Cardinality-constrained structured data-fitting problems
Open Journal of Mathematical Optimization, Volume 5 (2024), article no. 2, 21 p.

A memory-efficient solution framework is proposed for the cardinality-constrained structured data-fitting problem. Dual-based atom-identification rules reveal the structure of the optimal primal solution from near-optimal dual solutions, which allows for a simple and computationally efficient algorithm that translates any feasible dual solution into a primal solution satisfying the cardinality constraint. Rigorous guarantees bound the quality of a near-optimal primal solution given any dual-based method that generates dual iterates converging to an optimal dual solution. Numerical experiments on real-world datasets support the analysis and demonstrate the efficiency of the proposed approach.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/ojmo.27
Mots-clés : convex analysis, sparse optimization, low-rank optimization, primal-retrieval
Zhenan Fan 1; Huang Fang 1; Michael P. Friedlander 1

1 The University of British Columbia, Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{OJMO_2024__5__A2_0,
     author = {Zhenan Fan and Huang Fang and Michael P. Friedlander},
     title = {Cardinality-constrained structured data-fitting problems},
     journal = {Open Journal of Mathematical Optimization},
     eid = {2},
     pages = {1--21},
     publisher = {Universit\'e de Montpellier},
     volume = {5},
     year = {2024},
     doi = {10.5802/ojmo.27},
     language = {en},
     url = {https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.27/}
}
TY  - JOUR
AU  - Zhenan Fan
AU  - Huang Fang
AU  - Michael P. Friedlander
TI  - Cardinality-constrained structured data-fitting problems
JO  - Open Journal of Mathematical Optimization
PY  - 2024
SP  - 1
EP  - 21
VL  - 5
PB  - Université de Montpellier
UR  - https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.27/
DO  - 10.5802/ojmo.27
LA  - en
ID  - OJMO_2024__5__A2_0
ER  - 
%0 Journal Article
%A Zhenan Fan
%A Huang Fang
%A Michael P. Friedlander
%T Cardinality-constrained structured data-fitting problems
%J Open Journal of Mathematical Optimization
%D 2024
%P 1-21
%V 5
%I Université de Montpellier
%U https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.27/
%R 10.5802/ojmo.27
%G en
%F OJMO_2024__5__A2_0
Zhenan Fan; Huang Fang; Michael P. Friedlander. Cardinality-constrained structured data-fitting problems. Open Journal of Mathematical Optimization, Volume 5 (2024), article  no. 2, 21 p. doi : 10.5802/ojmo.27. https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.27/

[1] Zeyuan Allen-Zhu; Elad Hazan; Wei Hu; Yuanzhi Li Linear convergence of a frank-wolfe type algorithm over trace-norm balls, NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., 2017, pp. 6191-6200

[2] Mariette Annergren ADMM for 1 Regularized Optimization Problems and Applications Oriented Input Design for MPC, 2012 (licentiate thesis, Stockholm, Sweden)

[3] Aleksandr Y. Aravkin; James V. Burke; Dmitry Drusvyatskiy; Michael P. Friedlander; Kellie J. MacPhee Foundations of gauge and perspective duality, SIAM J. Optim., Volume 28 (2018) no. 3, pp. 2406-2434 | DOI | MR | Zbl

[4] Aleksandr Y. Aravkin; James V. Burke; Dmitry Drusvyatskiy; Michael P. Friedlander; Scott Roy Level-set methods for convex optimization, Math. Program., Volume 174 (2018) no. 1-2, pp. 359-390 | DOI | MR | Zbl

[5] Andreas Argyriou; Theodoros Evgeniou; Massimiliano Pontil Convex multi-task feature learning, Mach. Learn., Volume 73 (2008) no. 3, pp. 243-272 | DOI | Zbl

[6] Alper Atamtūrk; Andrés Gómez Safe screening rules for 0 -regression, Proceedings of International Conference on Machine Learning, 2020 (https://arxiv.org/abs/2004.08773)

[7] Runxue Bao; Bin Gu; Heng Huang Fast oscar and owl with safe screening rules, Proceedings of International Conference on Machine Learning, 2020 (https://arxiv.org/abs/2006.16433)

[8] Amir Beck; Marc Teboulle A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., Volume 2 (2009) no. 1, pp. 183-202 | DOI | MR | Zbl

[9] Ewout van den Berg; Michael P. Friedlander Probing the Pareto frontier for basis pursuit solutions, SIAM J. Sci. Comput., Volume 31 (2008) no. 2, pp. 890-912 | DOI | MR | Zbl

[10] Ewout van den Berg; Michael P. Friedlander Sparse optimization with least-squares constraints, SIAM J. Optim., Volume 21 (2011) no. 4, pp. 1201-1229 | DOI | MR | Zbl

[11] Ewout van den Berg; Michael P. Friedlander; Gilles Hennenfent; Felix J. Herrmann; Rayan Saab; Özgür Yilmaz Algorithm 890: Sparco: A testing framework for sparse reconstruction, ACM Trans. Math. Softw., Volume 35 (2008) no. 4, 29, 16 pages | DOI

[12] Jeff Bezanson; Alan Edelman; Stefan Karpinski; Viral B. Shah Julia: A fresh approach to numerical computing, SIAM Rev., Volume 59 (2017) no. 1, pp. 65-98 | DOI | MR | Zbl

[13] Antoine Bonnefoy; Valentin Emiya; Liva Ralaivola; Rémi Gribonval Dynamic screening: Accelerating first-order algorithms for the lasso and group-lasso, IEEE Trans. Signal Process., Volume 63 (2015) no. 19, pp. 5121-5132 | DOI | MR | Zbl

[14] James V. Burke; Jorge J. Moré On the identification of active constraints, SIAM J. Numer. Anal., Volume 25 (1988) no. 5, pp. 1197-1211 | DOI | MR | Zbl

[15] Emmanuel J. Candès; Yonina C. Eldar; Thomas Strohmer; Vladislav Voroninski Phase retrieval via matrix completion, SIAM J. Imaging Sci., Volume 6 (2013) no. 1, pp. 199-225 | DOI | MR | Zbl

[16] Emmanuel J. Candès; Xiaodong Li; Yi Ma; John Wright Robust principal component analysis?, J. Assoc. Comput. Mach., Volume 58 (2011) no. 3, 11, 37 pages | MR | Zbl

[17] Emmanuel J. Candès; Yaniv Plan Matrix Completion With Noise, Proc. IEEE, Volume 98 (2010) no. 6, pp. 925-936 | DOI

[18] Emmanuel J. Candès; Benjamin Recht Exact matrix completion via convex optimization, Commun. ACM, Volume 55 (2012) no. 6, pp. 111-119 | DOI

[19] Emmanuel J. Candès; Justin K. Romberg; Terence Tao Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, Volume 52 (2006) no. 2, pp. 489-509 | DOI | MR | Zbl

[20] Emmanuel J. Candès; Thomas Strohmer; Vladislav Voroninski Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming, Commun. Pure Appl. Math., Volume 66 (2013) no. 8, pp. 1241-1274 | DOI | MR | Zbl

[21] Venkat Chandrasekaran; Benjamin Recht; Pablo A. Parrilo; Alan S. Willsky The convex geometry of linear inverse problems, Found. Comput. Math., Volume 12 (2012) no. 6, pp. 805-849 | DOI | MR | Zbl

[22] Scott Shaobing Chen; David L. Donoho; Michael A. Saunders Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., Volume 20 (1998) no. 1, pp. 33-61 | DOI | MR

[23] Lijun Ding; Alp Yurtsever; Volkan Cevher; Joel A. Tropp; Madeleine Udell An optimal-storage approach to semidefinite programming using approximate complementarity, SIAM J. Optim., Volume 31 (2021) no. 4, pp. 2695-2725 | DOI | MR | Zbl

[24] David L. Donoho Compressed sensing, IEEE Trans. Inf. Theory, Volume 52 (2006) no. 4, pp. 1289-1306 | DOI | MR | Zbl

[25] David L. Donoho For most large underdetermined systems of linear equations the minimal 1 -norm near-solution approximates the sparsest near-solution, 2006 (technical report, Department of Statistics, Stanford University, Stanford)

[26] Laurent El Ghaoui; Vivian Viallon; Tarek Rabbani Safe feature elimination in sparse supervised learning, Pac. J. Optim., Volume 8 (2012) no. 4, pp. 667-698 | MR | Zbl

[27] Zhenan Fan; Halyun Jeong; Babhru Joshi; Michael P. Friedlander Polar Deconvolution of Mixed Signals, IEEE Trans. Signal Process., Volume 70 (2022), pp. 2713-2727 | MR

[28] Zhenan Fan; Halyun Jeong; Yifan Sun; Michael P. Friedlander Atomic decomposition via polar alignment: The geometry of structured optimization, Found. Trends Optim., Volume 3 (2020) no. 4, pp. 280-366

[29] Zhenan Fan; Yifan Sun; Michael P. Friedlander Bundle methods for dual atomic pursuit, Asilomar Conference on Signals, Systems, and Computers (ACSSC 2019), IEEE, 2019, pp. 264-270

[30] M. Fazel; J. Goodman Approximations for partially coherent optical imaging systems, 1998 (technical report)

[31] Marguerite Frank; Philip Wolfe An algorithm for quadratic programming, Nav. Res. Logist., Volume 3 (1956) no. 1-2, pp. 95-110 | DOI | MR

[32] Michael P. Friedlander; Ives Macêdo Low-rank spectral optimization via gauge duality, SIAM J. Sci. Comput., Volume 38 (2016) no. 3, p. A1616-A1638 | DOI | MR | Zbl

[33] Michael P. Friedlander; Paul Tseng Exact regularization of convex programs, SIAM J. Optim., Volume 18 (2007) no. 4, pp. 1326-1350 | DOI | MR | Zbl

[34] Athinodoros S. Georghiades; Peter N. Belhumeur; David J. Kriegman From few to many: Illumination cone models for face recognition under variable lighting and pose, IEEE Trans. Pattern Anal. Mach. Intell., Volume 23 (2001) no. 6, pp. 643-660 | DOI

[35] Warren L. Hare Identifying active manifolds in regularization problems, Fixed-Point Algorithms for Inverse Problems in Science and Engineering (Springer Optimization and Its Applications), Volume 49, Springer, 2011, pp. 261-271 | DOI | MR | Zbl

[36] Warren L. Hare; Adrian S. Lewis Identifying active constraints via partial smoothness and prox-regularity, J. Convex Anal., Volume 11 (2004) no. 2, pp. 251-266 | MR | Zbl

[37] Christoph Helmberg; Franz Rendl A spectral bundle method for semidefinite programming, SIAM J. Optim., Volume 10 (2000) no. 3, pp. 673-696 | DOI | MR | Zbl

[38] Jean-Baptiste Hiriart-Urruty; Claude Lemaréchal Fundamentals of Convex Analysis, Grundlehren. Text Editions, Springer, 2001 | DOI | Zbl

[39] Bin Hong; Weizhong Zhang; Wei Liu; Jieping Ye; Deng Cai; Xiaofei He; Jie Wang Scaling up sparse support vector machines by simultaneous feature and sample reduction, ICML’17: Proceedings of the 34th International Conference on Machine Learning, JMLR, 2017, pp. 4016-4025

[40] Cho-Jui Hsieh; Peder A. Olsen Nuclear norm minimization via active subspace selection, ICML’14: Proceedings of the 31st International Conference on International Conference on Machine Learning, JMLR, 2014, pp. 575-583

[41] Martin Jaggi Revisiting Frank–Wolfe: Projection-free sparse convex optimization, ICML’13: Proceedings of the 30th International Conference on International Conference on Machine Learning, JMLR, 2013, pp. 427-435

[42] Sham Kakade; Shai Shalev-Shwartz; Ambuj Tewari On the duality of strong convexity and strong smoothness: Learning applications and matrix regularization (2009) (unpublished manuscript, https://home.ttic.edu/~shai/papers/KakadeShalevTewari09.pdf)

[43] Kwangmoo Koh; Seung-Jean Kim; Stephen P. Boyd A method for large-scale 1 -regularized logistic regression, AAAI’07: Proceedings of the 22nd national conference on Artificial intelligence, AAAI Press, 2007

[44] Nathan Krislock; Henry Wolkowicz Explicit sensor network localization using semidefinite representations and facial reductions, SIAM J. Optim., Volume 20 (2010) no. 5, pp. 2679-2708 | DOI | MR | Zbl

[45] Zhaobin Kuang; Sinong Geng; David Page A screening rule for 1 -regularized Ising model estimation, Adv. Neural Inf. Process. Syst., Volume 30 (2017), pp. 720-731 (NIPS 2017)

[46] Zhouchen Lin; Risheng Liu; Zhixun Su Linearized alternating direction method with adaptive penalty for low rank representation, NIPS’11: Proceedings of the 24th International Conference on Neural Information Processing Systems, Curran Associates Inc., 2011, pp. 612-620

[47] Jun Liu; Zheng Zhao; Jie Wang; Jieping Ye Safe screening with variational inequalities and its application to lasso, ICML’14: Proceedings of the 31st International Conference on International Conference on Machine Learning, JMLR, 2014, pp. 289-297

[48] Rahul Mazumder; Trevor Hastie; Robert Tibshirani Spectral regularization algorithms for learning large incomplete matrices, J. Mach. Learn. Res., Volume 11 (2010), pp. 2287-2322 | MR | Zbl

[49] Nicolai Meinshausen; Peter Bühlmann High dimensional graphs and variable selection with the lasso, Ann. Stat., Volume 34 (2006) no. 3, pp. 1436-1462 | DOI | MR | Zbl

[50] Eugène Ndiaye; Olivier Fercoq; Alexandre Gramfort; Joseph Salmon Gap safe screening rules for sparse-group lasso, NIPS’16: Proceedings of the 30th International Conference on Neural Information Processing Systems, Curran Associates Inc., 2016, pp. 388-396

[51] Eugène Ndiaye; Olivier Fercoq; Alexandre Gramfort; Joseph Salmon Gap safe screening rules for sparsity enforcing penalties, J. Mach. Learn. Res., Volume 18 (2017), 128, 33 pages | MR | Zbl

[52] Julie Nutini; Mark Schmidt; Warren L. Hare “active-set complexity” of proximal gradient: How long does it take to find the sparsity pattern?, Optim. Lett., Volume 13 (2019) no. 4, pp. 645-655 | DOI | MR | Zbl

[53] François Oustry A second-order bundle method to minimize the maximum eigenvalue function, Math. Program., Volume 89 (2000) no. 1, pp. 1-33 | DOI | MR | Zbl

[54] Anant Raj; Jakob Olbrich; Bernd Gärtner; Bernhard Schölkopf; Martin Jaggi Screening rules for convex problems (2015) | arXiv

[55] Jasson D. M. Rennie; Nathan Srebro Fast maximum margin matrix factorization for collaborative prediction, ICML’05: Proceedings of the 22nd international conference on Machine learning, ACM Press, 2005, pp. 713-719 | DOI

[56] R. Tyrrell Rockafellar Convex Analysis, Princeton Mathematical Series, 28, Princeton University Press, 1970 | DOI

[57] Robert Tibshirani Regression shrinkage and selection via the lasso, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 58 (1996) no. 1, pp. 267-288 | MR | Zbl

[58] Joel A. Tropp Convex recovery of a structured signal from independent random linear measurements, Sampling Theory, a Renaissance (Applied and Numerical Harmonic Analysis), Birkhäuser/Springer, 2015, pp. 67-101 | DOI | Zbl

[59] Jie Wang; Jiayu Zhou; Jun Liu; Peter Wonka; Jieping Ye A safe screening rule for sparse logistic regression, NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing Systems, MIT Press, 2014, pp. 1053-1061

[60] Jie Wang; Jiayu Zhou; Peter Wonka; Jieping Ye Lasso screening rules via dual polytope projection, NIPS’13: Proceedings of the 26th International Conference on Neural Information Processing Systems, Curran Associates Inc., 2013, pp. 1070-1078

[61] Zhen James Xiang; Yun Wang; Peter J. Ramadge Screening tests for lasso problems, IEEE Trans. Pattern Anal. Mach. Intell., Volume 39 (2017) no. 5, pp. 1008-1027 | DOI

[62] Ming Yuan; Yi Lin Model selection and estimation in regression with grouped variables, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 68 (2006) no. 1, pp. 49-67 | DOI | MR | Zbl

[63] Xiao-Tong Yuan; Ping Li; Tong Zhang Gradient hard thresholding pursuit, J. Mach. Learn. Res., Volume 18 (2018), 166, 43 pages | MR | Zbl

Cited by Sources: