In this article, we build on previous work to present an optimization algorithm for non-linearly constrained multi-objective optimization problems. The algorithm combines a surrogate-assisted derivative-free trust-region approach with the filter method known from single-objective optimization. Instead of the true objective and constraint functions, so-called fully linear models are employed, and we show how to deal with the gradient inexactness in the composite step setting, adapted from single-objective optimization as well. Under standard assumptions, we prove convergence of a subset of iterates to a quasi-stationary point and, if constraint qualifications hold, then the limit point is also a KKT-point of the multi-objective problem.
Revised:
Accepted:
Published online:
Manuel Berkemeier 1; Sebastian Peitz 1
CC-BY 4.0
@article{OJMO_2025__6__A11_0,
author = {Manuel Berkemeier and Sebastian Peitz},
title = {Multi-Objective {Trust-Region} {Filter} {Method} for {Nonlinear} {Constraints} using {Inexact} {Gradients}},
journal = {Open Journal of Mathematical Optimization},
eid = {11},
pages = {1--36},
year = {2025},
publisher = {Universit\'e de Montpellier},
volume = {6},
doi = {10.5802/ojmo.47},
language = {en},
url = {https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.47/}
}
TY - JOUR AU - Manuel Berkemeier AU - Sebastian Peitz TI - Multi-Objective Trust-Region Filter Method for Nonlinear Constraints using Inexact Gradients JO - Open Journal of Mathematical Optimization PY - 2025 SP - 1 EP - 36 VL - 6 PB - Université de Montpellier UR - https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.47/ DO - 10.5802/ojmo.47 LA - en ID - OJMO_2025__6__A11_0 ER -
%0 Journal Article %A Manuel Berkemeier %A Sebastian Peitz %T Multi-Objective Trust-Region Filter Method for Nonlinear Constraints using Inexact Gradients %J Open Journal of Mathematical Optimization %D 2025 %P 1-36 %V 6 %I Université de Montpellier %U https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.47/ %R 10.5802/ojmo.47 %G en %F OJMO_2025__6__A11_0
Manuel Berkemeier; Sebastian Peitz. Multi-Objective Trust-Region Filter Method for Nonlinear Constraints using Inexact Gradients. Open Journal of Mathematical Optimization, Volume 6 (2025), article no. 11, 36 p.. doi: 10.5802/ojmo.47
[1] Multi-Objective Training of Generative Adversarial Networks with Multiple Discriminators, Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning Research), Volume 97, PMLR (2019), pp. 202-211
[2] A Dynamic Gradient Approach to Pareto Optimization with Nonsmooth Convex Objective Functions, J. Math. Anal. Appl., Volume 422 (2015) no. 1, pp. 741-771 | DOI | Zbl
[3] Performance Indicators in Multiobjective Optimization, Eur. J. Oper. Res., Volume 292 (2020) no. 2, pp. 397-422 | DOI | Zbl | MR
[4] A Mesh Adaptive Direct Search Algorithm for Multiobjective Optimization, Eur. J. Oper. Res., Volume 204 (2010) no. 3, pp. 545-556 | DOI | MR | Zbl
[5] CoMPrOMISE.Jl Github Repository, 2024 (https://github.com/manuelbb-upb/Compromise.jl)
[6] Derivative-Free Multiobjective Trust Region Descent Method Using Radial Basis Function Surrogate Models, Math. Comput. Appl., Volume 26 (2021) no. 2, 31, 37 pages | DOI
[7] DMulti-MADS: Mesh Adaptive Direct Multisearch for Bound-Constrained Blackbox Multiobjective Optimization, Comput. Optim. Appl., Volume 79 (2021) no. 2, pp. 301-338 | DOI | MR | Zbl
[8] Handling of Constraints in Multiobjective Blackbox Optimization, Comput. Optim. Appl., Volume 89 (2024) no. 1, pp. 69-113 | MR | DOI | Zbl
[9] On the Use of Polynomial Models in Multiobjective Directional Direct Search, Comput. Optim. Appl., Volume 77 (2020) no. 3, pp. 897-918 | DOI | MR | Zbl
[10] A Survey on Handling Computationally Expensive Multiobjective Optimization Problems with Evolutionary Algorithms, Soft Computing, Volume 23 (2019) no. 9, pp. 3137-3166 | DOI
[11] On the Convergence of Steepest Descent Methods for Multiobjective Optimization, Comput. Optim. Appl., Volume 77 (2020) no. 1, pp. 1-27 | DOI | MR | Zbl
[12] An Implicit Filtering Algorithm for Derivative-Free Multiobjective Optimization with Box Constraints, Comput. Optim. Appl., Volume 69 (2018) no. 2, pp. 267-296 | DOI | MR | Zbl
[13] Evolutionary Algorithms for Solving Multi-Objective Problems, Genetic and Evolutionary Computation, Springer, 2013 | MR
[14] Trust-Region Methods, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics, 2000 | DOI | MR | Zbl
[15] Global Convergence of a Class of Trust Region Algorithms for Optimization Using Inexact Projections on Convex Constraints, SIAM J. Optim., Volume 3 (1993) no. 1, pp. 164-221 | DOI | MR | Zbl
[16] Introduction to Derivative-Free Optimization, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics/Mathematical Programming Society, 2009 no. 8 | DOI | MR
[17] Direct Multisearch for Multiobjective Optimization, SIAM J. Optim., Volume 21 (2011) no. 3, pp. 1109-1140 | DOI | MR | Zbl
[18] Makie.Jl: Flexible High-Performance Data Visualization for Julia, J. Open Source Softw., Volume 6 (2021) no. 65, 3349, 5 pages | DOI
[19] A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Trans. Evol. Comput., Volume 6 (2002) no. 2, pp. 182-197 | DOI
[20] Surrogate Modeling Approaches for Multiobjective Optimization: Methods, Taxonomy, and Results, Math. Comput. Appl., Volume 26 (2020) no. 1, 5, 27 pages | DOI
[21] An Adaptive Direct Multisearch Method for Black-Box Multi-Objective Optimization, Optim. Eng., Volume 23 (2022) no. 3, pp. 1411-1437 | DOI | MR | Zbl
[22] Benchmarking Optimization Software with Performance Profiles, Math. Program., Volume 91 (2002) no. 2, pp. 201-213 | DOI | MR | Zbl
[23] A Steepest Descent Method for Vector Optimization, J. Comput. Appl. Math., Volume 175 (2005) no. 2, pp. 395-414 | DOI | Zbl
[24] A Trust Region Filter Algorithm for Surrogate-based Optimization, Ph. D. Thesis, Carnegie Mellon University (2018)
[25] A Trust Region Filter Method for Glass Box/Black Box Optimization, AIChE J., Volume 62 (2016) no. 9, pp. 3124-3136 | DOI
[26] An Inexact Restoration Derivative-Free Filter Method for Nonlinear Programming, Comput. Appl. Math., Volume 36 (2017) no. 1, pp. 693-718 | DOI | MR | Zbl
[27] Multicriteria Optimization, Springer, 2005 | MR | Zbl
[28] Adaptive Scalarization Methods in Multiobjective Optimization, Vector Optimization, Springer, 2008 | DOI | MR | Zbl
[29] Twenty Years of Continuous Multiobjective Optimization in the Twenty-First Century, EURO J. Comput. Optim., Volume 9 (2021), 100014 | DOI | MR | Zbl
[30] Global Convergence of a Derivative-Free Inexact Restoration Filter Algorithm for Nonlinear Programming, Optimization, Volume 66 (2017) no. 2, pp. 271-292 | DOI | MR | Zbl
[31] Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Mathematics in Science and Engineering, 165, Elsevier, 1983 | DOI | MR
[32] Global Convergence of a Trust-Region SQP-Filter Algorithm for General Nonlinear Programming, SIAM J. Optim., Volume 13 (2002) no. 3, pp. 635-659 | DOI
[33] Steepest Descent Methods for Multicriteria Optimization, Math. Methods Oper. Res., Volume 51 (2000) no. 3, pp. 479-494 | DOI | MR
[34] A Method for Constrained Multiobjective Optimization Based on SQP Techniques, SIAM J. Optim., Volume 26 (2016) no. 4, pp. 2091-2119 | DOI | MR
[35] A Survey on Multiobjective Descent Methods, Pesqui. Oper., Volume 34 (2014) no. 3, pp. 585-620 | DOI
[36] Optimal Control under Uncertainty: Theory and Numerical Solution with Low-Rank Tensors, Ph. D. Thesis, Technische Universität München (2019) (https://mediatum.ub.tum.de/1452538)
[37] An Efficient Descent Method for Locally Lipschitz Multiobjective Optimization Problems, J. Optim. Theory Appl., Volume 188 (2021) no. 3, pp. 696-723 | DOI | MR
[38] A Descent Method for Equality and Inequality Constrained Multiobjective Optimization Problems, Numerical and Evolutionary Optimization – NEO 2017 (Studies in Computational Intelligence), Volume 785, Springer (2018), pp. 29-61 | DOI
[39] On the Hierarchical Structure of Pareto Critical Sets, AIP Conf. Proc., Volume 2070 (2019), 020041 (Proceedings LEGO – 14th International Global Optimization Workshop) | DOI
[40] A Globally Convergent Filter Method for Nonlinear Programming, SIAM J. Optim., Volume 14 (2004) no. 3, pp. 646-669 | DOI | MR
[41] A Multidimensional Filter Algorithm for Nonlinear Equations and Nonlinear Least-Squares, SIAM J. Optim., Volume 15 (2004) no. 1, pp. 17-38 | DOI | MR
[42] Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach, Springer, 2001 | DOI | MR
[43] Parallelizing the Dual Revised Simplex Method, Math. Program. Comput., Volume 10 (2018) no. 1, pp. 119-142 | DOI | MR
[44] Vector Optimization: Theory, Applications, and Extensions, Springer, 2011 | DOI | MR
[45] The NLopt Nonlinear-Optimization Package, 2007 (https://github.com/stevengj/nlopt)
[46] Nonlinear Programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press (2014), pp. 481-492
[47] Improved Front Steepest Descent for Multi-Objective Optimization, Oper. Res. Lett., Volume 51 (2023) no. 3, pp. 242-247 | DOI | MR
[48] Effective Front-Descent Algorithms with Convergence Guarantees (2024) | arXiv
[49] Maximal Vectors and Multi-Objective Optimization, J. Optim. Theory Appl., Volume 18 (1976) no. 1, pp. 41-64 | DOI | MR
[50] A Derivative-Free Approach to Constrained Multiobjective Nonsmooth Optimization, SIAM J. Optim., Volume 26 (2016) no. 4, pp. 2744-2774 | DOI | MR
[51] Nonlinear Conjugate Gradient Methods for Vector Optimization, SIAM J. Optim., Volume 28 (2018) no. 3, pp. 2690-2720 | DOI | MR
[52] Evolutionary Constrained Multiobjective Optimization: Test Suite Construction and Performance Comparisons, IEEE Trans. Evol. Comput., Volume 23 (2019) no. 6, pp. 972-986
[53] Pareto Tracer: A Predictor–Corrector Method for Multi-Objective Optimization Problems, Eng. Optim., Volume 50 (2018) no. 3, pp. 516-536 | DOI | MR
[54] A Practical Optimality Condition Without Constraint Qualifications for Nonlinear Programming, J. Optim. Theory Appl., Volume 118 (2003) no. 1, pp. 117-133 | DOI | MR
[55] On Fritz John Type Optimality Criterion in Multi-Objective Optimization, Math., Rev. Anal. Numér. Théor. Approximation, Anal. Numér. Théor. Approximation, Volume 11 (1982) no. 1-2, pp. 109-114 | MR
[56] Nonlinear Multiobjective Optimization., Springer, 2013 | MR
[57] A Trust-Region Approach for Computing Pareto Fronts in Multiobjective Optimization, Comput. Optim. Appl., Volume 87 (2024) no. 1, pp. 149-179 | DOI | MR
[58] A Trust-Region Approach for Computing Pareto Fronts in Multiobjective Derivative-Free Optimization, Optim. Lett., Volume 19 (2025) no. 2, pp. 233-266 | DOI | MR
[59] Algorithms for Multicriterion Optimization, IEEE Trans. Autom. Control, Volume 25 (1980) no. 2, pp. 177-186 | DOI | MR
[61] Gradient-Based Multiobjective Optimization with Uncertainties, NEO 2016 (Studies in Computational Intelligence), Volume 731, Springer, 2018, pp. 159-182 | DOI
[62] A Survey of Recent Trends in Multiobjective Optimal Control—Surrogate Models, Feedback Control and Objective Reduction, Math. Comput. Appl., Volume 23 (2018) no. 2, 30, 33 pages | DOI | MR
[63] A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation, Advances in Optimization and Numerical Analysis (Susana Gomez; Jean-Pierre Hennart, eds.), Springer, 1994, pp. 51-67 | DOI
[64] Trust Region Methods for Solving Multiobjective Optimisation, Optim. Methods Softw., Volume 28 (2013) no. 4, pp. 796-811 | DOI | MR
[65] A Derivative-Free Trust-Region Method for Biobjective Optimization, SIAM J. Optim., Volume 24 (2014) no. 1, pp. 334-362 | DOI | MR
[66] Pareto Explorer: A Global/Local Exploration Tool for Many-Objective Optimization Problems, Eng. Optim., Volume 52 (2020) no. 5, pp. 832-855 | DOI | MR
[67] Multi-Task Learning as Multi-Objective Optimization (2019) | arXiv
[68] An Inexact Restoration Direct Multisearch Filter Approach to Multiobjective Constrained Derivative-Free Optimization, Optim. Methods Softw., Volume 40 (2024) no. 2, pp. 406-432 | DOI | Zbl | MR
[69] A Trust-Region Algorithm for Heterogeneous Multiobjective Optimization, SIAM J. Optim., Volume 29 (2019) no. 2, pp. 1017-1047 | DOI | MR
[70] A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes, J. Optim. Theory Appl., Volume 160 (2014) no. 3, pp. 865-889 | DOI | MR
[71] Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence, SIAM J. Optim., Volume 16 (2005) no. 1, pp. 1-31 | DOI | MR
[72] On an Inexact Trust-Region SQP-filter Method for Constrained Nonlinear Optimization, Comput. Optim. Appl., Volume 63 (2016) no. 3, pp. 613-638 | MR | DOI
[73] On the Continuity of the Value of a Linear Program and of Related Polyhedral-Valued Multifunctions, Mathematical Programming Studies, Springer, 1985, pp. 14-29 | DOI | MR
[74] Derivative-Free Optimization Algorithms For Computationally Expensive Functions, Ph. D. Thesis, Cornell University (2009)
[75] ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions, SIAM J. Sci. Comput., Volume 30 (2008) no. 6, pp. 3197-3219 | DOI | MR
[76] New Multiple Subgradient Descent Bundle Method for Nonsmooth Multiobjective Optimization (2014) (Turku Centre for Computer Science)
Cited by Sources:
