Iterative Linear Quadratic Optimization for Nonlinear Control: Differentiable Programming Algorithmic Templates
Open Journal of Mathematical Optimization, Volume 5 (2024), article no. 8, 63 p.

Iterative optimization algorithms depend on access to information about the objective function. In a differentiable programming framework, this information, such as gradients, can be automatically derived from the computational graph. We explore how nonlinear control algorithms, often employing linear and/or quadratic approximations, can be effectively cast within this framework. Our approach illuminates shared components and differences between gradient descent, Gauss–Newton, Newton, and differential dynamic programming methods in the context of discrete time nonlinear control. Furthermore, we present line-search strategies and regularized variants of these algorithms, along with a comprehensive analysis of their computational complexities. We study the performance of the aforementioned algorithms on various nonlinear control benchmarks, including autonomous car racing simulations using a simplified car model. All implementations are publicly available in a package coded in a differentiable programming language.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/ojmo.32
Mots-clés : Nonlinear Discrete Time Control, Differentiable Programming, Newton, Gauss–Newton, Dynamic Differentiable Programming
Vincent Roulet 1; Siddhartha Srinivasa 2; Maryam Fazel 3; Zaid Harchaoui 4

1 Google Brain, Seattle, USA (Work completed at the University of Washington before joining Google)
2 Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
3 Department of Electrical and Computer Engineering, University of Washington, Seattle, USA
4 Department of Statistics University of Washington, Seattle, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{OJMO_2024__5__A9_0,
     author = {Vincent Roulet and Siddhartha Srinivasa and Maryam Fazel and Zaid Harchaoui},
     title = {Iterative {Linear} {Quadratic} {Optimization} for {Nonlinear} {Control:}  {Differentiable} {Programming} {Algorithmic} {Templates}},
     journal = {Open Journal of Mathematical Optimization},
     eid = {8},
     pages = {1--63},
     publisher = {Universit\'e de Montpellier},
     volume = {5},
     year = {2024},
     doi = {10.5802/ojmo.32},
     language = {en},
     url = {https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.32/}
}
TY  - JOUR
AU  - Vincent Roulet
AU  - Siddhartha Srinivasa
AU  - Maryam Fazel
AU  - Zaid Harchaoui
TI  - Iterative Linear Quadratic Optimization for Nonlinear Control:  Differentiable Programming Algorithmic Templates
JO  - Open Journal of Mathematical Optimization
PY  - 2024
SP  - 1
EP  - 63
VL  - 5
PB  - Université de Montpellier
UR  - https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.32/
DO  - 10.5802/ojmo.32
LA  - en
ID  - OJMO_2024__5__A9_0
ER  - 
%0 Journal Article
%A Vincent Roulet
%A Siddhartha Srinivasa
%A Maryam Fazel
%A Zaid Harchaoui
%T Iterative Linear Quadratic Optimization for Nonlinear Control:  Differentiable Programming Algorithmic Templates
%J Open Journal of Mathematical Optimization
%D 2024
%P 1-63
%V 5
%I Université de Montpellier
%U https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.32/
%R 10.5802/ojmo.32
%G en
%F OJMO_2024__5__A9_0
Vincent Roulet; Siddhartha Srinivasa; Maryam Fazel; Zaid Harchaoui. Iterative Linear Quadratic Optimization for Nonlinear Control:  Differentiable Programming Algorithmic Templates. Open Journal of Mathematical Optimization, Volume 5 (2024), article  no. 8, 63 p. doi : 10.5802/ojmo.32. https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.32/

[1] Martín Abadi; Ashish Agarwal; Paul Barham; Eugene Brevdo; Zhifeng Chen; Craig Citro; Greg S. Corrado; Andy Davis; Jeffrey Dean; Matthieu Devin; Sanjay Ghemawat; Ian Goodfellow; Andrew Harp; Geoffrey Irving; Michael Isard; Yangqing Jia; Rafal Jozefowicz; Lukasz Kaiser; Manjunath Kudlur; Josh Levenberg; Dan Mané; Rajat Monga; Sherry Moore; Derek Murray; Chris Olah; Mike Schuster; Jonathon Shlens; Benoit Steiner; Ilya Sutskever; Kunal Talwar; Paul Tucker; Vincent Vanhoucke; Vijay Vasudevan; Fernanda Viégas; Oriol Vinyals; Pete Warden; Martin Wattenberg; Martin Wicke; Yuan Yu; Xiaoqiang Zheng TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015 (https://tensorflow.org/)

[2] Joel A. E. Andersson; Joris Gillis; Greg Horn; James Rawlings; Moritz Diehl CasADi – A software framework for nonlinear optimization and optimal control, Math. Program. Comput., Volume 11 (2019), pp. 1-36 | DOI | Zbl

[3] Antoine Bambade; Sarah El-Kazdadi; Adrien Taylor; Justin Carpentier PROX-QP: Yet another quadratic programming solver for robotics and beyond (2022) (RSS 2022-Robotics: Science and Systems)

[4] Walter Baur; Volker Strassen The complexity of partial derivatives, Theor. Comput. Sci., Volume 22 (1983) no. 3, pp. 317-330 | DOI | Zbl

[5] Atilim Gunes Baydin; Barak Pearlmutter; Alexey Andreyevich Radul; Jeffrey Mark Siskind Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res., Volume 18 (2018), 153, 43 pages | Zbl

[6] Richard Bellman Introduction to the mathematical theory of control processes. Vol. II: Nonlinear processes, Mathematics in Science and Engineering, 40-II, Academic Press Inc., 1971

[7] John Betts Practical methods for optimal control and estimation using nonlinear programming, Society for Industrial and Applied Mathematics, 2010 | DOI

[8] Hans Georg Bock; Karl-Josef Plitt A multiple shooting algorithm for direct solution of optimal control problems, IFAC Proceedings Volumes, Volume 17 (1984) no. 2, pp. 1603-1608 | DOI

[9] Jerome Bolte; Edouard Pauwels A mathematical model for automatic differentiation in machine learning, Proceedings of the 34rd International Conference on Neural Information Processing Systems, Curran Associates, Inc. (2020)

[10] Stephen Boyd; Lieven Vandenberghe Semidefinite programming relaxations of non-convex problems in control and combinatorial optimization, Communications, Computation, Control, and Signal Processing, Springer, 1997, pp. 279-287 | DOI

[11] Stephen Boyd; Lieven Vandenberghe Convex optimization, Cambridge University Press, 2004 | DOI

[12] James Bradbury; Roy Frostig; Peter Hawkins; Matthew James Johnson; Chris Leary; Dougal Maclaurin; George Necula; Adam Paszke; Jake VanderPlas; Skye Wanderman-Milne; Qiao Zhang JAX: composable transformations of Python+NumPy programs, 2018 (version 0.3.13, https://github.com/google/jax)

[13] Michael L. Bynum; Gabriel A. Hackebeil; William E. Hart; Carl D. Laird; Bethany L. Nicholson; John D. Siirola; Jean-Paul Watson; David L. Woodruff Pyomo–optimization modeling in python, Springer Optimization and Its Applications, 67, Springer, 2021 | Zbl

[14] Moritz Diehl; Hans Georg Bock; Holger Diedam; P.-B. Wieber Fast direct multiple shooting algorithms for optimal robot control, Fast motions in biomechanics and robotics: optimization and feedback control (Lecture Notes in Control and Information Sciences), Volume 340, Springer, 2006, pp. 65-93 | DOI | Zbl

[15] Moritz Diehl; Hans Joachim Ferreau; Niels Haverbeke Efficient numerical methods for nonlinear MPC and moving horizon estimation, Nonlinear model predictive control: towards new challenging applications (Lecture Notes in Control and Information Sciences), Volume 384, Springer, 2009, pp. 391-417 | DOI | Zbl

[16] Joseph Dunn; Dimitri Bertsekas Efficient dynamic programming implementations of Newton’s method for unconstrained optimal control problems, J. Optim. Theory Appl., Volume 63 (1989) no. 1, pp. 23-38 | DOI | Zbl

[17] Iain Dunning; Joey Huchette; Miles Lubin JuMP: A modeling language for mathematical optimization, SIAM Rev., Volume 59 (2017) no. 2, pp. 295-320 | DOI | Zbl

[18] Farbod Farshidian; Michael Neunert; Alexander W. Winkler; Gonzalo Rey; Jonas Buchli An efficient optimal planning and control framework for quadrupedal locomotion, 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE (2017), pp. 93-100 | DOI

[19] Janick V. Frasch; Sebastian Sager; Moritz Diehl A parallel quadratic programming method for dynamic optimization problems, Math. Program. Comput., Volume 7 (2015) no. 3, pp. 289-329 | DOI | Zbl

[20] Markus Giftthaler; Michael Neunert; Markus Stäuble; Jonas Buchli; Moritz Diehl A family of iterative Gauss-Newton shooting methods for nonlinear optimal control, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE (2018), pp. 1-9

[21] Jean Charles Gilbert Automatic differentiation and iterative processes, Optim. Methods Softw., Volume 1 (1992) no. 1, pp. 13-21 | DOI

[22] Philip E. Gill; Walter Murray; Michael A. Saunders SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Rev., Volume 47 (2005) no. 1, pp. 99-131 | DOI | Zbl

[23] Ian Goodfellow; Yoshua Bengio; Aaron Courville Deep learning, MIT Press, 2016

[24] Andreas Griewank; Andrea Walther Evaluating derivatives: principles and techniques of algorithmic differentiation, Society for Industrial and Applied Mathematics, 2008 | DOI

[25] Boris Houska; Moritz Diehl A quadratically convergent inexact SQP method for optimal control of differential algebraic equations, Optim. Control Appl. Methods, Volume 34 (2013) no. 4, pp. 396-414 | DOI | Zbl

[26] David Jacobson; David Mayne Differential Dynamic Programming, Elsevier, 1970

[27] Wilson Jallet; Antoine Bambade; Etienne Arlaud; Sarah El-Kazdadi; Nicolas Mansard; Justin Carpentier Proxddp: Proximal constrained trajectory optimization (2023)

[28] Sham Kakade; Akshay Krishnamurthy; Kendall Lowrey; Motoya Ohnishi; Wen Sun Information theoretic regret bounds for online nonlinear control, Adv. Neural Inf. Process. Syst., Volume 33 (2020), pp. 15312-15325

[29] Yann LeCun A theoretical framework for back-propagation, 1988 Connectionist Models Summer School, CMU, Pittsburg, PA (1988)

[30] Weiwei Li; Emanuel Todorov Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system, Int. J. Control, Volume 80 (2007) no. 9, pp. 1439-1453 | DOI | Zbl

[31] Li-Zhi Liao; Christine Shoemaker Convergence in unconstrained discrete-time differential dynamic programming, IEEE Trans. Autom. Control, Volume 36 (1991) no. 6, pp. 692-706 | DOI | Zbl

[32] Li-Zhi Liao; Christine Shoemaker Advantages of differential dynamic programming over Newton’s method for discrete-time optimal control problems (1992) (Technical report)

[33] Alexander Liniger; Alexander Domahidi; Manfred Morari Optimization-based autonomous racing of 1: 43 scale RC cars, Optim. Control Appl. Methods, Volume 36 (2015) no. 5, pp. 628-647 | DOI | Zbl

[34] Pierre-Louis Lions Generalized Solutions of Hamilton-Jacobi Equations, Pitman, 1982

[35] Mohamed Magdy; Abdallah El Marhomy; Mahmoud A. Attia Modeling of inverted pendulum system with gravitational search algorithm optimized controller, Ain Shams Engineering Journal, Volume 10 (2019) no. 1, pp. 129-149 | DOI

[36] David Mayne; Elijah Polak First-order strong variation algorithms for optimal control, J. Optim. Theory Appl., Volume 16 (1975) no. 3, pp. 277-301 | DOI

[37] Florian Messerer; Katrin Baumgärtner; Moritz Diehl Survey of sequential convex programming and generalized Gauss–Newton methods, ESAIM, Proc. Surv., Volume 71 (2021), pp. 64-88 | DOI | Zbl

[38] Donald Murray; Sidney Yakowitz Differential dynamic programming and Newton’s method for discrete optimal control problems, J. Optim. Theory Appl., Volume 43 (1984) no. 3, pp. 395-414 | DOI | Zbl

[39] Yurii Nesterov Lectures on convex optimization, Springer, 2018 | DOI

[40] John Nganga; Patrick Wensing Accelerating Second-Order Differential Dynamic Programming for Rigid-Body Systems, IEEE Robotics and Automation Letters, Volume 6 (2021) no. 4, pp. 7659-7666 | DOI

[41] Jorge Nocedal; Stephen Wright Numerical optimization, Springer, 2006

[42] J. Pantoja Differential dynamic programming and Newton’s method, Int. J. Control, Volume 47 (1988) no. 5, pp. 1539-1553 | DOI | Zbl

[43] Adam Paszke; Sam Gross; Francisco Massa; Adam Lerer; James Bradbury; Gregory Chanan; Trevor Killeen; Zeming Lin; Natalia Gimelshein; Luca Antiga; Alban Desmaison; Andreas Kopf; Edward Yang; Zachary DeVito; Martin Raison; Alykhan Tejani; Sasank Chilamkurthy; Benoit Steiner; Lu Fang; Junjie Bai; Soumith Chintala PyTorch: An Imperative Style, High-Performance Deep Learning Library, Proceedings of the 33rd International Conference on Neural Information Processing Systems, Curran Associates, Inc. (2019), pp. 8026-8037

[44] Elijah Polak Computational methods in optimization: a unified approach, Mathematics in Science and Engineering, 77, Academic Press Inc., 1971

[45] Christopher Rao; Stephen Wright; James Rawlings Application of interior-point methods to model predictive control, J. Optim. Theory Appl., Volume 99 (1998) no. 3, pp. 723-757 | Zbl

[46] Benjamin Recht A tour of reinforcement learning: The view from continuous control, Annual Review of Control, Robotics, and Autonomous Systems, Volume 2 (2019), pp. 253-279 | DOI

[47] Vincent Roulet; Siddhartha Srinivasa; Dmitriy Drusvyatskiy; Zaid Harchaoui Iterative linearized control: stable algorithms and complexity guarantees, Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning Research), Volume 97, JMLR (2019), pp. 5518-5527

[48] David E. Rumelhart; Geoffrey E. Hinton; Ronald J. Williams Learning representations by back-propagating errors, Nature, Volume 323 (1986) no. 6088, pp. 533-536 | DOI | Zbl

[49] Jürgen Schmidhuber Making the world differentiable: on using self supervised fully recurrent neural networks for dynamic reinforcement learning and planning in non-stationary environments (1990) (Technical report)

[50] Athanasios Sideris; James Bobrow An efficient sequential linear quadratic algorithm for solving nonlinear optimal control problems, Proceedings of the 2005 American Control Conference, IEEE (2005), pp. 2275-2280 | DOI

[51] Akshay Srinivasan; Emanuel Todorov Graphical Newton (2015) | arXiv

[52] Yuval Tassa; Tom Erez; William Smart Receding horizon differential dynamic programming, Adv. Neural Inf. Process. Syst., Volume 20 (2007)

[53] Yuval Tassa; Tom Erez; Emanuel Todorov Synthesis and stabilization of complex behaviors through online trajectory optimization, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2012), pp. 4906-4913

[54] Yuval Tassa; Nicolas Mansard; Emanuel Todorov Control-limited differential dynamic programming, 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE (2014), pp. 1168-1175 | DOI

[55] Emanuel Todorov; Tom Erez; Yuval Tassa MuJoCo: A physics engine for model-based control, International Conference on Intelligent Robots and Systems (IROS), IEEE (2012), pp. 5026-5033

[56] Robin Verschueren; Gianluca Frison; Dimitris Kouzoupis; Jonathan Frey; Niels van Duijkeren; Andrea Zanelli; Branimir Novoselnik; Thivaharan Albin; Rien Quirynen; Moritz Diehl acados — a modular open-source framework for fast embedded optimal control, Math. Program. Comput., Volume 14 (2022), pp. 147-183 | DOI | Zbl

[57] Robin Verschueren; Niels van Duijkeren; Rien Quirynen; Moritz Diehl Exploiting convexity in direct optimal control: a sequential convex quadratic programming method, 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE (2016), pp. 1099-1104 | DOI

[58] Oskar Von Stryk Numerical solution of optimal control problems by direct collocation, Springer, 1993

[59] Andreas Wächter; Lorenz T. Biegler On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., Volume 106 (2006), pp. 25-57 | DOI | Zbl

[60] Paul Werbos The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting, Wiley-Interscience, 1994

[61] Stephen Wright Solution of discrete-time optimal control problems on parallel computers, Parallel Comput., Volume 16 (1990) no. 2-3, pp. 221-237 | DOI | Zbl

[62] Stephen Wright Partitioned dynamic programming for optimal control, SIAM J. Optim., Volume 1 (1991) no. 4, pp. 620-642 | DOI | Zbl

[63] Stephen Wright Structured interior point methods for optimal control, Proceedings of the 30th IEEE Conference on Decision and Control, IEEE (1991), pp. 1711-1716 | DOI

[64] Stephen Wright Interior point methods for optimal control of discrete time systems, J. Optim. Theory Appl., Volume 77 (1993) no. 1, pp. 161-187 | DOI | Zbl

[65] Aston Zhang; Zachary C. Lipton; Mu Li; Alexander J. Smola Dive into Deep Learning, Cambridge University Press, 2023

Cited by Sources: