We consider the problem of linearizing a pseudo-Boolean function by means of Boolean functions. Such a linearization yields an integer linear programming formulation with only auxiliary variables. This motivates the definition of the linearization complexity of as the minimum such . Our theoretical contributions are the proof that random polynomials almost surely have a high linearization complexity and characterizations of its value in case we do or do not restrict the set of admissible Boolean functions. The practical relevance is shown by devising and evaluating integer linear programming models of two such linearizations for the low auto-correlation binary sequences problem. Still, many problems around this new concept remain open.
Revised:
Accepted:
Published online:
@article{OJMO_2024__5__A6_0, author = {Matthias Walter}, title = {Short {Paper} - {The} {Binary} {Linearization} {Complexity} of {Pseudo-Boolean} {Functions}}, journal = {Open Journal of Mathematical Optimization}, eid = {6}, pages = {1--12}, publisher = {Universit\'e de Montpellier}, volume = {5}, year = {2024}, doi = {10.5802/ojmo.34}, language = {en}, url = {https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.34/} }
TY - JOUR AU - Matthias Walter TI - Short Paper - The Binary Linearization Complexity of Pseudo-Boolean Functions JO - Open Journal of Mathematical Optimization PY - 2024 SP - 1 EP - 12 VL - 5 PB - Université de Montpellier UR - https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.34/ DO - 10.5802/ojmo.34 LA - en ID - OJMO_2024__5__A6_0 ER -
%0 Journal Article %A Matthias Walter %T Short Paper - The Binary Linearization Complexity of Pseudo-Boolean Functions %J Open Journal of Mathematical Optimization %D 2024 %P 1-12 %V 5 %I Université de Montpellier %U https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.34/ %R 10.5802/ojmo.34 %G en %F OJMO_2024__5__A6_0
Matthias Walter. Short Paper - The Binary Linearization Complexity of Pseudo-Boolean Functions. Open Journal of Mathematical Optimization, Volume 5 (2024), article no. 6, 12 p. doi : 10.5802/ojmo.34. https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.34/
[1] A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems, Manage. Sci., Volume 32 (1986) no. 10, pp. 1274-1290 | DOI | Zbl
[2] Linearization Strategies for a Class of Zero-One Mixed Integer Programming Problems, Oper. Res., Volume 38 (1990) no. 2, pp. 217-226 | DOI | Zbl
[3] Mixed-integer bilinear programming problems, Math. Program., Volume 59 (1993) no. 1, pp. 279-305 | DOI | Zbl
[4] Quadratic reformulations of nonlinear binary optimization problems, Math. Program., Volume 162 (2017) no. 1, pp. 115-144 | DOI | Zbl
[5] Low autocorrelation binary sequences: statistical mechanics and configuration space analysis, J. Phys., Volume 141 (1987) no. 48, pp. 559-567 | DOI
[6] Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem, Math. Program. Comput., Volume 109 (2007) no. 1, pp. 55-68 | DOI | Zbl
[7] et al. The SCIP Optimization Suite 9.0 (2024) | arXiv
[8] Pseudo-Boolean optimization, Discrete Appl. Math., Volume 123 (2002) no. 1, pp. 155-225 | DOI | Zbl
[9] Berge-acyclic multilinear 0–1 optimization problems, Eur. J. Oper. Res., Volume 273 (2019) no. 1, pp. 102-107 | DOI | Zbl
[10] Solving unconstrained binary polynomial programs with limited reach: Application to low autocorrelation binary sequences, Comput. Oper. Res., Volume 165 (2024), 106586 | DOI | Zbl
[11] A class of valid inequalities for multilinear 0–1 optimization problems, Discrete Optim., Volume 25 (2017), pp. 28-47 | DOI | Zbl
[12] Chvátal Rank in Binary Polynomial Optimization, INFORMS J. Optim., Volume 3 (2021) no. 4, pp. 315-443 | DOI
[13] A Polyhedral Study of Binary Polynomial Programs, Math. Oper. Res., Volume 42 (2017) no. 2, pp. 389-410 | DOI | Zbl
[14] The Multilinear Polytope for Acyclic Hypergraphs, SIAM J. Optim., Volume 28 (2018) no. 2, pp. 1049-1076 | DOI | Zbl
[15] On decomposability of Multilinear sets, Math. Program., Volume 170 (2018) no. 2, pp. 387-415 | DOI | Zbl
[16] The Running Intersection Relaxation of the Multilinear Polytope, Math. Oper. Res., Volume 46 (2021) no. 3, pp. 1008-1037 | DOI | Zbl
[17] Simple Odd -Cycle Inequalities for Binary Polynomial Optimization, Integer Programming and Combinatorial Optimization (Karen Aardal; Laura Sanità, eds.), Springer (2022), pp. 181-194 | DOI | Zbl
[18] Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation, J. Glob. Optim., Volume 80 (2021) no. 2, pp. 231-248 | DOI | Zbl
[19] Applications de l’algebre de Boole en recherche opérationelle, Rev. Franc. Rech. Operat., Volume 4 (1960) no. 14, pp. 17-26
[20] L’algebre de Boole et ses applications en recherche operationnelle, Trab. Estad., Volume 4 (1960), pp. 17-26 | DOI
[21] Extended linear formulation for binary quadratic problems, Optimization Online (2013) (https://optimization-online.org/?p=12481)
[22] Improved Linear Integer Programming Formulations of Nonlinear Integer Problems, Manage. Sci., Volume 22 (1975) no. 4, pp. 455-460 | DOI | Zbl
[23] The merit factor of long low autocorrelation binary sequences, IEEE Trans. Inf. Theory, Volume 28 (1982) no. 3, pp. 543-549 | DOI
[24] On the Determination of the Minima of Pseudo-Boolean Functions, Stud. Cercet. Ştiinţ., Ser. Mat., Univ. Bacău, Volume 14 (1963) no. 3, pp. 359-364 (in Rumanian)
[25] Boolean Methods in Operations Research and Related Areas, Ökonometrie und Unternehmensforschung, 7, Springer, 2012 | DOI
[26] On defining sets of vertices of the hypercube by linear inequalities, Discrete Math., Volume 11 (1975) no. 2, pp. 119-124 | DOI | Zbl
[27] Reducibility among Combinatorial Problems, Springer (1972), pp. 85-103 | DOI
[28] A non-disordered glassy model with a tunable interaction range, J. Stat. Mech. Theory Exp., Volume 2010 (2010) no. 05, L05003 | DOI
[29] Exhaustive search for low-autocorrelation binary sequences, J. Phys. A. Math. Gen., Volume 29 (1996) no. 18, L473 | DOI | Zbl
[30] On the ground states of the Bernasconi model, J. Phys. A. Math. Gen., Volume 31 (1998) no. 16, pp. 3731-3749 | DOI | Zbl
[31] A Library of Mixed-Integer and Continuous Nonlinear Programming Instances, 2020 (http://www.minlplib.org)
[32] Low autocorrelation binary sequences, J. Phys. A. Math. Theor., Volume 49 (2016) no. 16, 165001 | DOI
[33] Linear and quadratic reformulations of nonlinear optimization problems in binary variables, Ph. D. Thesis, Université de Liège, Liège, Belgique (2018) https://hdl.handle.net/2268/227242
[34] A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique, J. Glob. Optim., Volume 2 (1992) no. 1, pp. 101-112 | DOI | Zbl
[35] Adaptive cut generation for improved linear programming decoding of binary linear codes, 2011 IEEE International Symposium on Information Theory Proceedings, IEEE (2011), pp. 1638-1642 | DOI
Cited by Sources: