
3 ) = 1

6
(
− (0,−1)− 3(0, 1) + (0, 0)

)
= 1

6
(
− y1 − 3y2 + y3

)
, (108b)

c3,n + xn = (0, exp(−n)− 1
3 )

→ (0,− 1
3 ) = 1

6
(
(0,−1)− (0, 1)− 3(0, 0)

)
= 1

6
(
y1 − y2 − 3y3

)
, (108c)

and thus (82) holds.
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Now let c1 = (γ1, 1) ∈ C1, c2 = (γ2, 0) ∈ C2, and c3 = (γ3, exp(γ3) + δ3) ∈ C3, where {γ1, γ2, γ3} ⊆ R, and
δ3 ∈ R+. Then

〈y1, c1〉+ 〈y2, c2〉+ 〈y3, c3〉 = 〈(0,−1), (γ1, 1)〉+ 〈(0, 1), (γ2, 0)〉+ 〈(0, 0), (γ3, exp(γ3) + δ3)〉 (109a)
= −1 (109b)
= − 1

2
(
1 + 1 + 0

)
(109c)

= − 1
2
(
‖(0,−1)‖2 + ‖(0, 1)‖2 + ‖(0, 0)‖2

)
(109d)

= − 1
2
(
‖y1‖2 + ‖y2‖2 + ‖y3‖2

)
. (109e)

and thus (83) holds (again with equality).
Next, using (84) and (85), we obtain

e = (e1, e2, e3) =
(
(0, 2

3 ), (0,− 1
3 ), (0,− 1

3 )
)

(110a)
v = (v1, v2, v3) =

(
(0,−1), (0, 0), (0, 1)

)
. (110b)

The vector v allows us to find the fixed point sets F1, F2, F3 (see (3)) via Theorem 9. For instance,

F3 = C3 ∩ (C2 + v2) ∩ (C1 + v1 + v2) (111)
= epi(exp) ∩ (R× {0}+ (0, 0)) ∩ (R× {1}+ (0,−1)) (112)
= epi(exp) ∩ (R× {0}) ∩ (R× {0}) (113)
= ∅, (114)

which again can also be seen geometrically.

6 Finding the difference vectors for m ≤ 5 by Banach

In this section, we discuss an iterative technique to compute y (given by (38)) which can be used to obtain the
difference vector v via (52). Note that (38) is equivalent to

− 1
2y−Ty ∈ N−1

C+∆
(y). (115)

In this section, let us abbreviate

P := PC+∆, (116)

which is a projector and hence firmly nonexpansive. It follows that Id−P is also firmly nonexpansive, hence
nonexpansive (1-Lipschitz continuous). This allows us to rewrite (115) as y ∈ NC+∆(− 1

2y−Ty) ⇔ y + (− 1
2y−

Ty) ∈ (Id +NC+∆)(− 1
2y−Ty) ⇔ − 1

2y−Ty = P( 1
2y−Ty) ⇔ ( 1

2y−Ty)− y = P( 1
2y−Ty) ⇔

(Id−P)( 1
2y−Ty) = y. (117)

Because we know already that Id−P is nonexpansive, we can solve (117) by the Banach contraction principle as
long as the inner operator

1
2 Id−T (118)

is a nice Banach contraction, i.e., Lipschitz continuous with a constant strictly less than 1! We can determine
the operator norm of (118) by analyzing the corresponding matrix in Rm×m. Recall that the singular values
are the square roots of the (necessarily nonnegative) eigenvalues of the symmetric matrix associated with
( 1

2 Id−T)∗( 1
2 Id−T). The operator norm is the largest singular value. All this can be found using a symbolic

algebra package such as SageMath (or Maple or Mathematica); see Table 1 which provides the squared singular
values (with multiplicity) as well as the desired operator norm.

Therefore, when m ≤ 5, then the fixed point equation (117) can theoretically be solved by the Banach
contraction mapping principle. (When m ≥ 7, the operator norm ‖ 1

2 Id−T‖ appears to be always strictly larger
than 1.) Unfortunately, we do not know of an explicit formula for the projector defined in (116). In practice, one
may appeal to Seeger’s algorithm [22] for computing P, which we record now:
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Table 1 Computing the operator norm of (118).

m eigenvalues of ( 1
2 Id−T)∗( 1

2 Id−T) ‖ 1
2 Id−T‖

2 1
4 (twice) 1

2 = 0.5
3 1

3 (twice), 1
4

1√
3 ≈ 0.58

4 1
2 (twice), 1

4 (twice) 1√
2 ≈ 0.71

5 1
2 + 1

2
√

5 (twice), 1
2 −

1
2
√

5 (twice), 1
4

√
1
2 + 1

2
√

5 ≈ 0.85

6 1 (twice), 1
3 (twice), 1

4 (twice) 1

I Fact 12 (Seeger’s algorithm). Given

x ∈ X, and d0 ∈ X, (119a)

generate sequences (cn)n≥1 and (dn)n≥1 iteratively via

cn := PC(x− dn−1), dn := P∆(x− cn). (119b)

Then

cn + dn → PC+∆(x) = P(x). (119c)

7 Finding the difference vectors by forward-backward

In this section, we sketch another approach to numerically compute the difference vectors. We begin by
revisiting (38) as a primal problem:

I Proposition 13. We interpret

0 ∈ N−1
C+∆

(y) +
( 1

2 Id +T
)
(y), (120)

which is (38) and for which the solution y is unique, as an Attouch–Théra primal problem for the pair
(N−1

C+∆
, 1

2 Id +T). Then 1
2 Id +T is 1

2 -strongly monotone and ( 1
2 Id +T)−1 is 1

2 -cocoercive. Moreover, the Attouch–
Théra dual problem of (120) is

0 ∈ NC+∆(x) +
( 1

2 Id +T
)−1(x), (121)

and the solution set of (121) is the singleton

{e} = ∆⊥ ∩ Fix(PC+∆R). (122)

Proof. Because T is skew (see (23)), it follows that 1
2 Id +T is 1

2 -strongly monotone. By [10, Example 22.7],
( 1

2 Id +T)−1 is 1
2 -cocoercive. Because T is linear, the Attouch–Théra dual of (120) with respect to the pair

(N−1
C+∆

, 1
2 Id +T) is indeed (121). We can pass from y, the unique solution of (120), to the set of solutions

of (121) via N−1
C+∆

(y) ∩ −
( 1

2 Id +T
)
(y) (see [9, Proposition 2.4]). Because T is single-valued, this implies that

the unique solution to (121) is

x = N−1
C+∆

(y) ∩ −
( 1

2 Id +T
)
(y) = − 1

2y−Ty = e, (123)

where we used (40) for the last equality. Now consider (121) again. We rewrite this, using (123), (32) and (40) as

0 ∈ NC+∆(e) +
(

Id−R + 2P∆
)
(e) = NC+∆(e) + (Id−R)(e), (124)

or as e = PC+∆(Re) ∈ C + ∆ which yields (122). J

I Theorem 14. Let γ ∈ ]0, 1[, let x0 ∈ X, and generate a sequence (xn)n∈N via

xn+1 = PC+∆
(
xn − γ( 1

2 Id +T)−1xn
)

(125a)
= PC+∆

(
(1− γ)xn + γRxn − 2γP∆xn

)
. (125b)



Salihah Alwadani, Heinz H. Bauschke, Julian P. Revalski & Xianfu Wang 17

Then

xn → e, (126)
Rxn − xn − 2P∆xn → y, (127)
R∗xn − xn → v. (128)

Proof. Set A := NC+∆. Also set B := ( 1
2 Id +T)−1, which is β-cocoercive, with β = 1

2 , by Proposition 13. Then
γ ∈ ]0, 2β[. Now set δ := 2 − γ/(2β) = 2 − γ > 1 and λ := λn ≡ 1. Then λn(δ − λn) ≡ δ − 1 > 0 and thus∑
n∈N λn(δ − λn) = +∞. We now apply [10, Theorem 26.14] on the forward-backward algorithm applied to the

problem (121). Note that (125a) is precisely the forward-backward algorithm with the parameters just defined
because of [10, Remark 26.15] and xn+1 = JγA(xn − γBxn). The alternative formula (125b) follows from (32).
Using [10, Theorem 26.14(i)&(ii)] and Proposition 13, we have xn⇀ e and

Bxn =
( 1

2 Id +T
)−1xn →

( 1
2 Id +T

)−1e = −y. (129)

(The fact that Bxn → −y and not y stems from the fact that the dual problem in [10, Chapter 26] differs from
the one in this paper by a negative sign.) Now (129) and (32) yield (127). Next, (129) and the fact that T is
continuous and single-valued yields

xn =
( 1

2 Id +T
)( 1

2 Id +T
)−1xn →

( 1
2 Id +T

)( 1
2 Id +T

)−1e = e (130)

and so (126) is verified. To check (128), apply the continuous operator R∗ − Id to (130) and recall (49). J

I Remark 15. Theorem 14 is a powerful result for computing e,y,v as strong limits of sequence. As in Section 6,
the numerical difficulty lies in the computation of PC+∆; however, Seeger’s algorithm (see Fact 12) may be used
to approximate this projection.
I Remark 16. Theorem 14 allows for flexibility of the parameter γ ∈ ]0, 1[. Perhaps the most natural choice is

γ = 1
2; (131)

however, let us point out an intriguing other choices, namely

γ = m

m+ 2 . (132)

With the latter choice and (21), the inner (forward) operator in (125b) turns into

(1− γ) Id +γR − 2γP∆ = 2
m+ 2 Id + m

m+ 2R − 2m
m+ 2P∆ (133a)

= 2
m+ 2 Id + m

m+ 2R − 2m
m+ 2

1
m

m−1∑
k=0

Rk (133b)

= m− 2
m+ 2R − 2

m+ 2

m−1∑
k=2

Rk, (133c)

which is Lipschitz continuous with constant 3(m− 2)/(m+ 2) because R is an isometry. We point out the cases
when m = 2 and m = 3, for which γ = 1/2 and γ = 3/5 respectively, and (133) turns into[

m = 2 and γ = 1
2
]
⇒ (1− γ) Id +γR − 2γP∆ ≡ 0 is 0-Lipschitz (134)

and[
m = 3 and γ = 3

5
]
⇒ (1− γ) Id +γR − 2γP∆ = 1

5R − 2
5R2 is 3

5 -Lipschitz. (135)

Note that (134) looks at first puzzling because then (125b) turns into xn+1 = PC+∆(0) and so (126) yields
e = PC+∆(0); however, we already observed this directly in (61).



18 The difference vectors for convex sets and a resolution of the geometry conjecture

8 Conclusion and future work

Using the framework of monotone operator theory, we resolved the geometry conjecture completely. We obtained
alternative descriptions of the set of cycles Z. We also sketched numerical approaches for the computation of the
difference vector v by using Seeger’s algorithm.

Turning to future research, it is desirable to devise algorithms for computing v without having to employ
Seeger’s algorithm. Moreover, it is interesting to extend the results in this paper from projectors to (underrelaxed)
projectors or even proximal mappings. We have taken steps in this direction, and initial progress appears to be
quite promising [2].
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