This is the home page of the Open Journal of Mathematical Optimization, an electronic journal of computer science and mathematics owned by its Editorial Board.

The Open Journal of Mathematical Optimization (OJMO) publishes original and high-quality articles dealing with every aspect of mathematical optimization, ranging from numerical and computational aspects to the theoretical questions related to mathematical optimization problems. The topics covered by the journal are classified into four areas:

  1. Continuous Optimization
  2. Discrete Optimization
  3. Optimization under Uncertainty
  4. Computational aspects and applications

The journal publishes high-quality articles in open access free of charge, meaning that neither the authors nor the readers have to pay to access the content of the published papers, thus adhering to the principles of Diamond Open Access. The journal requires the numerical results published in its papers to be reproducible by others, ideally by publishing code and data sets along with the manuscripts.

As detailed under the Policy tab, the journal also publishes:

  • Short papers, ensuring fast review process.
  • Significant extensions of conference proceedings.







e-ISSN : 2777-5860

New articles

Cardinality-constrained structured data-fitting problems

A memory-efficient solution framework is proposed for the cardinality-constrained structured data-fitting problem. Dual-based atom-identification rules reveal the structure of the optimal primal solution from near-optimal dual solutions, which allows for a simple and computationally efficient algorithm that translates any feasible dual solution into a primal solution satisfying the cardinality constraint. Rigorous guarantees bound the quality of a near-optimal primal solution given any dual-based method that generates dual iterates converging to an optimal dual solution. Numerical experiments on real-world datasets support the analysis and demonstrate the efficiency of the proposed approach.

Available online:

Optimizing transient gas network control for challenging real-world instances using MIP-based heuristics

Optimizing the transient control of gas networks is a highly challenging task. The corresponding model incorporates the combinatorial complexity of determining the settings for the many active elements as well as the non-linear and non-convex nature of the physical and technical principles of gas transport. In this paper, we present the latest improvements of our ongoing work to tackle this problem for real-world, large-scale problem instances: By adjusting our mixed-integer non-linear programming model regarding the gas compression capabilities in the network, we reflect the technical limits of the underlying units more accurately while maintaining a similar overall model size. In addition, we introduce a new algorithmic approach that is based on splitting the complexity of the problem by first finding assignments for discrete variables and then determining the continuous variables as locally optimal solution of the corresponding non-linear program. For the first task, we design multiple different heuristics based on concepts for general time-expanded optimization problems that find solutions by solving a sequence of sub-problems defined on reduced time horizons. To demonstrate the competitiveness of our approach, we test our algorithm on particularly challenging historical demand scenarios. The results show that high-quality solutions are obtained reliably within short run times, making the algorithm well-suited to be applied at the core of time-critical industrial applications.

Available online: