We present several algorithms aimed at constructing sparse and structured sparse (row-sparse) generalized inverses, with application to the efficient computation of least-squares solutions, for inconsistent systems of linear equations, in the setting of multiple right-hand sides and a rank-deficient constraint matrix. Leveraging our earlier formulations to minimize the 1- and 2,1-norms of generalized inverses that satisfy important properties of the Moore–Penrose pseudoinverse, we develop efficient and scalable ADMM algorithms to address these norm-minimization problems and to limit the number of nonzero rows in the solution. We establish a 2,1-norm approximation result for a local-search procedure that was originally designed for 1-norm minimization, and we compare the ADMM algorithms with the local-search procedure and with general-purpose optimization solvers.
Revised:
Accepted:
Published online:
Gabriel Ponte 1; Marcia Fampa 2; Jon Lee 1; Luze Xu 3
CC-BY 4.0
@article{OJMO_2025__6__A12_0,
author = {Gabriel Ponte and Marcia Fampa and Jon Lee and Luze Xu},
title = {Good and {Fast} {Row-Sparse} {ah-Symmetric} {Reflexive} {Generalized} {Inverses}},
journal = {Open Journal of Mathematical Optimization},
eid = {12},
pages = {1--24},
year = {2025},
publisher = {Universit\'e de Montpellier},
volume = {6},
doi = {10.5802/ojmo.48},
language = {en},
url = {https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.48/}
}
TY - JOUR AU - Gabriel Ponte AU - Marcia Fampa AU - Jon Lee AU - Luze Xu TI - Good and Fast Row-Sparse ah-Symmetric Reflexive Generalized Inverses JO - Open Journal of Mathematical Optimization PY - 2025 SP - 1 EP - 24 VL - 6 PB - Université de Montpellier UR - https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.48/ DO - 10.5802/ojmo.48 LA - en ID - OJMO_2025__6__A12_0 ER -
%0 Journal Article %A Gabriel Ponte %A Marcia Fampa %A Jon Lee %A Luze Xu %T Good and Fast Row-Sparse ah-Symmetric Reflexive Generalized Inverses %J Open Journal of Mathematical Optimization %D 2025 %P 1-24 %V 6 %I Université de Montpellier %U https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.48/ %R 10.5802/ojmo.48 %G en %F OJMO_2025__6__A12_0
Gabriel Ponte; Marcia Fampa; Jon Lee; Luze Xu. Good and Fast Row-Sparse ah-Symmetric Reflexive Generalized Inverses. Open Journal of Mathematical Optimization, Volume 6 (2025), article no. 12, 24 p.. doi: 10.5802/ojmo.48
[1] Generalized Inverses: Theory and Applications, Springer, 1974 | DOI | Zbl | MR
[2] Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., Volume 3 (2011) no. 1, pp. 1-122 | DOI | Zbl
[3] Generalized Inverses of Linear Transformations, Society for Industrial and Applied Mathematics, 2009 | DOI | MR | Zbl
[4] Rank-Sparsity Incoherence for Matrix Decomposition, SIAM J. Optim., Volume 21 (2011) no. 2, pp. 572-596 | DOI | Zbl | MR
[5] Beyond Moore–Penrose Part I: generalized inverses that minimize matrix norms, 2017 (https://inria.hal.science/hal-01547183v1/document)
[6] Beyond Moore–Penrose Part II: the sparse pseudoinverse, 2017 (https://hal.inria.fr/hal-01547283/file/pseudo-part2.pdf)
[7] Beyond Moore–Penrose: sparse pseudoinverse, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2013, pp. 6526-6530 | DOI
[8] On sparse reflexive generalized inverses, Oper. Res. Lett., Volume 46 (2018) no. 6, pp. 605-610 | DOI | Zbl | MR
[9] Trading off 1-norm and sparsity against rank for linear models using mathematical optimization: 1-norm minimizing partially reflexive ah-symmetric generalized inverses, Open J. Math. Optim., Volume 2 (2021), 4, 14 pages | DOI | Numdam | Zbl | MR
[10] Experimental analysis of local searches for sparse reflexive generalized inverses, J. Glob. Optim., Volume 81 (2021), pp. 1057-1093 | DOI | Zbl | MR
[11] Sparse pseudoinverses via LP and SDP relaxations of Moore–Penrose, CLAIO 2016 (18th Latin-Iberian-American Conference on Operations Research) (2016), pp. 343-350 https://marciafampa.com/...
[12] Matrix Computations (3rd Ed.), Johns Hopkins University Press, 1996 https://convexoptimization.com/... | Zbl | MR
[13] Multi-task feature learning via efficient -norm minimization, UAI’09: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, AUAI Press (2009), pp. 339-348
[14] Alternating Direction Method of Multipliers Based on -Norm for Multiple Measurement Vector Problem, IEEE Trans. Signal Process., Volume 71 (2023), pp. 3490-3501 https://ieeexplore.ieee.org/document/10252024 | Zbl | MR
[15] Optimal estimation and computational limit of low-rank Gaussian mixtures, Ann. Stat., Volume 51 (2023) no. 2, pp. 646-667 | DOI | Zbl | MR
[16] The group lasso for logistic regression, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 70 (2008) no. 1, pp. 53-71 | DOI | Zbl | MR
[17] Learning structured matrices in high dimensions: Low rank estimation and structured graphical models, Ph. D. Thesis, University of Washington (2015) (http://hdl.handle.net/1773/33147)
[18] High-dimensional support union recovery in multivariate regression, Advances in Neural Information Processing Systems 21 (NIPS 2008) (D. Koller; D. Schuurmans; Y. Bengio; L. Bottou, eds.), Curran Associates, Inc. (2008), pp. 1217-1224 https://proceedings.neurips.cc/...
[19] A generalized inverse for matrices, Math. Proc. Camb. Philos. Soc., Volume 51 (1955), pp. 406-413 | DOI | Zbl | MR
[20] On computing sparse generalized inverses, Oper. Res. Lett., Volume 52 (2024), 107058, 6 pages | MR | DOI | Zbl
[21] Contributions to the theory, computation and application of generalized inverses, Ph. D. Thesis, North Carolina State University, Raleigh (1964) (https://www4.stat.ncsu.edu/~boos/library/mimeo.archive/isms_1964_392.pdf)
[22] Global Convergence of ADMM in Nonconvex Nonsmooth Optimization, J. Sci. Comput., Volume 78 (2019) no. 1, pp. 29-63 | DOI | Zbl | MR
[23] 1-norm minimization and minimum-rank structured sparsity for symmetric and ah-symmetric generalized inverses: rank one and two 2020, to appear in S. Dang, A. Deza, S. Gupta, P. McNicholas, S. Pokutta, M. Sugiyama (eds.) Data Science and Optimization, volume 91 of Fields Institute Communications, Springer, ISBN 978-3-032-03843-2 | arXiv
[24] Approximate 1-norm minimization and minimum-rank structured sparsity for various generalized inverses via local search, SIAM J. Optim., Volume 31 (2021) no. 3, pp. 1722-1747 | DOI | Zbl | MR
[25] Model selection and estimation in regression with grouped variables, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 68 (2006) no. 1, pp. 49-67 | DOI | Zbl | MR
[26] A Selective Overview of Sparse Principal Component Analysis, Proc. IEEE, Volume 106 (2018) no. 8, pp. 1311-1320 | DOI
Cited by Sources:
