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Abstract
Probability functions measure the degree of satisfaction of certain constraints that are impacted by decisions and
uncertainty. Such functions appear in probability or chance constraints ensuring that the degree of satisfaction is
sufficiently high. These constraints have become a very popular modelling tool and are indeed intuitively easy to
understand. Optimization problems involving probabilistic constraints have thus arisen in many sectors of the industry,
such as in the energy sector. Finding an efficient solution methodology is important and first order information of
probability functions play a key role therein. In this work we are motivated by probability functions measuring the degree
of satisfaction of a potentially heterogenous family of constraints. We suggest a framework wherein each individual such
constraint can be analyzed structurally. Our framework then allows us to establish formulae for the generalized
subdifferential of the probability function itself. In particular we formally establish a (sub)-gradient formulæ for
probability functions depending on a family of non-convex quadratic inequalities. The latter situation is relevant for
gas-network applications.
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1 Introduction

In many applications we are given a mapping g : Rn×Rm → Rk modelling constraints wherein the first argument
represents a decision vector and the second argument a random vector. The use of probabilistic constraints
to design safe decisions has become commonplace. We request that for a user given safety level p ∈ (0, 1), the
probability function ϕ : Rn → [0, 1] defined as:

ϕ(x) := P [g(x, ξ) ≤ 0] , (1)

satisfies ϕ(x) ≥ p. Here P is a Borel measure and x ≤ y, x, y ∈ Rk is to be understood componentwise.
Although evidently, one can introduce the maximum mapping gm : Rn × Rm → R:

gm(x, z) = max
j=1,...,k

gj(x, z), (2)

and observe that ϕ(x) = P[gm(x, ξ) ≤ 0], some analytical properties of g are lost in the process. Therefore the
extension from k = 1 to k > 1 is, even when g is convex in the second argument, non-trivial, e.g., compare [32]
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2 Gradient formulae for probability functions

to [31]. A property of the probability function ϕ that is particularly relevant is some degree of generalized
differentiation.

It is the purpose of this work to present a general framework wherein the analysis of each component gj of
the function g separately allows us to derive information about the probability function ϕ as a whole. As a key
finding we are able to combine various, but different, structure of component function gj : non-convex quadratic,
affine and convex in the second argument. Throughout this work we do assume however that the random vector
ξ ∈ Rm is elliptically symmetric. This is not restrictive, or not as restrictive as it may first appear, when one
realizes that g may have a non-linear dependency in the second argument. The analysis thus covers certain
log-normal situations (g with an exponential convex dependency in the second argument), and much more.
The use of Gaussian or Gaussian-like (elliptical distributions) is very frequent in applications, in particular in
energy. The survey [30] on unit-commitment problems impacted by uncertainty makes this apparent. Indeed it is
reasonable to some extent to model load following a Gaussian distribution, e.g., [4]. Likewise, energy generation
of wind turbines can be linked to Gaussian distributions as done in [3]. Elliptical distributions are also common
in gas-network applications, e.g., [14]. Furthermore whenever underlying uncertainty has a temporal aspect, time
series models may be employed. The latter, can, if causal, be expressed in terms of an “innovation” process,
typically taken to be Gaussian. Since our general framework allows for possibly non-linear transformations (at
least with generic g) of elliptically symmetric random vectors, the framework is thus very rich to cover many
forms of uncertainty vectors.

1.1 Relevance of first order information
First order information is an important ingredient to concretely solve probabilistically constrained optimization
problems. Indeed most algorithms, except for “derivative free” ones, require first order information of some
kind to compute successive iterates or approximate solutions. First order information is also of importance in
expressing optimality conditions. Obtaining a workable formula for the gradient of the probability function
has shown largely preferable to the use of finite differences (e.g., [1, 12, 14]). This results from the probability
function typically being computed with a manageable, but present, approximation error. The availability of a
formula for the gradient of the probability function, readily evaluated, allows one to obtain much better results,
much faster. The formulæ given in this work too are such that they can be evaluated simultaneously with
the probability function value and with the same cost. The provided formulæ naturally benefit from “variance
reduction” but this can be further enhanced when making use of Quasi Monte-Carlo (QMC) type approaches
(e.g., [12]).

The importance of first order information was recognized a long time ago and differentiability of probability
functions studied under various assumptions. We refer the reader to e.g., [10, 19, 27] for a sample of these
works. Although generally in these works the random vector ξ can be of arbitrary (continuous) distribution,
several other assumptions limit the scope. A key assumption typically is that {z ∈ Rm : g(x, z) ≤ 0} is bounded
or compact near the point of interest x. Such a condition is problematic in so much that it rules out several
interesting structures. To give an example, an affine structure of the type ci(x)Tz ≤ di(x) is not compatible
with this assumption. We do mention however that an abstract integrability condition is mentioned in [17,
Remark 4.6] as a replacement for this compactness condition.

More recently, starting with [24, 25] a different way to investigate differentiability was initiated. This was
achieved through the use of the spherical radial decomposition of elliptically symmetric random vectors. The
latter family contains the multi-variate Gaussian, but also multi-variate Student random vectors. Although the
restriction to a specific, yet broad, class of random vectors is made, as a result, other restrictions can be relaxed.
For instance the above mentioned compactness assumption (that is still present in [25, Assumption 2.2(i)],
but relaxed in [31]). Furthermore abstract conditions can be naturally tied in with properties of the nominal
underlying data. As an example, the abstract transversality condition [25, Assumption 2.2(iii)] can be avoided
when the mappings gj are assumed to be convex in the second argument (in which case the transversality
condition automatically holds). It can be shown to not be necessary, at the price of a non-trivial and novel
analysis, when exploiting some specific further structure, such as the mapping gj being non-convex quadratic
(in which case the transversality condition can not hold!). In order to see why allowing for non-transversal
directions is difficult, it is needed to recall that a “candidate” for the “gradient” of ϕ can be represented as an
integral of a given expression. This last expression however showcases a vanishing term in the denominator of
a certain fraction near non-transversal directions. It is thus not even clear, a priori, if the “candidate” is well
defined to begin with. We refer to [37, Section 2.4] for further information. In this work we will not require
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the transversality condition and provide a general framework to extend the analysis of a situation involving a
function g with a single component to a situation wherein several components are present.

For general introductions to the theory of probability constraints we refer to [7, 15, 21, 22]. We also refer
to [28] for further context and references.

1.2 Discussion of bottlenecks and contributions
We briefly mentioned earlier the difficulty in extending results from the case k = 1 to the case k > 1, which
will be the main focus of our current work. Let us intuitively try to explain the underlying reasons. First, from
a general viewpoint, the mapping gm given in (2), building the bridge between the case k > 1 and k = 1 is
necessarily non-smooth, even if each component function gj , j = 1, . . . , k is smooth. Intuitively one may believe
that such non-smoothness may occur only at a very select set of points and thus be “insufficient” to perturb
properties of ϕ. This is however false, even in the most favourable cases as for instance [16, Example 1] shows
(in this example m = 1, k = 2, g1(x, z) = z − x1, g2(x, z) = z − x2, ξ ∼ N (0, 1)). Non-smoothness as a result of
moving from k = 1 to k > 1 thus needs to be carefully analysed. Making use of the spherical radial decomposition
of ξ has shown to be very fruitful in understanding generalized differentiability of probability functions. Indeed,
under this decomposition, one can represent the probability function as follows:

ϕ(x) =
∫
v∈Sm−1

e(x, v) dµζ(v),

where µζ is a probability measure on the (compact) Euclidian unit sphere Sm−1 and e(x, v) measures in itself
the length of various intervals in R, but not according to the Lebesgue measure, but according to a probability
measure. The boundary points of each of these intervals depend in turn on the nominal data functions gj ,
j = 1, . . . , k and on the argument (x, v). A possible situation is illustrated in Figure 1.

Figure 1 The mapping e is the probability measure of certain intervalles. Their number and shape
depend on the arguments (x, v). This figure illustrates the possible situations when k = 1 and g1 is
(non-convex) quadratic in the second argument with non-vanishing quadratic term.

We can now highlight that several possible difficulties could appear:
The number of possible intervals could be infinite.
The number of possible intervals can depend on (x, v) and vary. Intervals can locally merge, split, or vanish -
creating a specific form of non-smoothness.
The boundary points of a given interval depend in a non-trivial way on the boundary points of “single
component functions”. This can be understood as follows: the union of intervals that needs to be measured is
the intersection over j = 1, . . . , k of similar such unions but based on each component function gj only. As a
result a complex mixture of a dependency on each components may appear.
We are now in measure to discuss how previous works have addressed some of these possible issues. The

works [24, 25] assumed that g is “star-shaped” in the second argument so that e consists of measuring a single
interval only. In [13, 31, 32, 33], the mapping g is assumed to be convex in the second argument. Under this
assumption and a minor technical condition, that automatically holds at any x satisfying ϕ(x) > 1

2 , there is also
only a single interval to analyse of the form [0, ρ(x, v)], where ρ is an extended valued function. The technicality
of moving from k = 1 to k > 1 resides in moving from classic analysis to non-smooth analysis and thus the need
to adapt the set of tools. When g is not assumed to be convex in the second argument, the analysis is rendered
more complex because non-transversal directions appear: the integrability of certain terms needs to be carefully
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studied. This was successfully done when k = 1 and g is quadratic in the second argument in [37], but the study
was possible because an analytic form of the various involved terms was available. We note moreover in this case
that we have to deal with 1 or possibly two intervals depending on (x, v). Now, already in this case the analysis
can not be carried over to several components, because the terms that need to be studied are now a non-smooth
combination of earlier studied terms. It does not appear viable (consider in [37, Definition 3.1]) to provide an
exhaustive and comprehensive analytical study, of all the possible cases even when g is restricted to be quadratic
in the second argument.

As it thus appears, there is substantial difficulty in levering properties, especially in the non-convex k > 1
case from each component to the probability function as a whole. This work suggests a high-level analysis making
this possible. It thus allows us to consider the extension of [37] from k = 1 to k > 1, which is practically relevant
for the study of gas-networks, e.g., [14]. It also makes possible the consideration of various mappings gj with a
different type of dependency in the second argument: “affine”, convex or quadratic. It may also provide a path
for similar extensions from k = 1 to k > 1 for still to be explored dependencies in the second argument such
as polynomial ones. Then, the study of differentiability of ϕ may remain concerned with the study of the case
k = 1, which should considerably simplify the analysis.

We also care to mention two further works in progress, [34, 38], that are concerned with other extensions.
The first work provides an extension while assuming a convex like dependency in the second argument, but
allowing for nearly arbitrary random vectors ξ. This comes at the cost of a formula less favourable for numerical
evaluation. The second work allows g to be difference-of-convex in the second argument, but with polyhedral
convex functions. In that setting non-transversality can be avoided by leveraging on underlying linear structure.

1.3 Organisation of the work

This work is organized as follows. Section 2 provides background material, lays down notation and provides
further scope for the investigation. Since our investigation makes use of generalized differentiation, we will briefly
provide the relevant definitions and some of the properties frequently employed. We also provide the definition
of elliptical random vectors and the associated implications. One of these implications being that the probability
function ϕ can be represented as an integral over the Euclidian unit-sphere of a “radial” probability function,
labelled e. This radial probability function is in fact none other than the probability of a certain parameter
dependent union of intervals. The latter union in itself results as the intersection of similar unions, immediately
related to each component gj , j = 1, . . . , k of the nominal data function g. The structure of this union of intervals,
and in particular conditions under which only finitely many intervals can be studied, are examined in Section 3.
We also carefully examine conditions under which the parameter dependent boundary points of each interval
in these unions are differentiable in a generalized sense. Continuity of the radial probability function e is also
examined. Section 4 is dedicated to the study of generalized differentiation of the radial probability function e
and most importantly to the generalized differentiability of the probability function ϕ itself. The results are
derived under a series of assumptions specified in terms of properties for each component j = 1, . . . , k, gj of
the function g itself. Section 5 shows that these assumptions hold under various structural requirements on the
form of each component function gj . The special structural cases of non-convex quadratic, affine and convex in
the second argument are examined. As a corollary of the investigation the case of being able to combine these
various structures results. Section 6 provides an illustration of a numerical example showing the interest of the
here developed formulæ.

2 Background material

2.1 Notation

Throughout this work we will rely on tools from variational analysis. We will mainly employ standard notation,
but for the convenience of the reader we will recall some of the used concepts and relations briefly. Let us begin
by recalling the following cones, related to the study of the geometry of non-convex closed sets (e.g., [20, 23]):
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I Definition 1 (Tangent and normal cones.). Let X ⊆ Rn be a closed set and x ∈ X be given. The Bouligand/Severi
tangent or contingent cone and Fréchet normal cone to X at x are respectively defined as:

TX(x) :=
{
d ∈ Rn : ∃ tn ↓ 0, ∃ xn ∈ X, lim

n→∞
t−1
n (xn − x) = d

}
NF
X(x) := {x∗ ∈ Rn : 〈x∗, d〉 ≤ 0 ,∀ d ∈ TX(x)}

=
{
x∗ ∈ Rn : lim sup

X3x′→x̄
〈x∗, x′ − x〉 ‖x′ − x‖−1 ≤ 0

}
.

The Mordukhovich or limiting normal cone to X at x is defined as:

NM
X(x) :=

{
x∗ ∈ Rn : ∃ (xn, x∗n)→ (x, x∗), xn ∈ X,x∗n ∈ NF

X(xn)
}
.

With the help of these cones, we can define two notions of subdifferentials through the usual construction
involving normal cones to epigraphs. This is done as follows:

I Definition 2. Let f : Rn → R be a given lower semi-continuous function, then at x ∈ Rn, its Fréchet
subdifferential and Mordukhovich or limiting subdifferential are defined as:

∂Ff(x) =
{
x∗ : (x∗,−1) ∈ NF

epi f (x, f(x))
}

(3a)
∂Mf(x) =

{
x∗ : (x∗,−1) ∈ NM

epi f (x, f(x))
}
, (3b)

where epi f refers to the epigraph of f .

For a function f : Rn → R that is locally Lipschitzian, Clarke subdifferential enjoys favorable calculus rules.
Among the many alternative definitions, let us provide the following characterization, valid in finite dimensions:

∂Cf(x) := Co
{

lim
`→∞

∇f(x`) : x` → x, f is differentiable at x`
}
, (4)

resulting from [5, Theorem 2.5.1]. Here Co stands for the convex hull of a given set. With such a function f , we
can associate the Clarke directional derivative of f at a point x ∈ Rn along a direction d in the following way:

f◦(x; d) := lim sup
y→x, t↓0

f(y + td)− f(y)
t

.

It can be shown that f◦(x; d) = maxs∈∂Cf(x) 〈d, s〉 [5], which is actually rather true by definition.
Finally, let us recall the Dini-Hadamard derivative (see, e.g., [23, Chapter 8] for more details). Consider a

function f : Rn → R, the Dini-Hadamard derivative at u in the direction h is given by

f ′(u;h) := lim inf
s→0+,h′→h

(
f(u+ sh′)− f(u)

s

)
.

The Dini-Hadamard derivative is related to the Fréchet subdifferential in a fashion analogously to the relation
between Clarke subdifferential and directional derivative. In fact it holds that:

∂Ff(x) = {x∗ : 〈x∗, h〉 ≤ f ′(x;h) ∀ h ∈ Rn}

and if f is moreover differentiable at u, then:

f ′(u;h) = 〈∇f(u), h〉, for all h ∈ Rn. (5)

2.2 Elliptical Distributions
Let us formally define elliptically symmetrically distributed random vectors as follows:

I Definition 3. We say that the random vector ξ ∈ Rm is elliptically symmetrically distributed with mean m,
positive definite covariance-like matrix Σ and generator θ : R+ → R+, which is denoted by ξ ∼ E(m,Σ, θ) if its
density fξ : Rm → R+ is given by

fξ(z) =
(
det Σ

)−1/2
θ

(
(z −m)TΣ−1(z −m)

)
, (6)

where the generator function θ : R+ → R+ must satisfy∫ ∞
0

t
m
2 θ(t) dt <∞.
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Now consider L as the matrix arising from the Cholesky decomposition of Σ, i.e., Σ = LLT, it can be shown
that ξ admits a representation as

ξ = m +RLζ. (7)

Where ζ has a uniform distribution over the Euclideanm-dimensional unit sphere Sm−1 :={z ∈ Rm :
∑m
i=1 z

2
i = 1}

and R possesses a density, which is given by

fR(r) :=
{

2π
m
2

Γ(m2 )r
m−1θ(r2) if r > 0

0 if r ≤ 0.

Throughout this work, we will assume this latter density function to be continuous (e.g., θ is assumed to be
continuous). The associated distribution function will be denoted FR, and thus in particular FR(0) = 0 holds
true. The associated measure will be denoted µR, i.e., for any Borel measurable set A ⊆ R, µR(A) =

∫
A
fR(s) ds.

The family of elliptically symmetric random vectors includes many classical families: for instance, Gaussian
random vectors and Student random vectors are elliptical with the respective generators

θGauss(t) = exp(−t/2)/(2π)m/2

θStudent(t) =
Γ
(
m+ν

2
)

Γ
(
ν
2
) (πν)−m/2

(
1 + t

ν

)−m+ν
2

,

where Γ is the usual gamma-function. Other examples, such as logistic or exponential power random vectors, are
considered in the literature; see e.g. [9, 18].

Finally, since Σ is regular, we may actually assume without loss of generality that m = 0 and Σ = R, i.e., is a
correlation matrix. Although this latter fact will never be really required (see [29, Section 2.3], [31, Remark 3.2]).

2.3 Spherical-Radial Representation of the Probability Function
As an immediate consequence of the spherical radial decomposition (7), we can provide an alternative represen-
tation of ϕ(x). Indeed, for all x ∈ Rn, we have that

ϕ (x) =
∫
v∈Sm−1

µR ({r ≥ 0 : g(x, rLv) ≤ 0}) dµζ =
∫
v∈Sm−1

e(x, v) dµζ (8)

where the radial probability function is

e(x, v) := µR ({r ≥ 0 : g(x, rLv) ≤ 0}) ∀ x ∈ Rn ∀ v ∈ Sm−1. (9)

It will also be convenient to introduce the set valued mapping R : Rn × Sm−1 ⇒ R+ as

R(x, v) := {r ≥ 0 : g(x, rLv) ≤ 0}

for any (x, v) ∈ Rn × Sm−1. As a consequence for any (x, v) ∈ Rn × Sm−1 we have e(x, v) = µR(R(x, v)). When
it comes to numerical evaluation, it can be observed (e.g., [31, (1.5)]), that representation (8) alone, already
provides a reduction of sample variance w.r.t. immediately sampling from the nominal representation (1).

More generally, our first endeavour will be to establish continuity of the mapping e, so that we can discuss
generalized subdifferentials of it. To this end, let us introduce the set-valued map M : Rn ⇒ Rm, given by

M(x) = {z ∈ Rm : g(x, z) ≤ 0} , (10)

and observe that M is closed-valued, since g is continuous. Of course the probability function can be rewritten
as:

ϕ(x) = P[ξ ∈M(x)].

Furthermore, the set valued map R also satisfies:

R(x, v) = {r ≥ 0 : rLv ∈M(x)} = {r ≥ 0 : g(x, rLv) ≤ 0} . (11)
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It is also clear that if one defines for each j = 1, . . . , k, the set-valued map Mj : Rn ⇒ Rm, given by

Mj(x) = {z ∈ Rm : gj(x, z) ≤ 0} , (12)

and Rj given by

Rj(x, v) = {r ≥ 0 : rLv ∈Mj(x)} = {r ≥ 0 : gj(x, rLv) ≤ 0} , (13)

that R(x, v) =
⋂k
j=1Rj(x, v) and M(x) =

⋂k
j=1Mj(x). It is our intention to entail properties of e, M , R and

ultimately ϕ from properties established for each “component” j. We will start our investigation with the study
of continuity of e. Throughout this work, we will investigate differentiability at a given “trial point” x ∈ Rn,
we will assume given an appropriate neighbourhood U of x, or “construct” it by shrinking the initially given
neighbourhood further if needed. The existence of such a neighbourhood U will be carefully discussed.

3 Continuity of e

In our first investigation concerning the continuity of e, the specific nature of M given through g does not
matter much and only properties of M (and through it R) are exploited. This section is dedicated to formally
establishing that R can be given as a countable union of intervals. We also study the dependency of the bounds
of these intervals on (x, v) at an abstract level. This abstract level will be the one useful for the numerical
evaluation of the first order information of ϕ.

3.1 Interval calculus
Let us first provide some characterization of R as a union of intervals. For this result we will require an assumption
that is not very restrictive, ruling out too many zeros of g in the second argument.

I Lemma 4. Let g : Rn × Rm → R be a continuous function and consider (x, v) ∈ Rn × Sm−1 such that the
potential solutions r > 0 to g(x, rLv) = 0 do not have accumulation points. Then, the set R(x, v) is a countable
union of intervals. More precisely, there exists p ∈ N ∪ {+∞} and there are points ai, bi ≥ 0, i = 1, . . . , p, such
that a0 ≤ b0 ≤ a1 ≤ · · · ≤ bp and

R(x, v) =
p⋃
i=0

[ai, bi], (14)

where we use the convention [ · ,+∞] = [ · ,+∞). Moreover, for all i ≥ 0, g(x, aiLv) = 0 and whenever bi ∈ R,
we have g(x, biLv) = 0.

Proof. Let (x, v) ∈ Rn × Sm−1 be as in the statement of the result. Since, g is continuous, the set

W := {r > 0 : g(x, rLv) > 0}

is open and, so it can be written as an countable union of open disjoint intervals, let us write:

W =
⋃
i∈I

(ci, di),

where the index set I is countable and ci, di ∈ R for i ∈ I. Here, we notice that ci, di /∈W , hence g(x, ciLv) ≤ 0
and g(x, diLv) ≤ 0. Moreover, by continuity of g, in the second argument, we have that g(x, ciLv) ≥ 0 and
g(x, diLv) ≥ 0, and consequently g(x, ciLv) = 0 = g(x, diLv).

Now, we define the function f : I → N, by, f(i) := #{j ∈ I : cj ≤ ci}, the function is well-defined due
to the fact that {cj}j∈I does not have accumulation points and it is one-to-one. Indeed for any given i ∈ I
and ci, the set [0, ci] can only contain finitely many other cj . Consequently the inverse of f , let us write it as
f−1 : N → I, where N := f(I), is well-defined. Therefore, we can assume that there are q ∈ N ∪ {∞} and
(abusing the notation) disjoint intervals (ci, di) with di ≤ ci+1 for all i such that in fact:

W =
q⋃
i=0

(ci, di). (15)
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Now, we distinguish two cases:
First, consider the situation wherein g(x, 0) ≤ 0. Then, if q = +∞, we set p = q, a0 := 0, and bi = ci,
ai+1 := di for all i ≥ 0. In the case that q is finite we define a0 := 0, and bi = ci, ai+1 := di similarly, except
for the last element:

bq = cq and p = q if dq = +∞
bq+1 = +∞ and p = q + 1 if dq <∞.

Second, consider the situation wherein g(x, 0) > 0. Then, if q = +∞, we set p = q in this case we define
ai = di, bi = ci+1 for all i ≥ 0. When q is finite, the definitions are similar except for the last element:

bq−1 = cq and p = q − 1 if dq = +∞
bq = +∞ and p = q if dq <∞.

Finally, we have to check (14). Indeed, ⊇ holds by construction in (14), since any w ∈
⋃p
i=0[ai, bi] belongs to the

complement of W , i.e., is such that g(x,wLv) ≤ 0.
Now, assume that w ∈ R(x, v), if w = 0, i.e., g(x, 0) ≤ 0, we have a0 = w = 0. We may thus assume w > 0,

then if w /∈ W , we have that by (15) and the fact that {cj}j∈I and {dj}j∈I do not have accumulation points
that there exist i ∈ N such that di ≤ w ≤ ci+1, and consequently w ∈

⋃p
i=0[ai, bi]. J

I Remark 5. It is worth mentioning that the property that the solutions r > 0 such that g(x, rLv) = 0 do not
have accumulation points is stable under maximum operation. Indeed, if {gj : j = 1, . . . , k} is a finite family of
functions such that for each j = 1, . . . , k the solutions r > 0 to gj(x, rLv) = 0 do not have accumulation points,
then the solutions r > 0 to maxj=1,...,k gj(x, rLv) = 0 do not have accumulation points either. This is important
in our analysis, because the earlier said property holds for analytic functions, and thus consequently for (finite)
maxima of analytic functions.

I Corollary 6. Assume that the set-valued mapping M is closed-valued and continuous and that the set of
boundary points (in R) of the rays R+Lv ∩M(x) do not admit cluster points.

Then for each (x, v) ∈ Rn × Sm−1, the set R(x, v) is a countable union of intervals that we will denote with:

R(x, v) =
∞⋃
i=1

[ai(x, v), bi(x, v)], (16)

where the union is considered finite if for some i, bi(x, v) =∞ holds true.

Proof. Let us define g : Rn × Rm → R as g(x, z) = d(z,M(x)), where d is based on the underlying (Euclidian)
distance. Then as a result of [23, Proposition 5.11] the continuity of g follows. The desired result now follows
from Lemma 4. J

The first issue we should deal with is ensuring that R is a finite union of (potentially degenerate) intervals.
The exact number of such intervals possibly varies and we will require some additional assumptions in view of
this. The following Lemma will prove a valuable tool.

I Lemma 7. Assume that for each j = 1, . . . , k, there exists Kj such that for each (x, v) ∈ Rn × Sm−1, Rj(x, v)
as given akin to (16) is the union of at most Kj intervals. Then R(x, v) is the union of at most

∏k
j=1Kj

intervals.
Define furthermore s1, . . . , sk, s : Rn × Sm−1 → N:

sj(x, v) = sup
{
i = 1, . . . ,Kj : aji (x, v) <∞

}
,

so that Rj(x, v) =
⋃sj(x,v)
i=1 [aji (x, v), bji (x, v)] and likewise s but with respect to R.

Should (x, v) be given such that s1, . . . , sk are constant near (x, v), then the same is true for s.

Proof. Let (x, v) ∈ Rn × Sm−1 be given but arbitrary. For this proof it is sufficient to assume k = 2. Hence let
us assume that for j = 1, 2, the following representation holds:

Rj(x, v) =
Kj⋃
i=1

[aji (x, v), bji (x, v)],
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and observe now that

R1(x, v) ∩R2(x, v) =
K1⋃
i=1

K2⋃
`=1

([a1
i (x, v), b1i (x, v)] ∩ [a2

`(x, v), b2`(x, v)]) (17)

as a result of the rule A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), for arbitrary sets A,B,C.
Now, for arbitrary i = 1, . . . ,K1, ` = 1, . . . ,K2:

[a1
i (x, v), b1i (x, v)] ∩ [a2

`(x, v), b2`(x, v)] = [max
{
a1
i (x, v), a2

`(x, v)
}
,min

{
b1i (x, v), b2`(x, v)

}
],

with the evident rule that should max
{
a1
i (x, v), a2

`(x, v)
}
> min

{
b1i (x, v), b2`(x, v)

}
, then the set is empty. As a

result R1 ∩R2 admits the representation given in Corollary 6 but with at most K1K2 terms.
Let us now first make the observation that the mappings sj are well defined for each j = 1, . . . , k. We can

also observe that only bjsj(x,v)(x, v) can be equal to infinity. As a result, in the representation (17) of R1 ∩R2 as
a union of intervals, only the one corresponding to i = s1(x, v) and ` = s2(x, v) can be of the form [ · ,∞), which
happens moreover only if bjsj(x,v)(x, v) =∞ for both j = 1, 2.

Should (x, v) now be such that locally neither s1 nor s2 change, then the representation (17) can be arranged
to have locally exactly s1(x, v)s2(x, v) intervals (some of which might be empty) and consequently s is locally
constant as well. J

One may of course wonder if the given assumptions of Lemma 7 (existence of Kj , local constance of sj)
are reasonable. This can be ensured whenever gj has a polynomial dependency (of fixed degree) in the second
argument. Moreover, whenever gj is (non-convex) quadratic in the second argument, it can be shown that sj as
given in the previous Corollary is indeed locally constant (e.g., [37]), at least on a sufficiently large open set.
This will be largely discussed in Section 5.

Based on our representation of Rj , let us present a set of assumptions that will be useful in the sequel. The
purpose of the assumption is to rule out a too erratic variation in the number of intervals that compose Rj , as
well as to ensure that the total number is bounded. We also request that most directions are transversal. We will
postpone however for the time being giving a concrete example, which will be done in Section 5.

I Assumption 8. Let x ∈ Rn along with a neighbourhood U be given. For each j = 1, . . . , k, we may find an open
set Oj ⊆ U × Sm−1, such that Oj is of λn⊗µζ full measure on U × Sm−1 and for each (x, v) ∈ Oj , it holds that

〈∇zgj(x, rLv), Lv〉 6= 0 for all r s.t. gj(x, rLv) = 0. (18)

Moreover the mapping sj defined in Lemma 7 is assumed locally constant on Oj and bounded from above by Kj

on U × Sm−1.

Let us observe that Assumption 8 can be entailed under a somewhat simpler condition as follows:
I Remark 9. Let x ∈ Rn along with a neighbourhood U be given. Assume that for all x ∈ U , the set

Oj(x) := {v ∈ Sm−1 : 〈∇zgj(x, rLv), Lv〉 6= 0 for all r s.t. gj(x, rLv) = 0} (19)

has µζ full measure on Sm−1. Then Oj := gphOj ∩ (U × Sm−1) satisfies the properties of Assumption 8 as the
result of an application of [8, Korollar V.1.6].

3.2 Fine characterization of R

Under Assumption 8, we may write for some K > 0 on U × Sm−1:

R(x, v) =
K⋃
i=1

[ai(x, v), bi(x, v)]. (20)

Now let us first provide a formal statement showing how certain of these interval boundary points are differentiable
and how their sub-gradients relate to the nominal original data.

Let us designate ai for some i as an entry point and b as an exit point. We can formalise this as follows:

Λentry(x, v) = {ai(x, v) : i = 1, . . . ,K s.t. 0 < ai(x, v) <∞} (21a)
Λexit(x, v) = {bi(x, v) : i = 1, . . . ,K s.t. bi(x, v) <∞} . (21b)
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I Lemma 10. Let x ∈ Rn be given and v ∈ Sm−1 be arbitrary. Let r ≥ 0 be such that r ∈ Λentry(x, v)∩Λexit(x, v),
then there exists i = 1, . . . , k such that 〈∇zgi(x, rLv), Lv〉 = 0.

Proof. Let i = 1, . . . ,K + 1 be such that r = ai(x, v) = bi(x, v), the existence of which follows by assumption. It
follows from r = ai(x, v) and the definition of the latter that for some δ > 0 sufficiently small, gm(x, r′Lv) > 0
for all r′ ∈ (r − δ, r) holds true. Indeed, should this not be the case, then for all δ > 0, we may find some
r′ ∈ (r − δ, r) at which gm(x, r′Lv) ≤ 0 holds true. Hence, by continuity of gm in the second argument, there
exists r′′ ∈ [r′, r) such that gm(x, r′′Lv) = 0. This would contradict that K is finite and/or imply that r is a
cluster point of “solutions”. Likewise (by shrinking δ if needed), it follows from r = bi(x, v) and definition of
the latter that gm(x, r′Lv) > 0, r′ ∈ (r, r + δ). We claim that we may assume the existence of j∗ such that
gj∗(x, r′Lv) > 0 for r 6= r′ ∈ (r− δ, r+ δ), and gj∗(x, rLv) = 0. Should this not hold, then for any active index j
such that gj(x, rLv) = 0,
1. either gj(x, .Lv) < 0 on a given neighbourhood (of r),
2. or gj(x, r`Lv) = 0 for a sequence r` → r.
Should the former situation, i.e., 1. hold for all j, then on an appropriate neighbourhood of r, gm(x, .Lv) < 0,
which contradicts the established properties of gm(x, .Lv) on the identified neighbourhood (r − δ, r + δ). The
latter situation, i.e., 2., must however imply through [36, Lemma 3.1(1)] that 〈∇zgj(x, r`Lv), Lv〉 = 0. Indeed if
not, we may find some appropriate neighbourhood W of r, and neighbourhoods U ′, V ′ of (x, v), such that [36,
Lemma 3.1(1)] holds. However, for ` sufficiently large r` ∈W , thus leading to the contradiction r` 6= ρx,vx̄ (x, v) = r.
The claim has thus been shown.

If j∗ is now as claimed, then the map r 7→ gj∗(x, rLv) attains a local minimum at r, thus implying
〈∇zgj∗(x, rLv), Lv〉 = 0 as a first order optimality condition. J

We can now establish:

I Lemma 11. Let x ∈ Rn be such that gj(x, 0) 6= 0 for all j = 1, . . . , k where gj denotes the j-th component of
the mapping g. Let v ∈ Sm−1 and r∗ be such that gm(x, r∗Lv) = 0. Assuming that 〈∇zgi(x, r∗Lv), Lv〉 6= 0 for
all i = 1, . . . , k, there exist neighbourhoods U of x, V of v and W ⊆ R+ of r∗ as well as a Lipschitz function
ρx,vr∗ : U × V →W with the following properties:
1. For all (x′, v′, r′) ∈ U × V ×W the equivalence maxj=1,...,k gj(x′, r′Lv′) = 0⇔ r′ = ρx,vr∗ (x′, v′) holds true.
2. We have r∗ ∈ Λentry(x, v) ∪ Λexit(x, v). Moreover if r∗ ∈ Λexit(x, v) (Λentry(x, v)) there exist neighbourhoods

Ue, V e,W e of x, v, r∗ respectively such that for all (x′, v′, r′) ∈ Ue×V e×W e with gm(x′, r′Lv′) = 0 we have
r′ ∈ Λexit(x′, v′) (Λentry(x, v) respectively).

3. There exist neighbourhoods Ũ , Ṽ and of x, v and r∗ respectively such that for all (x′, v′) ∈ Ũ × Ṽ one has the
characterization

ρx,vr∗ (x′, v′) =
{

minj∈J x,v,r∗ ρ
x,v
r∗,j(x′, v′), if r∗ ∈ Λexit(x, v)

maxj∈J x,v,r∗ ρ
x,v
r∗,j(x′, v′), if r∗ ∈ Λentry(x, v)

, (22)

ρx,vr∗,j is the mapping of [36, Lemma 3.1], and J x,v,r∗ is defined as

J x,v,r
∗

= {j ∈ {1, . . . , k} : gj(x, r∗Lv) = gm(x, r∗Lv)} . (23)

4. For all (x′, v′) ∈ U × V , the partial Clarke subdifferential of ρx,vr∗ is given by

∂C
xρ
x,v
r∗ (x′, v′) = Co

{
∇xρx,vr∗,j(x

′, v′) : j ∈ J x,v,r
∗
(x′, v′)

}
, (24)

where Co denotes the convex hull and J x,v,r∗(x′, v′) is the subset of J x,v,r∗ where equality holds in equa-
tion (22). If the set in equation (24) reduces to a singleton, ρx,vr∗ is continuously differentiable at (x′, v′).

Proof. We begin by remarking that each component gj of the mapping g, j = 1, . . . , k is Clarke regular as a
continuously differentiable map. The mapping defined as gm : Rn × Rm → R, gm(x′, z′) = maxj=1,...,k gj(x′, z′)
is therefore also Clarke regular according to [5, Proposition 2.3.12]. Since continuously differentiable maps are
locally Lipschitz by the mean-value Theorem it is also easily observed that gm is locally Lipschitz as well. It
therefore follows that the Clarke subdifferential of gm exists and is a non-empty convex compact set. Moreover
from [5, Proposition 2.3.15] it follows that

∂Cgm(x′, z′) ⊆ ∂C
xg
m(x′, z′)× ∂C

zg
m(x′, z′) ∀ x′ ∈ Rn, z′ ∈ Rm. (25)
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By [5, Proposition 2.3.12] it follows that

∂C
zg
m(x′, z′) = Co {∇zgj(x′, z′) : j ∈ I(x′, z′)} ,

where I(x′, z′) = {j = 1, . . . , k : gj(x′, z′) = gm(x′, z′)}.
Let x, v, r∗ now be as in the statement of the Lemma and set z = r∗Lv. Let πz∂Cgm(x, z) denote the projection

of ∂Cgm(x, z) on ∂C
zg
m(x, z). Let s ∈ πz∂Cgm(x, z) be arbitrary. It follows by definition that one can find sx ∈ Rn

such that (sx, s) ∈ ∂Cgm(x, z). But this means that s ∈ ∂zgm(x, z) by (25). Moreover for appropriate λ1, . . . , λk
elements of the k dimensional unit simplex, we have

s =
k∑
j=1

λj∇zgj(x, r∗Lv)

with λj = 0 for j /∈ I(x, z). Moreover, we can find h 6= 0 sufficiently small such that gm(x, (r∗+h)Lv) < 0. Should
such h not exist, we may find for every h 6= 0, some index ih ∈ {1, . . . , k} such that gih(x, (r∗ + h)Lv) = 0, since
gm is a max function over a finite index set. Hence we may identify a sequence hn ↓ 0 as well as a fixed index i∗
such that gi∗(x, (r∗ + hn)Lv) = 0 for all n. However this contradicts [36, Lemma 3.1(1)] since for n sufficiently
large and some neighbourhood W of r∗ it must hold (r∗ + hn) ∈W , and thus r∗ = ρx,vr∗ (x, v) 6= r∗ + hn is not
possible.

Now, for a given j ∈ I(x, z), as a consequence of Taylor’s theorem, we have

gj(x, (r∗ + h)Lv) = gj(x, r∗Lv) + h 〈∇zgj(x, r∗Lv), Lv〉+ o(|h|), (26)

which shows that the family of scalars {〈∇zgj(x, r∗Lv), Lv〉}j∈I(x,z) all share the same sign. Consequently,
〈s, Lv〉 =

∑k
j=1 λj 〈∇zgj(x, r∗Lv), Lv〉 6= 0.

Since w ∈ Rm 7→ 〈s, Lw〉 is continuous this means that s is of full-rank. As s was arbitrary: πz∂Cgm(x, z)
is of maximal rank. We can therefore apply Clarke Implicit Function theorem ([5, p. 256]) to the equation
gm(x, r∗Lv) = 0 to derive the existence of neighbourhoods U of x, V of v and W of r∗ along with a Lipschitz
function ρx,vr∗ : U × V →W such that the equivalence:

gm(x′, r′Lv′) = 0, (x′, v′, r′) ∈ U × V ×W ⇐⇒ r′ = ρx,vr∗ (x′, v′), (x′, v′) ∈ U × V (27)

holds true.
In order to derive item 2, we remark first that by the assumption 〈∇zgj(x, r∗Lv), Lv〉 6= 0 for all j = 1, . . . , k

and this condition continues to hold locally near (x, v). Negating r∗ ∈ Λentry(x, v) ∪ Λexit(x, v) implies together
with r∗ ∈ R(x, v), i.e., r∗ ∈ (ai(x, v), bi(x, v)) for some i∗, that

there exists some δ > 0 such that gm(x, r′Lv) < 0 for all r∗ 6= r′ ∈ (r∗ − δ, r∗ + δ) ⊆ (ai∗(x, v), bi∗(x, v)).
Thus in particular for some i∗ ∈ {1, . . . , k}, we have gi∗(x, r′Lv) < 0, for all r∗ 6= r′ ∈ (r∗ − δ, r∗ + δ) and
gi∗(x, r∗Lv) = 0. Therefore r∗ is a local maximum for the map r 7→ h(r) = gi∗(x, rLv), i.e., h′(r∗) = 0, but
h′(r) = 〈∇zgi∗(x, rLv), Lv〉 which contradicts the assumption.
There is a sequence r` → r∗ such that gm(x, r`Lv) = 0, r` ∈ (ai(x, v), bi(x, v)). Thus by moving to a
subsequence if required, we can identify some i∗ such that too gi∗(x, r`Lv) = 0. However this contradicts [36,
Lemma 3.1(1)] as already argued above.

Any of these situations, thus lead to a contradiction, so that r∗ ∈ Λentry(x, v) ∪ Λexit(x, v) must hold. We have
established the first part of item 2. In order to establish the second part, first of all, by continuity of g as well as
its first order derivatives, appropriate neighbourhoods U1, V 1,W 1 of x, v, r∗ can be found such that gj(x′, 0) 6= 0
for all j = 1, . . . , k, x′ ∈ U1, as well as 〈∇zgj(x′, r′Lv′), Lv′〉 6= 0 for all (x′, v′, r′) ∈ U1 × V 1 ×W 1. Now, let us
assume that r∗ ∈ Λexit(x, v) yet the assertion does not hold. Then there exist sequences, x` → x, v` → v and
r` → r with gm(x`, r`Lv`) = 0 as well as r` ∈ Λentry(x`, v`). Indeed, we may assume (x`, v`, r`) ∈ U1 × V 1 ×W 1

so then by the first part of this item, r` ∈ Λentry(x`, v`) ∪ Λexit(x`, v`) and the negation of the assertion yields
r` ∈ Λentry(x`, v`). By Lemma 10, it follows that r∗ = bi∗(x, v) for some i∗ and too the existence of some δ > 0
such that ai∗(x, v) < r∗ − δ < bi∗(x, v) = r∗. But also that gm(x, (r∗ − δ)Lv) < 0 must hold. By item 1, we can
find neighbourhoods U2, V 2,W 2 of x, v, r∗ as well as a Lipschitz mapping ρx,vr∗ : U2 × V 2 →W 2, satisfying (27).
For k large enough we must have (x`, v`, r`) ∈ U2 × V 2 ×W 2 as well, hence (27) yields ρx,vr∗ (x`, v`) = r`.

We now have on the one hand that gm(x, r′Lv) < 0 for all r′ ∈ (r∗ − δ, bi∗(x, v)) and on the other hand by
continuity of gm that for each fixed such r′ we can find L such that gm(x`, r′Lv`) < 0 for ` ≥ L as well. However
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since r′ < bi(x, v) = ρx,vr∗ (x, v) and ρx`,v`r∗ = r` ∈ Λentry(x`, v`), we have r′ < ρx`,v`r∗ = r` for ` sufficiently large.
Hence, by r` ∈ Λentry(x`, v`), either gm(x`, r′Lv`) > 0 or there exists r′` with gm(x`, r′`Lv`) = 0. By employing a
diagonal argument, we may thus arrange the sequence r′` such that r′` → r∗ as well. But then for k sufficiently
large we arrive at the contradiction r′` < r` = ρx`,v`r∗ with (27), since (x`, v`, r′`) ∈ U2, V 2,W 2. We have completed
the proof of item 2, since the case r∗ ∈ Λentry(x, v) follows analogously.

Let us now move to the proof of item 3. Following the assumptions, for any j ∈ J x,v,r∗ there exist
neighbourhoods Uj of x, Vj of v andWj of r∗ as well as continuously differentiable mappings ρx,vr∗,j : Uj×Vj →Wj

by [36, Lemma 3.1] such that for all (x′, v′, r′) ∈ Uj × Vj ×Wj we have the equivalence gj(x′, r′Lv′) = 0 if and
only if r′ = ρx,vr∗,j(x′, v′). Moreover for j /∈ J x,v,r∗ we have gj(x, r∗Lv) < 0, so that appropriate neighbourhoods
Uj , Vj ,Wj of x, v, r∗ exist such that gj(x′, r′Lv′) < 0 for all (x′, v′, r′) ∈ Uj × Vj ×Wj . By item 1, we are given
further neighbourhoods U, V,W of x, v, r∗ and a Lipschitz mapping ρx,vr∗ : U × V →W satisfying (27). We now
define Ũ =

⋂k
j=1 Uj ∩U , Ṽ =

⋂k
j=1 Vj ∩V , W̃ =

⋂k
j=1Wj ∩W , neighbourhoods of x, v, r∗ respectively such that

both the left and right-hand side expressions in (22) are meaningfully defined. Moreover, since ρx,vr∗ as well as
ρx,vr∗
j

are continuous, we may assume that Ũ and Ṽ are defined such that ρx,vr∗ (x′, v′) ∈ W̃ , ρx,vr∗
j

(x′, v′) ∈ W̃ for all
(x′, v′) ∈ Ũ × Ṽ . Following item 2, we may assume

ρx,vr∗ (x, v) ∈ Λexit(x, v) =⇒ ρx,vr∗ (x′, v′) ∈ Λexit(x′, v′) for all (x′, v′) ∈ Ũ × Ṽ ,
ρx,vr∗ (x, v) ∈ Λentry(x, v) =⇒ ρx,vr∗ (x′, v′) ∈ Λentry(x′, v′) for all (x′, v′) ∈ Ũ × Ṽ .

It remains to establish the asserted equality in (22).
To this end, let us assume that r∗ ∈ Λexit(x, v) holds. Assume moreover that for a given (x′, v′) ∈

Ũ × Ṽ , we have ρx,vr∗ (x′, v′) < minj∈J x,v,r∗ ρ
x,v
r∗,j(x′, v′). Then for any given but fixed j ∈ J x,v,r∗ we have

gj(x′, ρx,vr∗ (x′, v′)Lv′)≤ gm(x′, ρx,vr∗ (x′, v′)Lv′) = 0. However if gj(x′, ρx,vr∗ (x′, v′)Lv′) = 0, the fact that ρx,vr∗ (x′, v′) ∈
W̃ ⊆ Wj implies by the equivalence of [36, Lemma 3.1] that ρx,vr∗ (x′, v′) = ρx,vr∗,j(x′, v′), yet by assumption
ρx,vr∗ (x′, v′) < ρx,vr∗,j(x′, v′). Consequently, gj(x′, ρ

x,v
r∗ (x′, v′)Lv′) < 0. However, the latter inequality holds too

whenever j /∈ J x,v,r∗ since ρx,vr∗ (x′, v′) ∈Wj then too. Consequently, maxj=1,...,k gj(x′, ρx,vr∗ (x′, v′)Lv′) < 0, which
contradicts the definition of gm.

Let us now assume that for a given (x′, v′) ∈ Ũ × Ṽ , we have ρx,vr∗ (x′, v′) > minj∈J x,v,r∗ ρ
x,v
r∗,j(x′, v′). Then

there exists a ι ∈ J x,v,r∗ such that ρx,vr∗ (x′, v′) > ρx,vr∗,ι(x′, v′). Since by definition, gι(x′, ρx,vr∗,ι(x′, v′)Lv′) = 0,
we deduce that gm(x′, ρx,vr∗,ι(x′, v′)Lv′) ≥ 0. Now if gm(x′, ρx,vr∗,ι(x′, v′)Lv′) = 0, from ρx,vr∗,ι(x′, v′), ρ

x,v
r∗ (x′, v′) ∈

W̃ , the equivalence (27) leads to the contradiction ρx,vr∗,ι(x′, v′) = ρx,vr∗ (x′, v′). Consequently we must have:
gm(x′, ρx,vr∗,ι(x′, v′)Lv′) > 0. However we have ρx,vr∗ (x′, v′) ∈ Λexit(x′, v′), which by continuity of gm entails the
existence of r′ ∈ (ρx,vr∗,ι(x′, v′), ρ

x,v
r∗ (x′, v′)) ⊆ W̃ with gm(x′, r′Lv′) = 0, again contradicting (27). Therefore (22)

must hold true.
Let us now assume that r∗ ∈ Λentry(x, v) holds. Assume moreover that for a given (x′, v′) ∈ Ũ × Ṽ , we have

ρx,vr∗ (x′, v′) > maxj∈J x,v,r∗ ρ
x,v
r∗,j(x′, v′). Then for any given but fixed j ∈ J x,v,r∗ we have gj(x′, ρx,vr∗ (x′, v′)Lv′) ≤

gm(x′, ρx,vr∗ (x′, v′)Lv′) = 0. However if gj(x′, ρx,vr∗ (x′, v′)Lv′) = 0, the fact that ρx,vr∗ (x′, v′) ∈ W̃ ⊆Wj implies by
the equivalence of [36, Lemma 3.1] that ρx,vr∗ (x′, v′) = ρx,vr∗,j(x′, v′), yet by assumption ρx,vr∗ (x′, v′) > ρx,vr∗,j(x′, v′).
Consequently, gj(x′, ρx,vr∗ (x′, v′)Lv′) < 0. However, the latter inequality holds too whenever j /∈ J x,v,r∗ since
ρx,vr∗ (x′, v′) ∈Wj then too. Consequently, maxj=1,...,k gj(x′, ρx,vr∗ (x′, v′)Lv′) < 0, which contradicts the definition
of gm.

Let us now assume that for a given (x′, v′) ∈ Ũ × Ṽ , we have ρx,vr∗ (x′, v′) < maxj∈J x,v,r∗ ρ
x,v
r∗,j(x′, v′). Then

there exists a ι ∈ J x,v,r∗ such that ρx,vr∗ (x′, v′) < ρx,vr∗,ι(x′, v′). Since by definition, gι(x′, ρx,vr∗,ι(x′, v′)Lv′) = 0,
we deduce that gm(x′, ρx,vr∗,ι(x′, v′)Lv′) ≥ 0. Now if gm(x′, ρx,vr∗,ι(x′, v′)Lv′) = 0, from ρx,vr∗,ι(x′, v′), ρ

x,v
r∗ (x′, v′) ∈

W̃ , the equivalence (27) leads to the contradiction ρx,vr∗,ι(x′, v′) = ρx,vr∗ (x′, v′). Consequently we must have:
gm(x′, ρx,vr∗,ι(x′, v′)Lv′) > 0. However we have ρx,vr∗ (x′, v′) ∈ Λentry(x′, v′), which by continuity of gm entails the
existence of r′ ∈ (ρx,vr∗ (x′, v′), ρx,vr∗,ι(x′, v′)) ⊆ W̃ with gm(x′, r′Lv′) = 0, again contradicting (27). Therefore (22)
must hold true.

Item 4, follows immediately from [5, Proposition 2.3.12] in case r∗ ∈ Λentry(x, v) and otherwise since the
relation

−ρx,vr∗ (x′, v′) = max
j∈J x,v,r∗

−ρx,vr∗,j(x
′, v′),

holds true. It allows us to derive:

∂C(−ρx,vr∗ (x′, v′)) = Co
{
−∇xρx,vr∗,j(x

′, v′) : j ∈ J x,v(x′, v′)
}
. (28)
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On the other hand, [5, Proposition 2.3.1] states that ∂C(−ρx,vr∗ (x′, v′)) = −∂Cρx,vr∗ (x′, v′) which allows us to
derive (24) since Co(−A) = −Co(A) for an arbitrary set A ⊆ Rn. J

3.3 Observations regarding continuity
We can now present continuity results of two different forms. First, we can present local Lipschitzian continuity
of the composition of FR and boundary points whenever they are locally finite, i.e., Proposition 12 just below.
This already allows us to move a significant step in the direction of showing that e is locally Lipschitzian. This
would be a trivial consequence of Proposition 12, if all boundary points are finite (locally in x, but uniformly
in v), e.g., when {z : g(x, z) ≤ 0} is compact. This does not happen already when for a given j = 1, . . . , k, gj is
(non-convex) quadratic in the second argument. The gap thus lies in how s, the total number of intervals affects
e, and how behaviour is locally near an “infinite” boundary point. For this reason we are only able to show plain
continuity of e, in Proposition 13 below, for the time being.

I Proposition 12. Let Assumption 8 hold true. Then, for each j = 1, . . . , k, and each i = 1, . . . ,Kj, the
mappings aji , b

j
i : Oj → R+ ∪ {∞} appearing in the representation (16) of Rj, are continuous in the topology

of the extended real line. Moreover for each (x, v) ∈ Oj at which aji (x, v) < ∞ (bji (x, v) < ∞ respectively), aji
is locally Lipschitzian at (x, v) (likewise bji ). Finally at any (x, v) ∈ Oj, the mapping (x, v) 7→ FR(aji (x, v)) is
locally Lipschitzian (likewise for bji whenever it is finite).

Proof. Under Assumption 8 we may employ Lemma 11, which shows that the mappings aji , b
j
i are locally Lips-

chitzian whenever finite. This property is moreover preserved when combined with the continuously differentiable
mapping r 7→ FR(r), see e.g., [5, Theorem 2.3.9(ii)]. Convergence in the topology of the extended real line
follows along the lines of [31, ]. J

We have now prepared all elements to show continuity of e, a result that we will gather in the form of a
proposition.

I Proposition 13. Let Assumption 8 hold true. Then the mapping e : U × Sm−1 → defined in (9), can be
represented as

e(x, v) =
s(x,v)∑
i=1

max {FR(bi(x, v))− FR(ai(x, v)), 0} , (29)

where ai, bi : O → R+ ∪ {∞} are locally Lipschitzian functions (whenever finite) and moreover the mapping s is
locally constant on O given by

O :=
k⋂
j=1
Oj , (30)

which has λn ⊗ µζ full-measure over U × Sm−1. As a consequence e is continuous on O.

Proof. It is an immediate result of Assumption 8 that O as defined has λn ⊗ µζ full-measure over U × Sm−1.
As for the representation of e, we may once again assume w.l.o.g. that k = 2. Lemma 7 provides us with the
following representation of R on O:

R(x, v) =
s(x,v)⋃
i=1

[ai(x, v), bi(x, v)], (31)

where ai(x, v) = max
{
a1
i1

(x, v), a2
i2

(x, v)
}
and bi(x, v) = min

{
b1i1(x, v), b2i2(x, v)

}
for appropriate indices i1, i2.

Now observe furthermore that FR is an increasing function and consequently

FR(ai(x, v)) = max
{
FR(a1

i1(x, v)), FR(a2
i2(x, v))

}
(32a)

FR(bi(x, v)) = min
{
FR(b1i1(x, v)), FR(b2i2(x, v))

}
, (32b)

where the latter equality can be extended if b1i1(x, v) = b2i2(x, v) = ∞. By Assumption 8 and Lemma 7 the
mapping s is locally constant. The intervals defining each Rj are disjoint, and consequently also this is true for
the above representation. It thus follows that:

e(x, v) = µR(R(x, v)) =
s(x,v)∑
i=1

µR([ai(x, v), bi(x, v)]).
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Now observe that bi(x, v) ≤ ai(x, v) may happen, but in which case max {FR(bi(x, v))− FR(ai(x, v)), 0} = 0 =
µR([ai(x, v), bi(x, v)]). The representation (29) has thus been shown. We may invoke Proposition 12 to entail
continuity of e on O. J

Now that continuity of e has been established, we can investigate local Lipschitz continuity of e. As mentioned,
this will require a specific assumption on the potential nature of bs(x,v)(x, v):

I Assumption 14. With O the open set of Proposition 13. For any (x, v) ∈ O at which bs(x,v)(x, v) =∞ we can
find appropriate neighbourhoods on U ′, V ′ of (x, v) and r > 0 such that

|FR(bi(x1, v
′))− FR(bi(x2, v

′))| ≤ r‖x1 − x2‖, for all x1, x2 ∈ U ′ and v′ ∈ V ′,

where i = s(·, ·) and s is locally constant on U ′ × V ′.

It is worth mentioning that the above assumption holds under the following stronger, but simpler to verify
assumption.

I Assumption 15. With O the open set of Proposition 13. For any (x, v) ∈ O at which bs(x,v)(x, v) =∞ we can
find appropriate neighbourhoods on U ′, V ′ of (x, v) such that bs(x,v)(x′, v′) = ∞ for all (x′, v′) ∈ U ′ × V ′ and
s(x′, v′) = s(x, v).

I Remark 16. Although Assumption 14 is formulated in the form involving the global structure and not each
individual component, we can leverage the validity of Assumption 14 from each individual component. To that
end we may assume, w.l.o.g., that k = 2. We may observe from the proof of Proposition 13, that any (x, v) ∈ O,
would belong to O1 and O2 and that should bs(x,v) = ∞ hold, that if both components are active, that then
b1i1(x, v) = ∞ = b2i2(x, v) holds. Then as a consequence of (32), and Assumption 14 holding for component 1
and 2, the mapping FR(bi(., v′)) is the minimum of two locally Lipschitzian mappings, and therefore locally
Lipschitzian too.

I Proposition 17. Let Assumption 8 and 14 hold true. Then the mapping e : U × Sm−1 → defined in (9) is
locally Lipschitzian in the first argument on O.

Proof. This follows as a result of the representation given in Proposition 13 (whenever bi, ai are finite), and
combined with Assumption 14 (when bi(x, v) =∞). On the other hand, under Assumption 8, the same analysis
can be done for almost every x ∈ U and all v ∈ ∩kjOj(x). J

4 Generalized differentiation

Now that we have established that the mapping e is locally Lipschitzian in the first argument, the main idea will
be to take advantage of representation (8) of ϕ, by moving Clarke subdifferentiation through the integral. The
following points make this not evident:

Our analysis considers a set O, of full-measure, but not containing strictly all points.
The mappings νj , though uniformly integrable, are not bounded. In other words, elements of the subdifferential
of e could become arbitrarily large.

We can thus not take advantage of classic results allowing the interchange of subdifferentiation and integration,
but need to construct a novel analysis in order to justify this. This is the topic of the current section, even
though it’s main result Theorem 31 will not be surprising in form. Our first investigation, in Section 4.1 will
consist in controlling the growth of these subdifferential elements of e. Then we will study certain Fubini-like
formulæ that will allow us to represent the growth of the probability function ϕ in a given direction h as an
integral. This will be achieved in Section 4.2. It is this representation that will allow us to justify the interchange
of subdifferentiation and integration in Section 4.3 that also contains the main result.

4.1 Bounding growth
We will require an important assumption on the growth of the compositions FR ◦ ai (respectively FR ◦ bi). For
our results we will require the notion of uniform integrability, of which we recall the Definition:

I Definition 18 ([2, Definition 4.5.1]). A set of functions F ⊆ L1(µ) is said to be uniformly integrable if

lim
ε→0+

sup
f∈F

∫
{|f |>ε−1}

|f |dµ = 0.
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We will use this result with regard to the atomless measure µζ and so in our setting the just given definition
of uniform integrability is equivalent to other definitions (e.g., [26, p. 133]) by [2, Proposition 4.5.3].

We can now present our key assumption, again formulated in terms of the individual component functions.

I Assumption 19. With O given as a result of Assumption 8 and (x, v) ∈ O arbitrarily. For each j = 1, . . . , k,
and each i = 1, . . . , sj(x, v), any x∗ ∈ ∂CFR(aji (x, v)) ∪ ∂CFR(bji (x, v)) satisfies:

‖x∗‖ ≤ νj(x, v), (33)

for a mapping νj : U × Sm−1 → R+ ∪ {∞} having the properties:
a. νj(x, · ) is integrable over Sm−1 w.r.t. µζ for all x ∈ U
b. For all x ∈ U , νj( · , v) is continuous at x for almost all v ∈ Sm−1.
c. The family of functions {νj(x, · )}x∈U is uniformly integrable.

As a result of these assumptions, this structure carries over to the bounds involved in the definition of R.
This is the purpose of the following proposition.

I Proposition 20. Let Assumptions 8, 14 and 19 hold and assume that R is represented as in (20). Then
there exists a mapping ν with properties analogous to those of Assumption 19, and such that (33) holds for
x∗ ∈ ∂CFR(ai(x, v)) ∪ ∂CFR(bi(x, v)) and i = 1, . . . , s(x, v).

Proof. For the purpose of this proof, we may assume that k = 2. We first recall (32) resulting from the
representation derived in Lemma 7. Since the subdifferential of the maxima and minima are included in the
convex envelope of the subdifferentials (of the active elements) (see, e.g., [5, Proposition 2.3.12]), we have for
x∗ ∈ ∂C

xFR(ai(x, v)) that

‖x∗‖ ≤ max
λ∈[0,1]

∥∥λ∂C
xFR(a1

i1(x, v)) + (1− λ)∂C
xFR(a2

i2(x, v))
∥∥ ≤ ν1(x, v) + ν2(x, v), (34)

so that upon defining ν(x, v) := ν1(x, v) + ν2(x, v) the desired mapping ν is found. The desired properties,
highlighted in Assumption 19 evidently carry over to sums. The proof goes along similar lines for bi, if we recall
moreover Assumption 14, which if bi(x, v) =∞, also implies that the function FR(bi(x, v)) is locally Lipschitzian,
and if we also recall that the same calculus rules for maximum/minimum functions hold. J

We can now employ this mapping ν, to establish a key bound for the partial directional derivatives of the
mapping e.

I Lemma 21. In the setting of Proposition 20, there exists a constant M > 0, such that for all (x, v) ∈ O and
all h ∈ Rn, the following estimate holds true:

|e′x(x, v;h)| ≤ |e◦x(x, v;h)| ≤Mν(x, v) ‖h‖ , (35)

where e◦x and e′x refer to the partial Clarke and Dini-Hadamard directional derivatives in direction h, that is,

e◦x(x, v;h) := lim sup
x′→x s→0+

(
e(x′ + sh, v)− e(x′, v)

s

)
. (36)

e′x(x, v;h) := lim inf
s→0+,h′→h

(
e(x+ sh′, v)− e(x, v)

s

)
. (37)

Furthermore, e◦x and e′x are B(O)⊗ B(Rn)-measurable functions, and e◦x is upper-semicontinuous as a function
of (x, h) (for v fixed) and sublinear in h (for x, v fixed), e′x is lower-semicontinuous and positively homogeneous
on h (for x, v fixed).

Proof. For an arbitrary (x, v) ∈ O, the representation (29) holds true. Furthermore as a result of Proposition 17,
the mapping e is locally Lipschitzian on O with respect to x and therefore the Clarke directional derivative
e◦ is well defined, in particular near the (x, v) set aside. Moreover in this representation s(x, v) (upon picking
a sufficiently small neighbourhood of (x, v)) can be assumed to be constant, i.e., s(x, v) = s ≤ K ≤

∏k
j=1Kj ,

where K is as in (20) and Kj as in Lemma 7. Finally, in representation (29), should bs(x, v) =∞ occur, then as
a result of Assumption 14, FR(bs( · , v)) is Lipschitz near x and therefore also the same is true of e as a finite
sum of Lipschitzian functions. Setting M := K and as a result of the sum rule ([5, p. 38]): for all (x, v) ∈ O

e◦x(x, v;h) ≤
s∑
i=1

max {β◦i (x, v;h) + α◦i (x,−v;h), 0}

≤Mν(x, v)‖h‖ for all h ∈ Rn,
(38)
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where, for i = 1, . . . , s, βi(x, v) := FR(bi(x, v)) and αi(x, v) := FR(ai(x, v)) and we have also used [5, Proposi-
tion 2.1.1(a) and (c)] together with Proposition 20. We furthermore emphasize that M does not depend on the
chosen (x, v). Through the sublinearity of e◦x(x, v; · ) (see, e.g., [5, Proposition 2.1.1]), we obtain

0 = e◦x(x, v; 0) ≤ e◦x(x, v;h) + e◦x(x, v;−h),

which yields −e◦x(x, v;h) ≤ e◦x(x, v;−h) ≤Mν(x, v)‖h‖, where in the last inequality we used (38). Now, by [23,
Theorem 8.18], we have that e′x(x, v;h) ≤ e◦x(x, v;h), which ends the proof of (35).

Now, let us show the measurability of e◦x. Consider a countable enumeration of points with rational components
(uk, sk) ⊆ Rn × (0,+∞) and a sequence εj ↓ 0+. Then, for j, k ∈ N we define the function from O × Rn to R:

Ψj,k(x, v, h) :=
{
e(xk+skh,v)−e(xk)

sk
if ‖x− xk‖+ sk ≤ εj

−∞ otherwise,
(39)

which is clearly measurable. We claim that for all (x, v, h) ∈ O × Rn

e◦x(x, v;h) = inf
j≥0

sup
k≥0

Ψj,k(x, v, h). (40)

Indeed, consider (x, v, h) ∈ O × Rn, since O is open we have that for small εj , the inequality ‖x − xj‖ ≤ εj
implies that (xj , v) ∈ O, then by definition of the Clarke directional derivative equality ≥ holds in (40). Now,
for the opposite one, we consider a sequence xl → x and sl → 0+ such that

e◦x(x, v;h) = lim
l→∞

e(xl + slh, v)− e(xl, v)
sl

.

Moreover, since e is locally Lipschitz at (x, v), we can assume that e is K-Lipschitz on an open neighbourhood
O of (x, v) and (xl, v), (xl + slh, v) ∈ O, then we can take (xkl , skl) such that ‖x− xkl‖+ skl → 0 and∣∣∣∣e(xl + slh, v)− e(xkl + sklh, v)

sl

∣∣∣∣+
∣∣∣∣e(xl, v)− e(xkl , v)

sl

∣∣∣∣+ |1− skl
sl
| ≤ 1

l
.

Therefore,

e(xl + slh, v)− e(xl, v)
sl

≤ sup
k≥0

Ψj,k(x, v, h) + 2/l

which implies that (40) holds.
Similarly, we can prove the measurability of e′x. The upper-semicontinuity and sublinearity of the

directional derivative e◦x follow from [5, Proposition 2.1.1], and the lower semicontinuity of e′x follows from [23,
Theorem 8.18]. J

4.2 Study of the variation of the probability function in a given direction
A target of this section is to establish Lemma 24 below. Indeed, we would like to be able to express ϕ(x+th)−ϕ(x)
as a certain integral in R. This representation will allow us to build a link between various directional derivatives
of ϕ and similar expressions involving e. A step towards this result is the following Fubini-like theorem, which in
spirit is close to [37, Lemma 4.2], but does require new arguments for its proof.

I Lemma 22. In the setting of Proposition 20, there exists a neighbourhood U of x such that for x ∈ U there
exists γ > 0 such that for almost all h ∈ B the function

[0, γ]× Sm−1 3 (s, v)→ 〈∇xe(x+ sh, v), h〉 (41)

is well defined (over a set of full measure) and integrable over [0, γ]× Sm−1 with respect to λ1 ⊗ µζ . Moreover,
for each t ∈ [0, γ]∫

[0,t]×Sm−1
〈∇xe(x+ th, v), h〉d(λ1 ⊗ µζ)(s, v) =

∫
v∈Sm−1

(∫ t

0
〈∇xe(x+ sh, v), h〉ds

)
dµζ(v)

=
∫ t

0

(∫
v∈Sm−1

〈∇xe(x+ sh, v), h〉dµζ(v)
)

dλ1(s).
(42)

Finally, for almost all v ∈ Sm−1 the section s→ 〈∇xe(x+ sh, v), h〉 is integrable over [0, γ].
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Proof.
B Claim 1. ∇xe(x, v) exists for almost all (x, v) ∈ U ×Sm−1 and it is measurable with respect to the completion
associated with λn ⊗ µζ .

As a result of Proposition 17, the mapping e is locally Lipschitzian in the first argument on the set of λn⊗µζ-
full measure O. Hence, by [8, Korollar V.1.6], for µζ allmost all v ∈ Sm−1, x 7→ e(x, v) is locally Lipschitzian.
Consequently as a result of Rademacher’s Theorem (see, e.g., [23, Theorem 9.60]), for almost all v ∈ Sm−1, the
partial gradient ∇xe(x, v) exists for almost all x ∈ U . Therefore, again by [8, Korollar V.1.6], we have that
∇xe(x, v) exists for almost all (x, v) ∈ U × Sm−1. Finally, the measurability of ∇xe(x, v) follows from the fact
that it can be computed as a limit of measurable functions, whenever it exists, in the following form

〈∇xe(x, v), h〉 = lim
j→∞

j−1
(
e

(
x+ h

j

)
− e(x)

)
.

B Claim 2. Fix x ∈ U and γ > 0 such that Bγ(x) ⊆ U . Define the measure space (X ,L, λn+1) given by
X := [0, γ] × B, the σ-algebra of Lebesgue measurable sets on X and λn+1 the n + 1-dimensional Lebesgue
measure. Then, the function

X × Sm−1 3 (t, h, v)→ ∇xe(x+ th, v) (43)

is measurable, and defined on a set of full measure with respect to λn+1 ⊗ µζ .
Let us define A = {(t, h, v) : ∇xe(x+ th, v) does not exists}. Then, by Claim 1, for all t ∈ [0, γ] the set

A(t) := {(h, v) ∈ B× Sm−1 : ∇xe(x+ th, v) does not exists} = {(h, v) ∈ B× Sm−1 : (t, h, v) ∈ A}

has null measure. Then, by [8, Korollar V.1.6], we have that the set A has null measure on X×Sm−1. Consequently,
the function defined in (43) is defined almost everywhere, and it is the composition of measurable functions,
thanks to Claim 1.
B Claim 3. The function (s, h, v)→ 〈∇xe(x+ sh, v), h〉 is integrable over X × Sm−1 with respect to the product
measure λn+1 ⊗ µζ .

The measurability of (s, h, v)→ 〈∇xe(x+ sh, v), h〉 comes from Claim 2. As a result of Lemma 21, for almost
all (s, h, v) ∈ X × Sm−1, we have

|〈∇xe(x+ sh, v), h〉| ≤ e◦x(x+ sh, v;h) ≤Mν(x+ sh, v). (44)

Moreover, by Proposition 20 (and Assumption 19 regarding uniform integrability), we know that we may find
C > 0 such that∫

v∈Sm−1
ν(x+ sh, v) dµζ(v) ≤ C, as long as x+ sh ∈ U.

Hence, the use of Tonelli’s Theorem (see, e.g., [6, Proposition 5.2.1]) gives the identity:∫
X×Sm−1

|〈∇xe(x+ th, v), h〉|dλn+1 ⊗ µζ =
∫
X

(∫
Sm−1

| 〈∇xe(x+ th, v), h〉 |dµζ(v)
)

dλn+1(t, h)

≤
∫
X

(∫
Sm−1

Mν(x+ sh, v)dµζ(v)
)

dλn+1(t, h)

≤ Cλn+1(X ) <∞.

B Claim 4. For almost all (h, v) ∈ B × Sm−1 the section s → 〈∇xe(x + sh, v), h〉 is integrable over [0, γ].
Furthermore, for almost all h ∈ B the function defined on (41) is integrable over [0, γ] × Sm−1, and the
identity (42) holds.

Now, by Fubini’s Theorem (see, e.g., [6, Theorem 5.2.2]), on the one hand used over X ×Sm−1 = [0, γ]× (B×
Sm−1) we have that the section s→ 〈∇xe(x+ sh, v), h〉 is integrable. On the other hand using Fubini’s Theorem
over B × ([0, γ] × Sm−1), we have that for almost all h ∈ B, the function (s, v) 7→ 〈∇xe(x+ sh, v), h〉 defined
in (41) is integrable over [0, γ]× Sm−1. Moreover, also Fubini’s Theorem allows us to compute the integral over
iterated integrals as in (42). J

In order to precisely justify the exchange of subdifferentiation and integration, we require further regularity
captured in the following notion:
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I Definition 23. Let U be an open convex set, and let ψ : U × Sm−1 → R be given. Consider x ∈ U , we say that
ψ is absolutely continuous at x nearly uniformly in v provided that for almost all h ∈ B there exists δh > 0 such
that the function

[0, δh) 3 t→ ψ(x+ th, v)

is absolutely continuous for µζ-almost all v ∈ Sm−1.
Furthermore, we say that ψ is absolutely continuous near x nearly uniformly in v provided that there exists a

neighbourhood U ′ of x such that ψ is absolutely continuous at x nearly uniformly in v for all x ∈ U ′.

I Lemma 24. In the setting of Proposition 20 suppose that e is absolutely continuous at x nearly uniformly in
v. Then, for almost all h ∈ B there exists δx̄,h > 0 such that for each t ∈ [0, δx̄,h)

ϕ(x+ th)− ϕ(x) =
∫ t

0

(∫
v∈Sm−1

〈∇xe(x+ sh, v), h〉dµζ(v)
)

ds.

Proof. By Lemma 22 we can find γx̄ > 0 such that for almost all h ∈ B1 (where B1 is a set of full measure on
B) and for all t ∈ [0, γx̄] we have:∫ t

0

(∫
Sm−1

〈∇xe(x+ sh, v), h〉dµζ
)

dλ1 =
∫
Sm−1

(∫ t

0
〈∇xe(x+ sh, v), h〉 dλ1

)
dµζ .

Since e is absolutely continuous at x, there exists a set B2 ⊆ B1 of full measure on B, such that for all h ∈ B2
there exists δh > 0 such that for almost all v ∈ Sm−1∫ t

0
〈∇xe(x+ sh, v), h〉ds = e(x+ th, v)− e(x, v). (45)

We thus obtain that for almost all h ∈ B there exists δx̄,h > 0 such that for all t ∈ (0, δx̄,h)

ϕ(x+ th)− ϕ(x) =
∫
v∈Sm−1

(e(x+ th, v)− e(x, v)) dµζ(v)

=
∫
v∈Sm−1

(∫ t

0
〈∇xe(x+ sh, v), h〉ds

)
dµζ(v)

=
∫ t

0

(∫
v∈Sm−1

〈∇xe(x+ sh, v), h〉dµζ(v)
)
ds.

Where, we have used (45) and (42) of Lemma 22 to establish the last two equalities. J

To conclude this section let us briefly mention how absolute continuity carries over from the individual
components to the composition.

I Proposition 25. In addition to the Assumptions 8, 14 and 19 suppose that the functions FR ◦ aij and FR ◦ bij
are absolutely continuous at x nearly uniformly in v. Then, e is absolutely continuous at x nearly uniformly in v.

Proof. Let us first observe the following rather immediate consequences of the definition of absolute continuity
(see [6, p. 135]):

constant functions, in particular the all zero function are absolutely continuous
affine combinations of absolutely continuous functions are absolutely continuous
the maximum of two absolutely continuous functions is absolutely continuous since |max {a, b} −max {c, d}| ≤
max {|a− c| , |b− d|}. The same holds true for the minimum.

The result now follows by recalling Proposition 20, especially representation (29) and (32). J

4.3 Subdifferential estimates for the probability function
We now turn our attention to justifying the interchange of subdifferentiation and integration, thus producing
an estimate of the subdifferential for the probability function ϕ. This result will be given in Propositions 20
and 29 below. This Proposition is of it’s own interest, since it also provides other differential estimates of the
probability function ϕ, in particular with respect to it’s Fréchet subdifferential (inner inclusion). The main result
of the paper, i.e., Theorem 31, becomes an immediate consequence of these Propositions after all preparatory
material has been worked out. The following technical result is essential and studies a certain regularization of
the partial Clarke and Dini-Hadamard directional derivatives of e.
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I Lemma 26. In the setting of Proposition 20, let us define dx e,Dx e : U × Sm−1 × Rn → [−∞,∞] as follows:

Dx e(u, v;h) :=


lim sup

u′→u h′→h
(u′,v)∈O

e◦x(u′, v;h′) if (u, v) ∈ clxO

−∞ otherwise.
(46)

dx e(u, v;h) :=


lim inf

u′→u h′→h
(u′,v)∈O

e′x(u′, v;h′) if (u, v) ∈ clxO

+∞ otherwise.
(47)

where clxO := {(x, v) ∈ U × Sm−1 : ∃ xi → x with (xi, v) ∈ O}.
Then, the following assertions are all true:

a. Dx e and dx e are B(U)⊗L(Sm−1)⊗B(Rn)-measurable functions, where L(Sm−1) is the Lebesgue completion
of B(Sm−1) with respect to µζ . Moreover, Dx e is upper semicontinuous as a function of (x, h), and sublinear
in h, and dx e is lower semicontinuous as a function of (x, h), and positively homogeneous in h.

b. Dx e(u, v, h) = e◦x(x, v, h) for all (x, v, h) ∈ O × Rn
c. For every x ∈ U and all h ∈ Rn

Dx e(x, v, h) ≤Mν(x, v)‖h‖, for almost all v ∈ Sm−1, (48)
dx e(x, v, h) ≥ −Mν(x, v)‖h‖, for almost all v ∈ Sm−1, (49)

where M and ν are the constant and the function found in Lemma 21.
d. For almost all x ∈ U ,∫

v∈Sm−1
Dx e(x, v;h) dµζ(v) =

∫
v∈Sm−1

e◦x(x, v;h) dµζ(v), for all h ∈ Rn. (50)

e. The functions

U × Rn 3 (x, h)→
∫
v∈Sm−1

Dx e(x, v;h) dµζ(v) ∈ R (51a)

U × Rn 3 (x, h)→
∫
v∈Sm−1

dx e(x, v;h) dµζ(v) ∈ R (51b)

are well-defined and upper semi-continuous and lower semi-continuous, respectively.

Proof. Let us observe first that clxO is a Borel measurable sub-set of B(U × Sm−1), since we have the identity:

clxO =
⋂
k∈N

(
O + k−1B× {0}

)
∩
(
U × Sm−1) .

Now, we consider the extension of e◦x and e′x to U × Sm−1 × Rn given by

ex(x, v;h) :=
{
e◦x(x, v;h) if (x, v) ∈ O
−∞ if (x, v) ∈ U × Sm−1\O.

ex(x, v;h) :=
{
e′x(x, v;h) if (x, v) ∈ O
+∞ if (x, v) ∈ U × Sm−1\O.

We claim that ex is B(U)⊗ B(Sm−1)⊗ B(Rn)-measurable. Indeed, take α ∈ R, so

Gα := {(u, v, h) ∈ U × Sm−1 × Rn : ex(u, v;h) ≥ α} = {(u, v, h) ∈ O × Rn : e◦x(u, v;h) ≥ α},

so due to the measurability of ex(u, v;h), showed in Lemma 21, we get that Gα ∈ B(O)× B(Rn) = B(O × Rn).
Now, we recall that B(O ×Rn) = {A ∩ (O × Rn) : A ∈ B(U × Sm−1 ×Rn)}, so Gα ∈ B(U)⊗B(Sm−1)⊗B(Rn).
Similarly, we can prove that ex is B(U)⊗ B(Sm−1)⊗ B(Rn)-measurable.

Then, the upper-semicontinuous closure of ex, which is given by the formula (46), is measurable with
respect to B(U) ⊗ L(Sm−1) ⊗ B(Rn) and upper semicontinuous in the variables (x, h). In a similar fashion
the lower semicontinuous closure of ex, which is given by the formula (47), is measurable with respect to
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B(U)⊗ L(Sm−1)⊗ B(Rn) and lower semicontinuous in the variables (x, h). Moreover, sublinearity in h and/or
positively homogeneity are inherited from e◦x and e′x, respectively.

To prove b, we recall that by Lemma 21, the function e◦ is upper semicontinuous at every (x, v, h) ∈ O×Rn,
and therefore at such points the upper-semicontinuous closure coincides with itself.

Now, let us show c. Let us fix x ∈ U arbitrarily. By Lemma 21 (recall Assumption 19b) there exists a
measurable set Sx ⊂ Sm−1 of full-measure such that for all v ∈ Sx, ν( · , v) is continuous at x. On the one hand
if (x, v) /∈ clxO, then the inequalities in (48) and (49) hold trivially. On the other hand, if (x, v) ∈ clxO, we
consider a sequence xi → x. Then, by definition of Dx e and dx e in (46) and (47), and recalling (35), indeed (48)
and (49) hold, and this concludes the proof of c.

Since, Dx e( · , · ;h) = e◦x( · , · ;h) are equal on O, we have that the function

Ψ(x, v) := sup
h∈Rn

|Dx e(x, v;h)− e◦x(x, v;h)| ,

is a version of zero. Hence, Fubini’s Theorem implies that for almost all x ∈ U ,
∫
v∈Sm−1 Ψ(x, v) dµζ = 0, which

in particular implies that (50) holds.
As a result of (48) and (49), the functions defined in (51) are in principle, functions into the extended real

lines R ∪ {−∞} and R ∪ {+∞}, respectively. Let us show first the upper semicontinuity of the function (51a).
By (48), we have that for all (x, h) ∈ U × Rn

Dx e(x, v;h)−Mν(x, v)‖h‖ ≤ 0, for almost all v ∈ Sm−1 (52)

In what follows we will refer to the mapping Mν(x, v)‖h‖ as κ(x, v, h).
Let (x, h) ∈ U × Rn be arbitrary but fixed and consider arbitrary sequences xi → x and hi → h with xi ∈ U .

Then, by continuity in the first argument of ν and the fact that the family {κ(xi, ·, hi)}i≥0 is uniformly integrable
we obtain the following identity: (see, e.g., [6, Exercise 16, Chapter 4.2, p. 129])

lim
i→∞

∫
Sm−1

κ(xi, v, hi) dµζ(v) =
∫
Sm−1

κ(x, v, h) dµζ(v).

Thus, by Fatou’s Lemma

lim sup
i→∞

∫
Sm−1

Dx e(xi, v;hi)dµζ −
∫
Sm−1

κ(x, v, h) dµζ

= lim sup
i→∞

(∫
Sm−1

Dx e(xi, v;hi)− κ(xi, v, hi) dµζ(v)
)

≤
∫
Sm−1

lim sup
i→∞

(e◦x(xi, v;hi)− κ(xi, v, hi)) dµζ

=
∫
Sm−1

lim sup
i→∞

Dx e(xi, v;hi) dµζ −
∫
Sm−1

κ(x, v, h) dµζ

≤
∫
Sm−1

Dx e(x, v;h) dµζ −
∫
Sm−1

κ(x, v, h) dµζ ,

where in the last inequality we have used that

lim sup
i→∞

Dx e(xi, v;hi) ≤ Dx e(x, v;h),

which results from the upper semicontinuity showed in part a. Consequently,

lim sup
i→∞

∫
Sm−1

Dx e(xi, v;hi) dµζ ≤
∫
Sm−1

Dx e(x, v;h) dµζ .

The proof of the lower semicontinuity of function (51b) follows similar arguments. Furthermore, equation (35)
can be used to show that the functions defined in (51) are real-valued on a dense set of the domain, then by
upper and lower semicontinuity, respectively, they must be real valued over the whole U × Rn. J

I Definition 27. With notation as in Lemma 26, we will say that the upper integral qualification condition
(UCQ) holds at x provided that for all h ∈ Rn∫

Sm−1
Dx e(x, v;h) dµζ(v) =

∫
Sm−1

e◦x(x, v;h) dµζ(v). (53)
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Similarly, we will say that the lower integral qualification condition (LCQ) holds at x provided that for all
h ∈ Rn∫

Sm−1
dx e(x, v;h) dµζ(v) =

∫
Sm−1

e′x(x, v;h) dµζ(v). (54)

I Remark 28. Here, it is important to notice that as a result of Proposition 17, if (19) holds at x, then (UCQ)
holds at x, because in that case it can be proved that for all h ∈ Rn, Dx e(x, v;h) = e◦x(x, v;h) for almost all
v ∈ Sm−1. Moreover, due to (50) the upper integral qualification condition holds almost all x ∈ U .

On the other hand, if for almost all v ∈ Sm−1 the function e( · , v) is continuously differentiable at x, then
(LCQ) holds at x To see that it is enough to notice that for almost all v ∈ S, and xk → x, (close enough) we
have e′x(xk, v;hk) = 〈∇xe(xk, v), v), hk〉 → 〈∇xe(x, v), v), h〉.

I Proposition 29. In addition to the assumptions of Proposition 20 assume moreover that e is absolutely
continuous at x (Definition 23) nearly uniformly in v. Then,∫

v∈Sm−1
dx e(x, v;h) dµζ(v) ≤ ϕ′(x;h) ≤

∫
v∈Sm−1

Dx e(x, v;h) dµζ(v), for all h ∈ Rn, (55)

where, Dx e and dx e were defined in (46) and (47). In addition suppose that
1. The upper integral qualification condition (53) holds at x. Then, the following inclusion holds

∂Fϕ(x) ⊆
∫
v∈Sm−1

∂C
xe(x, v) dµζ(v). (56)

2. The lower integral qualification condition (54) holds at x. Then, the following inclusion holds∫
v∈Sm−1

∂F
xe(x, v) dµζ(v) ⊆ ∂Fϕ(x). (57)

Particularly, If e( · , v) is continuously differentiable at x for almost all v ∈ Sm−1, then function ϕ is differentiable
at x and

∇ϕ(x) =
∫
Sm−1

∇xe(x, v) dµζ(v).

Proof. First, we will show that (55) holds in a set of full measure. By Lemma 24 we can take set B1 ⊆ B of full
measure that for all h ∈ B1 there exists δx̄,h > 0 such that for all t ∈ (0, δx̄,h) we have that

ϕ(x+ th)− ϕ(x) =
∫ t

0

(∫
v∈Sm−1

〈∇xe(x+ sh, v), h〉dµζ(v)
)

ds

≥
∫ t

0

∫
v∈Sm−1

dx e(x+ sh, v;h)dµζ(v)ds =: F (t),

ϕ(x+ th)− ϕ(x) =
∫ t

0

(∫
v∈Sm−1

〈∇xe(x+ sh, v), h〉dµζ(v)
)

ds

≤
∫ t

0

∫
v∈Sm−1

Dx e(x+ sh, v;h)dµζ(v)ds =: G(t),

where for the last inequalities we used that for almost all (s, v) ∈ [0, t]× Sm−1:

dx e(x+ sh, v;h) ≤ e′x(x+ sh) = 〈∇xe(x+ sh, v), h〉 ≤ e◦x(x+ sh, v;h) = Dx e(x+ sh, v;h). (58)

In order to derive (58), we first observe that e′x ≤ e◦x as a result of the definition of the Clarke directional
derivative (see, e.g., [5, p. 27]). The identity e′x(x+ sh) = 〈∇xe(x+ sh, v), h〉, results from (5) and Lemma 22
providing the information that this equality happens on a set of full measure. Finally, the leftmost inequality
and the rightmost equality result from Lemma 26. Now since G(0) = 0, by dividing by t > 0, we obtain:

ϕ(x+ th)− ϕ(x)
t

≤ G(t)−G(0)
t

. (59)

Now, let us analyse the function G : [0, δx̄,h)→ R. First, (48) and the arguments used in Lemma 22 allow us
to establish that the function

s→ H(s) :=
∫
v∈Sm−1

Dx e(x+ sh, v;h) dµζ(v)
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is λ1-integrable over [0, δx̄,h) and consequently G is well-defined. Furthermore, we claim that

lim sup
t→0+

(
G(t)−G(0)

t

)
≤ H(0). (60)

Indeed, let ε > 0 be given. By Lemma 26, we have that the function H is upper semicontinuous, then there
exists γ > 0 such that

H(s) ≤ H(0) + ε, for all s ∈ (0, γ).

Hence,
(
G(t)−G(0)

t

)
≤ H(0) + ε for all t ∈ (0, γ) and consequently, lim supt→0+

(
G(t)−G(0)

t

)
≤ H(0) + ε, since

ε > 0 was arbitrary, we conclude that (60) holds.
Now, we can take the lim inf as t→ 0+ and h′ → h and combined with (59) to obtain:

ϕ′(x, h) = lim inf
t→0+,h′→h

(
ϕ(x+ th′)− ϕ(x)

t

)
≤ lim inf

t→0+

(
ϕ(x+ th)− ϕ(x)

t

)
≤ lim inf

t→0+

(
G(t)−G(0)

t

)
≤ lim sup

t→0+

(
G(t)−G(0)

t

)
≤
∫
v∈Sm−1

Dx e(x, v;h) dµζ(v),

where in the final inequality we used (60), which concludes (55) for all h ∈ B1. Since, we have established
inequality on a dense set B1, then for an arbitrary point h ∈ B, we can take B1 3 hk → h, so by lower and upper
semicontinuity of the functions in (55) (see, e.g., [23, Theorem 8.18]), we get

ϕ(x;h) ≤ lim inf
k→∞

ϕ(x;hk) ≤ lim inf
k→∞

∫
v∈Sm−1

Dx e(x, v;hk) dµζ(v)

≤ lim sup
k→∞

∫
v∈Sm−1

Dx e(x, v;hk) dµζ(v) ≤
∫
v∈Sm−1

Dx e(x, v;h) dµζ(v)

Now, since both functions are positively homogeneous we conclude the right-hand side inequality in (55). A
similar analysis can be done for the function F to derive the left-hand side inequality in (55).

Finally, on the one hand, in case 1, i.e., (UCQ), we have that

ϕ′(x;h) ≤
∫
v∈Sm−1

e◦x(x, v;h) dµζ(v), for all h ∈ Rn. (61)

Therefore, in this case we can now reuse the arguments following [5, eq. (2) in the proof of Theorem 2.7.2] to
establish the asserted inclusion (56). On the other hand, in case 2, i.e., (LCQ), we have∫

v∈Sm−1
e′x(x, v;h) dµζ(v) ≤ ϕ′(x;h), for all h ∈ Rn. (62)

Then, consider x∗ ∈
∫
v∈Sm−1 ∂

F
xe(x, v) dµζ(v), following the definition of the Aumann integral, there exists a

measurable selection y∗(v) ∈ ∂F
xe(x, v) a.e., such that

∫
Sm−1 y

∗(v) dµζ(v) = x∗, so for all h ∈ Rn, we have that
〈y∗(v), h〉 ≤ e′x(x, v;h), which by integration and by (62) imply that

〈x∗, h〉 ≤ ϕ′(x;h), for all h ∈ Rn,

which in turn implies that x∗ ∈ ∂Fϕ(x). J

The next results shows that when e is absolutely continuous, uniformly in v near x, we can establish a
stronger inclusion between the subdifferentials.

I Proposition 30. In addition to the assumptions of Proposition 20 assume moreover that e is locally absolutely
continuous near x nearly uniformly in v. Then, there exists a neighbourhood U ′ of x such that for all x ∈ U ′

ϕ◦(x;h) ≤
∫
v∈Sm−1

Dx e(x, v;h) dµζ(v), for all h ∈ Rn.

and ϕ is locally Lipschitz on U . Particularly, if the upper integral qualification condition (53) holds at x ∈ U ′,
which happens almost everywhere, then the following inclusion holds.

∂Cϕ(x) ⊆
∫
v∈Sm−1

∂C
xe(x, v) dµζ(v). (63)
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Proof. First, by Proposition 29 we have that (55) holds for all x close x. Then, using (48) and the uniform
integrability of ν, we can conclude that there exists C > 0 such that for all x close to x

ϕ′(x, h) ≤ C‖h‖, for all h ∈ Rn,

which by [23, Theorem 9.13(c)] shows that ϕ is locally Lipschitz at x. Second, by [23, Theorem 8.18] and [23,
Exercise 7.3], we have that

ϕ◦(x;h) = sup
ε→0

(
lim sup
x→x̄

[
inf

h′∈B(h,ε)
ϕ′(x;h′)

])
.

In particular,

ϕ◦(x;h) ≤ lim sup
x→x̄

ϕ′(x;h) (64)

Then (64), (55) and Lemma 26 imply that

ϕ◦(x;h) ≤ lim sup
x→x̄

ϕ′(x;h) ≤ lim sup
x→x̄

∫
v∈Sm−1

Dx e(x, v;h) dµζ(v)

≤
∫
v∈Sm−1

Dx e(x, v;h) dµζ(v).

We can conclude by reusing the arguments following [5, eq. (2) in the proof of Theorem 2.7.2] to establish the
asserted inclusion (63). J

We now gather all the previous results in the form of a formal Theorem, that carefully gathers the various
assumptions.

I Theorem 31. For j = 1, . . . , k, let gj : Rn×Rm → R be given and assume that these mappings are continuously
differentiable and satisfy Assumptions 8, 14 and 19. Assume moreover that the mapping e given in (9) is absolutely
continuous near x nearly uniformly in v. Let the random vector ξ ∈ Rm be elliptically symmetrically distributed,
with radial distribution function compatible with Assumption 19.

Then the probability function ϕ : Rn → [0, 1] given by ϕ(x) = P[gj(x, ξ) ≤ 0, j = 1, . . . , k] is locally
Lipschitzian at x and it holds

∂Cϕ(x) ⊆
∫
v∈Sm−1

∂C
xe(x, v) dµζ(v),

where e admits representation (29) and it’s partial Clarke subdifferential can be evaluated from (29) through
Clarke sum / chain rule and upon recalling Lemma 11.

5 Illustrative examples

We will now carefully illustrate how each of our assumptions hold when the mappings gj composing g are of
special structure.

5.1 Quadratic situation
Let j ∈ {1, . . . , k} be fixed but arbitrary and assume that the mapping gj is given by the following formula:

gj(x, z) = 1
2z

TQj(x)z + cj(x)Tz + dj(x),

where Qj , dj , cj are continuously differentiable functions from Rn to the respective appropriate spaces. Then we
define furthermore the mapping Aj as follows

Aj(x) := LT (cj(x)cj(x)> − 2dj(x)Qj(x)
)
L.

It is then first of all immediately observed that the constant Kj mentioned in Lemma 7 can be set as Kj = 2.
Moreover let x ∈ Rn and neighbourhood U of x be given such that:

Qj(x) 6= 0, Aj(x) 6= 0, dj(x) 6= 0 and cj(x) 6= 0
gj(x,m) 6= 0,

(65)
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for all x ∈ U holds true. Then we may define the set

Oj =
{

(x, v) ∈ U × Sm−1 : vTLTQj(x)Lv 6= 0 ∨ cj(x)TLv 6= 0 ∨ vTAj(x)v 6= 0
}
.

This set has λn ⊗ µζ full measure over U × Sm−1 as a result of using [37, Lemma 3.5]. Moreover the mapping sj
as defined in Lemma 7 can be seen to be locally constant on Oj , when it is understood that Oj reunites the open
conditions C1, . . . , C7 (see [37, Definition 3.1]) given in [37, p. 248]. We can even go further and observe that [37,
Proposition 3.1] yields that at any solution r to gj(x, rLv) = 0, we have 〈∇zgj(x, rLv), Lv〉 = ±

√
vTAj(x)v. A

necessary condition for such a solution to exist is vTAj(x)v > 0, (the case vTAj(x)v = 0 being excluded on Oj).
It thus follows that Assumption 8 can be shown to hold true for this situation.

Looking further into the conditions C5, C6, C7, all being open, we can see that Assumption 15 also holds
true.

Let us now focus on Assumption 19, which will require the identification of a given mapping νj . In order to
support the construction here, we will require a mild growth condition, which is in fact a requirement for the
radial density function fR. Let us assume that the latter is continuous and satisfies

sup
r≥0

r2fR(r) <∞. (66)

Then, we can define, for an appropriate constant C > 0,

νj(x, v) =


C√

v>Aj(x)v
if v>Aj(x)v > 0,

+∞ if v>Aj(x)v = 0,
0 if v>Aj(x)v < 0.

It follows from [37, Lemma 3.6] that for some neighbourhood Û of x and if constant C is large enough, that
the function νj satisfies (33). It thus remains to verify if νj has the appropriate properties a)-c). As a result of
continuity of Aj , it is clear that νj satisfies b), i.e., is continuous in the first argument. As for a) and c), these
properties result from an application of [37, Proposition 3.2].

It is also worth mentioning that when the function gj is quadratic in z and analytic in x, then each of the
functions FR ◦ aij and FR ◦ bij are absolutely continuous at x nearly uniformly in v (see [37, Proposition 4.1]).

As a result of the just given investigation, we may present the following corollary to Theorem 31.

I Corollary 32. For j ∈ {1, . . . , k} assume that the mappings gj are given by the following formula:

gj(x, z) = 1
2z

TQj(x)z + cj(x)Tz + dj(x),

where Qj , dj , cj are continuously differentiable and analytical functions. Let x along with a neighbourhood U be
given such that (65) holds true. Finally assume that the radial density function is continuous and satisfies the
growth condition (66).

Then the probability function ϕ : Rn → [0, 1] given by ϕ(x) = P[gj(x, ξ) ≤ 0, j = 1, . . . , k] is locally
Lipschitzian at x and it holds

∂Cϕ(x) ⊆
∫
v∈Sm−1

∂C
xe(x, v) dµζ(v),

where e admits representation (29) and it’s partial Clarke subdifferential can be evaluated from (29) through
Clarke sum / chain rule and upon recalling Lemma 11.

5.2 Linear case
Let j ∈ {1, . . . , k} be fixed but arbitrary and assume that the mapping gj is given by the following formula:

gj(x, z) = cj(x)Tz − dj(x),

where cj , dj are both continuously differentiable functions. Then in this case too we may carefully verify the
stated assumptions of this work. First clearly, there can at most be one solution in r to g(x, rLv) = 0, so that
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Kj = 1 can be set. We may pick x and a neighbourhood U of x in such a way that cj(x) 6= 0 for all x ∈ U and
consequently define

Oj =
{

(x, v) ∈ U × Sm−1 : cj(x)TLv 6= 0
}
.

Then it turns out that Oj is of λn ⊗ µζ full measure in U × Sm−1 as a result of combining [35, Lemma 2.2]
and [8, Korollar V.1.6], which in fact state that the complement of Oj is a null set.

Moreover, as analyzed in [34], the mapping sj is indeed locally constant on Oj . The latter analysis is a result
of identifying the nature of the set {r ≥ 0 : gj(x, rLv) ≤ 0}, which is in fact an interval, potentially degenerate,
of which the specific form relies on the sign of dj(x) and cj(x)TLv.

Since for an arbitrary r and (x, v) ∈ U × Sm−1, 〈∇zgj(x, rLv), Lv〉 = cj(x)TLv, it thus becomes clear that
Assumption 8 holds true. As for assumption 15, the above hinted upon analysis readily shows that this assumption
is also true on Oj .

Let us now focus on Assumption 19, which will require the identification of a given mapping νj . This
identification will once again require a certain growth condition related to the radial density function, as well as
continuity of the latter. For the sake of simplicity let us weaken (66) to the following form instead:

lim
r→∞

r2fR(r) = 0. (67)

Then, we can define, for an appropriate constant C > 0, the mapping νj to be the constant C. Since µζ is the
uniform measure over the (compact) Euclidian unit sphere, this mapping readily satisfies conditions a)-c). As
for (33), this is the result of [34, Lemma 3.3].

Finally, since both cj and dj are continuously differentiable in x, then on Oj so is x 7→ FR(a1(x, v)) or
x 7→ FR(b1(x, v)). Consequently on Oj these mappings are locally Lipschitzian and therefore the same is true
for t 7→ FR(b1(x+ th, v)) (likewise with a). The last map is thus absolutely continuous in x for nearly all v as
required.

We can thus come to the following corollary:

I Corollary 33. For j ∈ {1, . . . , k} assume that the mappings gj are given by the following formula:

gj(x, z) = cj(x)Tz − dj(x),

where dj , cj are continuously differentiable functions. Let x along with a neighbourhood U be given such that
cj(x) 6= 0 holds true. Finally assume that the radial density function is continuous and satisfies the growth
condition (67).

Then the probability function ϕ : Rn → [0, 1] given by ϕ(x) = P[gj(x, ξ) ≤ 0, j = 1, . . . , k] is locally
Lipschitzian at x and it holds

∂Cϕ(x) ⊆
∫
v∈Sm−1

∂C
xe(x, v) dµζ(v),

where e admits representation (29) and it’s partial Clarke subdifferential can be evaluated from (29) through
Clarke sum / chain rule and upon recalling Lemma 11.

5.3 Convex case
Let j ∈ {1, . . . , k} be fixed but arbitrary and assume that the mapping gj is continuously differentiable and
convex in the second argument. Let us also assume that the mean vector m of ξ is such that gj(x,m) < 0 at
x, and in fact on an appropriate neighbourhood U of x. In this particular situation, we may once more pick
Kj = 1, since due to convexity, there can be at most one solution to g(x,m + rLv) = 0 for x ∈ U . Following [31],
we can also set Oj = U × Sm−1 and on Oj , sj(x, v) = 1 can be taken. Assumption 8 thus clearly holds true.

Moreover in this case, under an appropriate growth condition, involving ∇xgj and the radial density function,
assumption 14 will turn out to hold true. Indeed, let θ : R+ → R+ be an increasing function such that

lim
r→∞

fR(r)rθ(r) = 0. (68)

Then assume that a neighbourhood U of x can be found, along with constants C > 0, δ, such that

‖∇xgj(x, z)‖ ≤ δθ(‖z‖), (69)
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for all z such that ‖z‖ ≥ C. Under this growth condition, Assumption 14 holds true as a result of [32, Corollary 3.5]
(we can also refer to the gluing lemma in [34]).

In order to identify an appropriate integrability function νj , we may refer to [31, Theorem 3.10], showing that
in fact we may pick a constant C > 0 large enough thanks to the just given growth condition. It thus follows
that assumption 19 also holds true. Finally, the observation that x 7→ FR(b1(x, v)) is Lipschitz continuous (near
x), entails that the same is true for t 7→ FR(b1(x+ th, v)) and thus consequently that the mapping is absolutely
continuous uniformly in all v.

The following corollary of Theorem 31 is just a restatement of [32, Theorem 3.6], but we provide it for
completeness:

I Corollary 34. For j ∈ {1, . . . , k} assume that the mappings gj are continuously differentiable and convex in
the second argument. Assume moreover that the mean vector m of ξ and x are such tat gj(x,m) < 0 and that
moreover the growth condition (69) holds true for all j = 1, . . . , k.

Then the probability function ϕ : Rn → [0, 1] given by ϕ(x) = P[gj(x, ξ) ≤ 0, j = 1, . . . , k] is locally
Lipschitzian at x and it holds

∂Cϕ(x) ⊆
∫
v∈Sm−1

∂C
xe(x, v) dµζ(v),

where e admits representation (29) and it’s partial Clarke subdifferential can be evaluated from (29) through
Clarke sum / chain rule and upon recalling Lemma 11.

5.4 Concluding observations
As a result of our construction, we can now combine the various structures and obtain the following result, which
by no means covers all possible cases exhaustively.

I Corollary 35. For j ∈ {1, . . . , k} assume that the mappings gj are of either one of the following forms:

Quadratic as in Corollary 32.
Linear as in Corollary 33
Continuously differentiable and convex in the second argument.

Let x ∈ Rn be given and let a neighbourhood U of x be available such that for any given j = 1, . . . , k, depending
on the structure above, one of the followings holds:

in the quadratic case, for all x ∈ U , Qj(x) 6= 0, cj(x) 6= 0, dj(x) 6= 0, Aj(x) 6= 0, gj(x,m) 6= 0
in the linear case, for all x ∈ U cj(x) 6= 0.
in the convex case, for all x ∈ U , gj(x,m) < 0.

Let furthermore an increasing mapping θ : R+ → R+ be given, such that θ(r) ≥ r for all r sufficiently large and
such that (68) holds for the continuously differentiable radial density function fR. For j = 1, . . . , k associated
with the convex case assume moreover that the growth condition (69) holds true.

Then the probability function ϕ : Rn → [0, 1] given by ϕ(x) = P[gj(x, ξ) ≤ 0, j = 1, . . . , k] is locally
Lipschitzian at x and it holds

∂Cϕ(x) ⊆
∫
v∈Sm−1

∂C
xe(x, v) dµζ(v),

where e admits representation (29) and it’s partial Clarke subdifferential can be evaluated from (29) through
Clarke sum / chain rule and upon recalling Lemma 11.

6 Numerical Illustration

In order to show that the formulæ developed in this work can be concretely employed, we will place ourselves in
the context of Corollary 32. The purpose of this numerical illustration will be to illustrate the usefulness of the
formulæ, but we will not consider applications from practice. The main ingredient of the numerical illustration
will be the probability constraint, all other elements will be relatively simple.
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The problem will be of the following form:

min
x∈Rn

cTx

s.t. P
[

1
2ξ

TQj(x)ξ + cj(x)Tξ + dj(x) ≤ 0, j = 1, . . . , k
]
≥ p (70)

x ≤ x ≤ x. (71)

6.1 Description of the data
Concretely we will consider the following data:

Q1(x) =
[
3(x1 − 1) −x2
−x2 3(x1 − 1)

]
, Q2(x) =

[
−2x2 x− 1− 1
x1 − 1 −2x2

]
as well as

c1(x) =
[
3
1

]
(x1 − 1), c2(x) =

[
1
4

]
x2

d1(x) = −1, d2(x) = −2. We will also pick p = 0.7 together with c = (−1,−1), x = (−2,−2), x = (2, 2).
The random vector is taken to be multivariate Gaussian with mean vector 0 and covariance matrix

Σ =
[

2 −1
−1 2

]
.

6.2 Implementation of the formulæ
We have implemented the formulæ for the gradient of the considered probability function in MatLab. The key
ingredient for doing so is to make use of interval calculus. Indeed for a given v ∈ Sm−1 and x ∈ Rn, we can
analytically compute and evaluate r such that gj(x, rLv) = 0. This allows us to identify the union of intervals
that make up Rj in (13) in a very simple way. The union of intervals R can be immediately constructed by
employing (17) and upon simplifying the representation consecutively. In this way we can ensure that each
interval making up the union is non-empty (and non-degenerate). The use of formula (29) then leads already
to an evaluation of the value of the probability function. Furthermore the latter formula simplifies since the
maximum operation is not required. With Corollary 32 firmly established we can indeed employ Lemma 11 to
compute the contribution to the gradient of ϕ at this (x, v). A Monte-Carlo scheme of drawing elements on
Sm−1 allows us to obtain an estimate of both ϕ(x) and ∇ϕ(x). We can moreover enhance the procedure by
using antithetic drawing and by continuing to draw samples until the 99% confidence interval is smaller than a
given threshold (or a maximum number of samples is exceeded). The last idea is close in spirit to what is in
place in Genz’ code for multivariate Gaussian distribution functions (e.g., [11]). When using a 5000 size sample,
evaluating the probability and gradient takes no more than 3 seconds. The actual evaluation time depends on x,
since the sample variance depends on x.

6.3 Solution algorithm
For the sake of simplicity we have implemented a projected gradient algorithm working on the penalized problem:

min
x∈[x,x̄]

cTx+ µ (max {p− ϕ(x), 0})2
. (72)

In our case the projection onto the box is explicit. We have moreover used a fixed step size of ρ = 0.001, µ = 50.
The “costly” step in the algorithm is the computation of the value and gradient of the probability function, both
done “at once” and through the procedure described above. Since the problem is highly non-convex, and even
the probability function quite steep we let the algorithm run for a maximum number of iterations and record the
best feasible solution.

As an alternative to the procedure here, we can also rely on using sample average approximations of the
problem (70). In the specific case of the here given data, this leads to a MILP with as many auxiliary binary
variables as we pick scenarios. The resulting problem also relies on a “big-M” constant, which allows one to
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effectively deactivate the package of constraints for a given scenario. We observe that for a sample size of N , the
resulting MILP has 2 +N variables, of which N are binary, and 2N + 1 constraints. The resulting 2N + 1×N + 2
constraint matrix is nonetheless sparse and has no more than 7N non zeros.

6.4 On the results
For the projected gradient algorithm we have set a maximum of 250 iterations. The algorithm identifies the
vector x̂ = [1.0306,−0.0134) as the best found solution. The total computation time is around 316 seconds. We
should of course account for the fact that this is a suboptimal implementation in MatLab.

The competing sample average problems where generated in MatLab and processed through CPLEX 12.8.0.
Only the solution times in CPLEX are given and this time does not consider the time of generating or saving
the problem to disk. For a sample size of N = 1000, CPLEX can solve the problem in roughly 8 seconds, but
identifies x = (0.385051, 1.488422) as the optimal solution. However the latter vector only has a probability value
of around 0.01. We have solved a total of 10 versions of this problem (as they depend on the sample) and found
little difference in CPU time. The found optimal vector x differs, but none is, in fact, feasible. When N = 5000,
CPLEX manages, after 2 hours of computing, to find solutions not better than 1.82% optimality gap. The best
found solution was identified to be (0.687215, 1.160998), but once more this solution only has a probability value
of around 0.06. This thus shows that a significantly larger sample size is needed. However the latter would not
be solvable in a reasonable amount of time.

All together this instance shows that there can be great use of the here developed formulæ for more improved
algorithms for optimization problems under probability constraints.
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