The difference vectors for convex sets and a resolution of the geometry conjecture
Open Journal of Mathematical Optimization, Volume 2 (2021), article no. 5, 18 p.

The geometry conjecture, which was posed nearly a quarter of a century ago, states that the fixed point set of the composition of projectors onto nonempty closed convex sets in Hilbert space is actually equal to the intersection of certain translations of the underlying sets.

In this paper, we provide a complete resolution of the geometry conjecture. Our proof relies on monotone operator theory. We revisit previously known results and provide various illustrative examples. Comments on the numerical computation of the quantities involved are also presented.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/ojmo.7
Keywords: Attouch–Théra duality, circular right shift operator, convex sets, cycle, fixed point set, monotone operator theory, projectors.
Salihah Alwadani 1; Heinz H. Bauschke 1; Julian P. Revalski 2; Xianfu Wang 1

1 Mathematics University of British Columbia Kelowna, B.C. V1V 1V7 Canada
2 Institute of Mathematics and Informatics Bulgarian Academy of Sciences Acad. G. Bonchev str., Block 8 1113 Sofia Bulgaria
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{OJMO_2021__2__A5_0,
     author = {Salihah Alwadani and Heinz H. Bauschke and Julian P. Revalski and Xianfu Wang},
     title = {The difference vectors for convex sets and a resolution of the geometry conjecture},
     journal = {Open Journal of Mathematical Optimization},
     eid = {5},
     pages = {1--18},
     publisher = {Universit\'e de Montpellier},
     volume = {2},
     year = {2021},
     doi = {10.5802/ojmo.7},
     language = {en},
     url = {https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.7/}
}
TY  - JOUR
AU  - Salihah Alwadani
AU  - Heinz H. Bauschke
AU  - Julian P. Revalski
AU  - Xianfu Wang
TI  - The difference vectors for convex sets and a resolution of the geometry conjecture
JO  - Open Journal of Mathematical Optimization
PY  - 2021
SP  - 1
EP  - 18
VL  - 2
PB  - Université de Montpellier
UR  - https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.7/
DO  - 10.5802/ojmo.7
LA  - en
ID  - OJMO_2021__2__A5_0
ER  - 
%0 Journal Article
%A Salihah Alwadani
%A Heinz H. Bauschke
%A Julian P. Revalski
%A Xianfu Wang
%T The difference vectors for convex sets and a resolution of the geometry conjecture
%J Open Journal of Mathematical Optimization
%D 2021
%P 1-18
%V 2
%I Université de Montpellier
%U https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.7/
%R 10.5802/ojmo.7
%G en
%F OJMO_2021__2__A5_0
Salihah Alwadani; Heinz H. Bauschke; Julian P. Revalski; Xianfu Wang. The difference vectors for convex sets and a resolution of the geometry conjecture. Open Journal of Mathematical Optimization, Volume 2 (2021), article  no. 5, 18 p. doi : 10.5802/ojmo.7. https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.7/

[1] Salihah Alwadani; Heinz H. Bauschke; Julian P. Revalski; Xianfu Wang Resolvents and Yosida approximations of displacement mappings of isometries, Set-Valued Var. Anal. (2021) (https://link.springer.com/article/10.1007/s11228-021-00584-2) | DOI

[2] Salihah Alwadani; Heinz H. Bauschke; Xianfu Wang Attouch–Théra duality, generalized cycles and gap vectors (2021) (https://arxiv.org/abs/2101.05857, to appear in SIAM J. Optim.)

[3] Hedy Attouch; Michel Théra A general duality principle for the sum of two operators, J. Convex Anal., Volume 3 (1996) no. 1, pp. 1-24 | MR | Zbl

[4] Jean-Bernard Baillon; Patrick L. Combettes; Roberto Cominetti There is no variational characterization of the cycles in the method of periodic projections, J. Funct. Anal., Volume 262 (2012) no. 1, pp. 400-408 | DOI | MR | Zbl

[5] Jean-Bernard Baillon; Patrick L. Combettes; Roberto Cominetti Asymptotic behavior of compositions of underrelaxed nonexpansive operators, J. Dyn. Games, Volume 1 (2014) no. 3, pp. 331-346 | DOI | Zbl

[6] Heinz H. Bauschke; Jonathan M. Borwein On the convergence of von Neumann’s alternating projection algorithm for two sets, Set-Valued Anal., Volume 1 (1993), pp. 185-212 | DOI | MR | Zbl

[7] Heinz H. Bauschke; Jonathan M. Borwein Dykstra’s alternating projection algorithm for two sets, J. Approx. Theory, Volume 79 (1994), pp. 418-443 | DOI | MR | Zbl

[8] Heinz H. Bauschke; Jonathan M. Borwein; Adrian S. Lewis The method of cyclic projections for closed convex sets in Hilbert space, Recent developments in optimization theory and nonlinear analysis (Contemporary Mathematics), Volume 104, American Mathematical Society, 1997, pp. 1-38 | Zbl

[9] Heinz H. Bauschke; Radu I. Boţ; Warren L. Hare; Walaa M. Moursi Attouch–Théra duality revisited: paramonotonicity and operator splitting, J. Approx. Theory, Volume 164 (2012) no. 8, pp. 1065-1084 | DOI | Zbl

[10] Heinz H. Bauschke; Patrick L. Combettes Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, 2017 | Zbl

[11] Heinz H. Bauschke; Victoria Martín-Márquez; Sarah M. Moffat; Xianfu Wang Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular, Fixed Point Theory Appl., Volume 2012 (2012), 53, 11 pages | MR | Zbl

[12] Haïm Brézis Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, 5, North-Holland, 1973 | MR | Zbl

[13] Regina S. Burachik; Alfredo N. Iusem Set-valued mappings and enlargement of monotone operators, Springer Optimization and Its Applications, 8, Springer, 2008 | MR | Zbl

[14] Charles L. Byrne Signal processing. A mathematical approach, A K Peters, 2005 | MR | Zbl

[15] Charles L. Byrne Applied iterative methods, A K Peters, 2008 | Zbl

[16] Yair Censor; Maroun Zaknoon Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review, Pure Appl. Funct. Anal., Volume 3 (2018) no. 4, pp. 565-586 | MR | Zbl

[17] Ward Cheney; Allen A. Goldstein Proximity maps for convex sets, Proc. Am. Math. Soc., Volume 10 (1959), pp. 448-450 | DOI | MR | Zbl

[18] Patrick L. Combettes; Jean-Christophe Pesquet Fixed point strategies in data science, IEEE Trans. Signal Process. (2021) (https://doi.org/10.1109/TSP.2021.3069677) | DOI

[19] Roberto Cominetti; Vera Roshchina; Andrew Williamson A counterexample to De Pierro’s conjecture on the convergence of under-relaxed cyclic projections, Optimization, Volume 68 (2019) no. 1, pp. 3-12 | DOI | MR | Zbl

[20] Alvaro R. De Pierro From parallel to sequential projection methods and vice versa in convex feasibility: Results and conjectures, Inherently Parallel Algorithms in Feasibility and Optimization and their Applications (Studies in Computational Mathematics), Volume 8, North-Holland, 2001, pp. 369-379 | MR | Zbl

[21] Alfredo N. Iusem On some properties of paramonotone operators, J. Convex Anal., Volume 5 (1998) no. 2, pp. 269-278 | MR | Zbl

[22] Alberto Seeger Alternating projection and decomposition with respect to two convex sets, Math. Jap., Volume 47 (1998) no. 2, pp. 273-280 | MR | Zbl

[23] Stephen Simons Minimax and monotonicity, Lecture Notes in Mathematics, 1693, Springer, 1998 | MR | Zbl

[24] Stephen Simons From Hahn–Banach to monotonicity, Lecture Notes in Mathematics, 1693, Springer, 2008 | MR | Zbl

Cited by Sources: